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Abstract

This article presents an overview of twelve existing objective speech quality and intelligibility 

prediction tools. Two classes of algorithms are presented, namely intrusive and non-intrusive, with 

the former requiring the use of a reference signal, while the latter does not. Investigated metrics 

include both those developed for normal hearing listeners, as well as those tailored particularly for 

hearing impaired (HI) listeners who are users of assistive listening devices (i.e., hearing aids, HAs, 

and cochlear implants, CIs). Representative examples of those optimized for HI listeners include 

the speech-to-reverberation modulation energy ratio, tailored to hearing aids (SRMR-HA) and to 

cochlear implants (SRMR-CI); the modulation spectrum area (ModA); the hearing aid speech 

quality (HASQI) and perception indices (HASPI); and the PErception MOdel - hearing 

impairment quality (PEMO-Q-HI). The objective metrics are tested on three subjectively-rated 

speech datasets covering reverberation-alone, noise-alone, and reverberation-plus-noise 

degradation conditions, as well as degradations resultant from nonlinear frequency compression 

and different speech enhancement strategies. The advantages and limitations of each measure are 

highlighted and recommendations are given for suggested uses of the different tools under specific 

environmental and processing conditions.

I. Introduction

According to 2005 estimates from the World Health Organization, 278 million people 

worldwide had moderate to profound hearing loss in one or both ears. Depending on the 

degree of hearing impairment, these subjects can become candidates for hearing aid (HA) or 

cochlear implant (CI) devices. Recently, a number of factors, such as aging population, 

enlargement of candidacy criteria, and technological advances have drawn great attention to 

HA and CI research and development. For users of such assistive listening devices, 

however, environmental distortions, such as reverberation and additive noise (and their 
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combined effects) significantly degrade speech intelligibility and reduce perceived quality to 

unacceptable levels [1]. As such, current research has focused on the development of speech 

enhancement techniques (e.g., noise suppression, feedback cancellation) to meet this 

demand. To assure that the developed algorithms are behaving as expected, quality and 

intelligibility monitoring has to be performed.

Traditionally, subjective tests have been used to assure that acceptable levels of speech 

quality and intelligibility are attained. For CI devices, two approaches are commonly taken. 

The first makes use of vocoded speech to simulate CI hearing and presents vocoded speech 

to normal hearing (NH) listeners for identification. The second approach is more direct and 

presents degraded (or enhanced) speech stimuli directly to hearing impaired (HI) CI users 

for analysis (e.g., [1]). For HA users, this latter approach has been commonly used to 

investigate the effects of various HA signal processing techniques, such as noise suppression 

and feedback cancellation, on the perceived speech quality. Subjective testing, however, is 

laborious, time-consuming, and expensive. As such, automated, repeatable, fast, and cost-

effective objective quality/intelligibility monitoring tools need to be developed, thus 

replacing the listeners with an auditory-inspired computational algorithm.

Reliable objective quality/intelligibility measurement tools can play key roles in the 

development, fitting, and online processing of different assistive listening devices. In the 

development stage, for example, different processing algorithms can be optimized to 

improve the final perceived speech quality/intelligibility. Wide dynamic-range compression 

algorithms, for example, have been developed to improve the audibility of low-intensity 

speech sounds. It is well known, however, that the time-varying gain changes can introduce 

unwanted nonlinear distortions. As such, objective tools provide a means of evaluating the 

trade-offs between audibility and distortion, thus allowing for optimal parameters to be set. 

Moreover, for hearing aid fitting, objective measures can be used to provide pre-settings 

tailored to the individual hearing loss, thus providing more effective starting points for the 

adjustment of the hearing aid. Furthermore, the settings that provide optimum intelligibility 

may not be the ones that result in maximum quality, thus toggling between settings based on 

an intelligibility and on a quality index can provide a meaningful comparison for the 

hearing-aid user. Lastly, objective tools can be used in real-time adaptation of e.g., speech 

enhancement algorithms (i.e., model-in-the-loop), such that the processing guarantees 

optimal quality/intelligibility as the user moves from one (noisy/reverberant) environment to 

another.

Signal-based objective metrics can be classified as intrusive or non-intrusive, depending on 

the need for a reference signal or not, respectively. While significant research and 

standardization efforts have been placed in developing objective measures for telephone 

speech with NH listeners [2], only a small number of objective measurement tools targeted 

towards CI/HA users have been developed. Given the rapidly aging population and the 

projected increase of hearing loss that comes with aging, it is of great importance that the 

advantages and drawbacks of existing tools be characterized, as well as compared to each 

other on datasets collected under different practical experimental conditions.
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In this paper, we present several existing tools that have been recently developed for users of 

assistive listening devices; seven of the investigated tools belong to the ‘intrusive’ class and 

five are non-intrusive. All the metrics were evaluated on the same datasets comprised of 

speech processed under different complex listening conditions, such as noise, reverberation, 

noise-plus-reverberation, as well as under different non-linear effects, such as frequency 

compression and speech enhancement (i.e., noise suppression and dereverberation). 

Advantages and limitations of the investigated tools are presented and suggestions as to 

which metrics are to be used under different specific scenarios are given, thus serving as a 

useful guide for researchers and developers of assisted listening devices.

The remainder of this paper is organized as follows. Section II describes the twelve 

objective metrics used in this study. Section III describes the experimental setup, databases 

used, as well as the four performance criteria used to compare the metrics. Results are then 

presented in Section IV and discussed in Section V. Lastly, Section VI presents the 

conclusions.

II. Objective speech quality and intelligibility prediction

As mentioned previously, signal-based objective quality and intelligibility prediction tools 

can be categorized as intrusive or non-intrusive, depending on the need for a reference signal 

or not, respectively. Over the last two decades, significant standardization efforts have been 

made by the International Telecommunications Union, ITU-T, to standardize both intrusive 

and non-intrusive algorithms for telephone speech using NH listeners [2]. On the other hand, 

only a handful of algorithms have been proposed that are specifically tuned to assistive 

listening devices. To overcome this limitation, recent studies have explored the use of NH-

optimized tools, as well as proposed modifications to such tools in order to tailor them to 

assistive listening devices (e.g., [3]). In the subsections to follow, several such measures, 

both intrusive and non-intrusive, are described. The choice of measures used in this study 

was guided not only by their applicability to the task at hand, but also by the availability of 

publicly-available source code (or code that could be licensed at a reasonable cost).

A. Intrusive Metrics

1) Normalized covariance metric, NCM—The NCM measure estimates speech 

intelligibility based on the covariance between the envelopes of the time-aligned reference 

and processed speech signals [4]–[6]. Computation of NCM values depends on deriving 

speech temporal envelopes, via the Hilbert transform, from outputs of a gammatone 

filterbank used to emulate cochlear processing. The normalized correlation between the 

reference and processed speech envelopes produces an estimate of the so-called apparent 

signal to noise ratio (SNRapp) given by:

(1)

where rk is the correlation coefficient between the reference and processed speech envelopes 

estimated in filterbank channel k (typically, 23 gammatone channels are used), and the [−15, 

15] operator refers to the process of limiting and mapping SNRapp into that range. The last 
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step consists of linearly mapping the apparent SNR to the [0, 1] range using the following 

rule:

(2)

The  values are then weighted in each frequency channel according to the so-

called articulation index (AI) weights W (k) recommended in the American National 

Standards Institute ANSI S3.5 Standard [7]. The final NCM value is given by:

(3)

The NCM has been widely used to characterize the perceived intelligibility for CI users 

(e.g., [3], [4]).

2) Short-time Objective Intelligibility, STOI—The short-time objective intelligibility 

(STOI) metric is based on a correlation coefficient between the temporal envelopes of the 

time-aligned reference and processed speech signal in short-time overlapped segments [8]. 

The signals are first decomposed by a 1/3-octave filterbank, segmented into short-time 

windows, normalized, clipped and then compared by means of a correlation coefficient. The 

normalization step compensates for e.g., different playback levels, which do not have a 

strong negative effect on intelligibility. Clipping, in turn, sets an upper bound on how 

severely degraded one speech time-frequency unit can be. According to [8], clipping is used 

to avoid changes in intelligibility prediction once speech has already been deemed 

“unintelligible.” The resultant correlation coefficients correspond to short-time intermediate 

intelligibility measures for each of the segments, which are then averaged to one scalar value 

corresponding to the predicted speech intelligibility for the processed signal. The STOI was 

originally proposed to assess the intelligibility of time-frequency weighted noisy speech and 

enhanced speech for NH listeners. Nonetheless, a channel selection algorithm for cochlear 

implants that employs STOI has been recently proposed [9].

3) Perceptual Evaluation of Speech Quality, PESQ—The International 

Telecommunications Union ITU-T P.862 standard, also known as Perceptual Evaluation of 

Speech Quality (henceforth PESQ) [10], is a widely-used objective quality measurement 

standard algorithm. As with most intrusive algorithms, the first step in PESQ processing is 

to time-align the reference and processed speech signals. Once the signals are time aligned, 

they are mapped to an auditory representation using a perceptual model based on power 

distributions over time-frequency and compressive loudness scaling and then their 

differences are taken. Positive differences indicate that components such as noise are 

present, whereas negative differences indicate that components have been omitted. With 

PESQ, different scaling factors are applied to positive and negative disturbances in order to 

generate the so-called symmetrical and asymmetrical disturbances. The final PESQ quality 

score is obtained as a linear combination of the symmetrical and asymmetrical disturbances, 

with weights optimized using telephony data. While the original PESQ algorithm described 
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in [10] was developed for narrow-band speech (8 kHz sampling rate), wideband (16 kHz) 

extensions were described in [11] and are used in the experiments described herein. It is 

important to emphasize that the P.862 standard was recently superseded by ITU-T 

Recommendation P.863 (also known as POLQA, Perceptual Objective Listening Quality 

Assessment; see [2] and references therein), thus covering a wider scope of distortions and 

speech bandwidths (e.g., super wideband). POLQA, however, is not used in this study as its 

source code is not publicly available and its license is very costly.

4) Hearing Aid Speech Quality (HASQI) and Perception (HASPI) Indices—As 

originally described in [12], HASQI uses an auditory model to analyze the reference and 

processed signals from a hearing aid. The auditory model was recently extended in [13] and 

now serves as the basis of a unified approach for predicting both intelligibility [14] and 

quality [15]. This HASQI Version 2 model is used in the experiments described herein. The 

auditory model includes the middle ear, an auditory filter bank, the dynamic-range 

compression mediated by the outer hair cells in the cochlea, two-tone suppression (where a 

tone at one frequency can reduce the cochlear output for a tone at a different frequency), and 

the onset enhancement inherent in the inner hair-cell neural firing behaviour. Hearing 

impairment is incorporated in the model as a broadening of the auditory filters with 

increasing hearing loss, a reduction in the amount of dynamic-range compression, a 

reduction in the two-tone suppression, and a shift in the auditory threshold.

The HASPI intelligibility model, in turn, combines two measures of signal fidelity. The first 

measure compares the evolution of the spectral shape over time for the processed signal with 

that of the reference signal. The second measure cross-correlates the high-level portions of 

the two signals in each frequency band. The envelope measure is sensitive to the dynamic 

signal behaviour associated with consonants, while the cross-correlation measure is more 

responsive to preserving the harmonics in steady-state vowels. The HASQI quality model 

consists of a noise and nonlinear term and a linear filtering term. The nonlinear term 

combines two measurements. The first measurement compares the time-frequency envelope 

modulation of the processed and reference signals, and is similar to the envelope comparison 

used in HASPI. The second measurement is based on normalized signal cross-correlations in 

each frequency band. The linear term compares the long-term spectra and the spectral 

slopes. The final quality prediction is the product of the nonlinear and linear terms. Both 

HASPI [14] and HASQI [15] have been evaluated for normal-hearing and hearing-impaired 

listeners over a wide range of processing conditions, including additive stationary and 

modulated noise, nonlinear distortion, noise suppression, dynamic-range compression, 

frequency compression, feedback cancellation, and linear filtering.

5) PErception MOdel - Normal (PEMO-Q) and Hearing Impairment Quality 
(PEMO-Q-HI)—In its original version, PEMO-Q compares the auditory-inspired “internal 

representation” of the reference speech signal to that of its processed counterpart to 

objectively characterize the quality of the processed speech signal [16]. The auditory 

representation is obtained given the following signal processing chain. First, the signals are 

split into critical bands using a gammatone filterbank. Each subband is half-wave rectified 

and low-pass filtered at 1 kHz. Envelope signals are then thresholded to account for the 
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absolute hearing threshold and passed through an adaptation chain consisting of five 

consecutive nonlinear feedback loops. Lastly, the envelope signal is either lowpass filtered 

at 8 Hz modulation frequency (in PEMO-Q's optional “fast mode”) or analyzed by a linear 

modulation filterbank comprised of eight filters with center frequencies up to 129 Hz (i.e., in 

the default mode used here). When comparing the reference and processed signals, two 

quality measures are produced, namely the Perceptual Similarity Measures, PSM, and PSMt.

PSM corresponds to the overall cross-correlation coefficient between the complete internal 

representations of the reference and processed speech signals. PSMt, in turn, is a more 

refined measure and explicitly accounts for the temporal course of the instantaneous audio 

quality as derived from a temporal frame-by-frame correlation of internal representations. 

While PSM provides greater generalizability, PSMt has been found to be more sensitive to 

small distortions [16]. Since in the experiments described herein will be dealing with a wider 

range of speech quality levels, the PSM measure will be used. PSM was also shown 

previously to reliably predict the quality of speech enhancement algorithms [17].

More recently, an extension to PEMO-Q was developed to account for hearing impairments 

(PEMOQ-HI) for hearing aid users [18]. In the modified version, sensorineural hearing 

losses are modelled by an instantaneous expansion and an attenuation stage applied before 

the adaptation stage. While the former accounts for the reduced dynamic compression 

caused by the loss of outer hair cells, the latter accounts for the loss of sensitivity due to loss 

of inner hair cells [19]. With PEMO-Q-HI, the amount of attenuation and expansion is 

quantified from the impaired listeners’ audiograms, as detailed in [18].

B. Non-intrusive metrics

1) ITU-T Recommendation P.563—In 2004, the ITU-T standardized its first non-

intrusive algorithm called ITU-T P.563 [20]. The P.563 algorithm extracts a number of 

signal parameters in order to detect one of six dominant distortion classes. The distortion 

classes are, in decreasing order of “annoyance”: high level of background noise, signal 

interruptions, signal-correlated noise, speech robotization (voice with metallic sounds), and 

unnatural male and female speech. For each distortion class, a subset of the extracted 

parameters is used to compute an intermediate quality rating. Once a major distortion class 

is detected, the intermediate score is linearly combined with other parameters to derive a 

final quality estimate. Unnaturalness of the speech signal is characterized by vocal tract and 

linear prediction analysis of the speech signal. More specifically, the vocal tract is modelled 

as a series of tubes of different lengths and time-varying cross-sectional areas, which are 

then combined with higher-order statistics (skewness and kurtosis) of the linear prediction 

and cepstral coefficients and tested to see if they lie within the restricted range expected for 

natural speech. While P.563 was developed as an objective quality measure for normal 

hearing listeners and telephony applications, a recent study has shown promising results 

with P.563 as a correlate of noise-excited vocoded speech intelligibility for normal hearing 

listeners, thus simulating CI hearing [21]. Note that the ITU-T P.563 algorithm is only 

applicable to narrowband speech signals sampled at 8 kHz sampling rate.
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2) Modulation Spectrum Area, ModA—The modulation-spectrum area (ModA) [22] 

measure is based on the principle that the speech signal envelope is smeared by the late 

reflections in a reverberant room, thus affecting the modulation spectrum of the speech 

signal. In order to obtain the ModA metric, the signal is first decomposed into N(= 4) 

acoustic bands (lower cutoff frequencies of 300, 775, 1375, and 3676 Hz, as in [22]); the 

temporal envelopes for each acoustic band are then computed using the Hilbert transform, 

downsampled and grouped using a 1/3-octave filterbank with center frequencies ranging 

between 0.5 and 8 Hz. As in [22], 13 modulation filters are used to cover the 0.5 − 10 Hz 

modulation frequency range. For each acoustic frequency band, the so-called “area under the 

modulation spectrum” is computed (Ai) and finally averaged over all N = 4 acoustic bands to 

obtain the ModA measure, which has been used as an intelligibility correlate for CI users in 

reverberant and enhanced conditions [22].

3) Speech-to-reverberation modulation energy ratio (SRMR)—The speech-to-

reverberation modulation energy ratio measure (SRMR) was originally developed for 

reverberant and dereverberated speech and evaluated against subjective NH listener data 

[23]. The metric is computed as follows. First, the input speech signal is filtered by a 

gammatone filterbank with center frequencies ranging from 125 Hz to approximately half 

the sampling frequency, and with bandwidths characterized by the equivalent rectangular 

bandwidth. For 8 kHz and 16 kHz sampled speech signals, 23 and 32 filters are used, 

respectively. Temporal envelopes are then computed via the Hilbert transform for each of 

the filterbank outputs and used to extract modulation spectral energy for each critical band. 

In order to emulate frequency selectivity in the modulation domain [24], modulation 

frequency bins are grouped into eight overlapping modulation bands with center frequencies 

logarithmically spaced between 4 − 128 Hz. Lastly, the SRMR value is computed as the 

ratio of the average modulation energy content available in the first four modulation bands 

(3−20 Hz, consistent with clean speech content) to the average modulation energy content 

available in the last four modulation bands (20 − 160 Hz), consistent with room acoustics 

information [25].

4) Speech-to-reverberation modulation energy ratio tailored to CIs (SRMR-CI) 
and HAs (SRMR-HA)—In order to tailor the SRMR measure for CI, a few modifications 

were recently implemented [26], [27]. First, the gammatone filterbank was replaced by the 

filterbank used in the speech coding strategy of the CI devices used by the listeners in the 

subjective test. Second, speech content variability was reduced by means of a modulation 

spectrum thresholding scheme [27]. Lastly, to model the reduced sensitivity of the hearing 

impaired listeners, the 4−128 Hz range of the eight modulation filterbank center frequencies 

of the original SRMR metric was reduced to 4 − 30 Hz. The SRMR metric tailored to CI 

(SRMR-CI) has been tested as a correlate of intelligibility for CI users under clean, noisy, 

reverberant, noise-plus-reverberation, and speech-enhanced conditions [26], [27].

Similar to the modified SRMR-CI metric described above, an alternate modification to the 

original SRMR metric has been performed to tailor it to hearing aid (HA) devices [28]. First, 

the gammatone filterbank in the original SRMR implementation was modified to take into 

account the listener's individual hearing loss thresholds obtained via an audiogram. More 
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specifically, the Q-factors of each of the filters were adjusted to simulate the hearing loss 

due to outer hair cell damage. Hence, as hearing loss increased, so did the filter bandwidths 

(i.e., Q-factors decreased). Additionally, the temporal Hilbert envelopes were compressed 

using a non-linear compression function, similar to that used in the HASQI metric, to further 

model outer hair cell losses. For HA devices, it was found that the original 4−128 Hz range 

of modulation filterbank centre frequencies was optimal, thus no changes were implemented 

in the modulation filterbank. The SRMR metric tailored to HA (SRMR-HA) was tested as a 

correlate of subjective quality for HA users in noisy, reverberant, and in speech-enhanced 

conditions [28].

III. Experimental setup

In this section, the datasets used in the experiments, as well as the evaluation criteria that 

will be used to characterize the performance of the investigated metrics are described.

A. CI Speech Intelligibility Dataset

This database is described in full detail in [1] and in the references therein. The material is 

comprised of speech data presented to cochlear implant users within the framework of an 

intelligibility subjective test. The speech sentences presented to the CI users were taken 

from the well-known IEEE sentence corpus. Four recorded room impulse responses were 

convolved with the clean speech data to simulate reverberant speech with reverberation 

times (RT60) of 0.3, 0.6, 0.8, and 1 s. Speech-shaped noise was also added to the anechoic 

and the reverberant signals to generate noise-only and noise-plus-reverberation degradation 

conditions, respectively. Noise was added at signal-to-noise-ratios (SNR) of -5, 0, 5 and 10 

dB for the anechoic samples and 5 and 10 dB for the reverberant samples. For the noise-

plus-reverberation condition, the reverberant signals served as reference for SNR 

computation. Additionally, the database includes sentences enhanced using an ideal 

reverberant masking (IRM) strategy [29]. These sentences were under reverberant 

conditions with RT60s of 0.6s, 0.8s, and 1.0s, and all of the noise-plus-reverberation 

conditions described above. The IRM algorithm was configured to use 2 to 3 different 

threshold values for each condition. Speech files were sampled at 16 kHz with 16-bit 

resolution.

Eleven adult CI users were recruited to participate in the subjective intelligibility 

experiments. The participants were all native speakers of American English with post-

lingual deafness and had an average age of 64 years. All participants had a minimum of one 

year experience using their device routinely, with some being bilaterally implanted for over 

6 years. For consistency, all participants were temporarily fitted with a SPEAR3 research 

processor (22 filterbank channels with mel-like spacing) with parameters matching the 

individual CI user's clinical settings. Participants were presented with 31 lists of 20 

sentences randomly selected from the IEEE database, each list being corrupted by the 

above-mentioned degradation conditions. Degraded stimuli were presented directly to the 

audio input of the research processor and the level was adjusted individually for comfort at 

the beginning of the experiment. Listeners were instructed to repeat aloud each sentence 

after its presentation. A tester then marked the words correctly identified by the subject 

according to the ground truth transcript. Finally, the number of words correctly recognized 
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by the listener were divided by the total number of presented words to find the per-

participant intelligibility scores. More details about the listening test can be found in [1].

B. HA Speech Quality Datasets

Two speech quality datasets collected with hearing aid users were used in the experiments 

described herein. The first database explores the effects of frequency lowering, an 

amplification strategy for hearing impaired (HI) listeners with severe to profound high 

frequency sensorineural hearing loss that has gained renewed attention recently. Nonlinear 

Frequency Compression (NFC) is a subset of frequency lowering algorithms, wherein the 

input spectral content beyond a cutoff frequency (CF ) is compressed by a factor determined 

by the compression ratio (CR), before further processing by the hearing aid. Thus, NFC 

moves high frequency energy to lower frequency regions (where there is better residual 

hearing acuity) increasing the chances of audibility and potential benefit. The interested 

reader is referred to [30] and the references therein for more details about the database and 

NFC processing.

The speech material presented to the listeners consisted of IEEE Harvard sentences, spoken 

by two male and two female talkers, and recorded through hearing aids with different NFC 

strategies; more specifically: i) CF = 4 kHz and CR = 2:1; ii) CF = 2 kHz, CR = 2:1; iii) CF 

= 3 kHz, CR = 2:1; iv) CF = 3 kHz, CR = 6:1; and v) CF = 3 kHz, CR = 10:1. In addition, 

two “anchor” stimuli were created for each sentence: peak clipping at 25 percent of 

maximum signal amplitude and lowpass filtering at 2 kHz. In this study, the anchor 

conditions are not used during metric performance comparison in order to place emphasis 

solely on the effects of NFC. As such, of the available 32 stimuli (4 talkers × (5 NFC 

conditions + 2 anchors + 1 clean reference)) only 24 are used in the analysis presented in 

Section IV.

Quality ratings of this database were obtained with 11 hearing impaired listeners with severe 

to profound hearing loss. Each participant was fitted with a Phonak Savia behind-the-ear 

(BTE) HA and seated in a double-walled sound booth in front of a speaker and a computer 

monitor. Ratings of speech quality were obtained using the [0-100] MUSHRA quality scale, 

with 0 referring to poor quality and 100 to excellent. Participants selected and listened to the 

reference and test stimuli and then indicated their quality judgments by adjusting the 

corresponding sliders on the computer screen. Custom HA recordings were obtained for the 

purpose of objective speech quality prediction. To this end, the Phonak Savia BTE HA was 

programmed to match the amplification targets for each participant and was subsequently 

connected to a 2-cc coupler and placed inside a portable anechoic HA test box. The 32 

stimuli within the database were then played back individually through the loudspeaker in 

the test box, and the resulting HA output was stored in a .wav file with 16 kHz sample rate 

and 16-bit resolution.

In the second database, the impact of HA speech enhancement on perceived speech quality 

was investigated in noise-only, reverberation-only, and noise-plus-reverberation listening 

conditions. Full details about the dataset can be found in [28]. Twenty-two adult HA users 

(average age of 71 years) with moderate to severe sensorineural hearing loss profiles were 

recruited to participate in the subjective quality experiments. Each of the participants was 
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fitted bilaterally with the Unitron experimental BTE HA and seated at the centre of a 

loudspeaker array, first in a double-walled sound booth (RT60 = 0.1 s) and then in a 

reverberant chamber (RT60 = 0.9 s). In each of these rooms, sentences spoken by a male 

talker were played from a speaker at 0 degree azimuth and multi-talker babble or speech-

shaped noise at 0 or 5 dB SNR was played from speakers at 0, 90, 180, and 270 degrees 

azimuth.

Participants listened to the degraded stimuli four times, each time with a different HA 

setting, namely: omnidirectional microphone, adaptive directional microphone, partial 

strength signal enhancement (directionality, noise reduction, and speech enhancement 

algorithms operating below their maximum strengths), and full strength signal enhancement 

(all enhancement algorithms operating at maximum strength). Within each condition, 

subjects rated their perceived quality for each stimulus using the MUSHRA quality scale. 

Once again, a customized set of HA recordings was obtained to enable objective speech 

quality predictions. To this end, the bilateral HAs were programmed to match the 

amplification requirements for each HI participant and were then placed on a Bruel & Kjaer 

Head and Torso Simulator (HATS). The HATS was then positioned in the centre of the 

loudspeaker array in each of the two room environments. The same stimuli used in 

subjective speech quality experiments were played and the ensuing HA outputs were stored 

in .wav files with 16 kHz sample rate and 16-bit resolution. In the analysis described in 

Section IV, the objective metrics were computed separately for the left and right channels 

(using the listeners’ left and right audiograms, respectively) and then averaged into a final 

score that would be compared against the subjective ratings using the performance criteria 

described next. Moreover, all databases were also downsampled to 8 kHz, such that ITU-T 

P.563 could also be tested.

C. Performance Criteria

In order to assess the performance of the tested algorithms, four performance criteria were 

used. As suggested in the literature, performance values are reported on a per-condition 

basis, where condition-averaged objective and subjective intelligibility/quality ratings are 

used in order to reduce intra- and inter-subject variability [2]. First, linear relationships 

between predicted quality/intelligibility scores and subjective ratings are quantified via a 

Pearson correlation (ρ). Second, the ranking capability of the objective metrics is 

characterized by the Spearman rank correlation (ρspear), which is computed in a manner 

similar to ρ but with the original data values replaced by their ranks. These two measures 

together can provide insight into the need for a non-linear monotonic mapping between the 

objective metric scale and the subjective rating scale. Here, a sigmoidal mapping function is 

used and once the objective values are mapped, a new Pearson correlation (termed ρsig) is 

computed and used as the third performance criteria. The sigmoid mapping is given by:

(4)

where α1 and α2 are the fitting parameters, X represents the objective metric and Y the 

mapped intelligibility/quality score.
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Lastly, the so-called epsilon insensitive root-mean-square estimation error (ε-RMSE) is 

used. This ε-RMSE measure differs from the conventional one as it considers only 

differences related to an epsilon-wide band around the target (subjective) quality/

intelligibility value, thus taking the uncertainty of the subjective ratings into account. As 

proposed by ITU-T, epsilon can be defined as the 95% confidence interval (ci95) of the 

subjective ratings and is given on a per-condition basis [31]. More specifically,

(5)

where c indexes a condition type, M corresponds to the total number of conditions, σ to the 

standard deviation of the per-condition subjective scores, and t(0.05, M) to the t-value 

computed at a 0.05 significance level. As such, the per-condition ε-RMSE(c) is given by:

(6)

where Y (c) corresponds to the average sigmoid-mapped intelligibility/quality score for a 

particular degradation condition c (out of a total of M conditions) and S(c) is the 

corresponding average subjective score. The final ε-RMSE is then given by:

(7)

where the degree of freedom d is set to 2 for the sigmoidal mapping function. An ideal 

objective metric will possess ^sig close to unity and an ε-RMSE close to zero.

When comparing the performance criteria of two or more metrics, it is important to 

characterize the statistical significance of the difference between them. For correlation based 

criteria, a Fisher transformation z-test can be used; here, a significance level of 0.05 was 

used. For the ε-RMSE criterion, the following statistical significance test was used, as 

suggested by ITU-T [31]:

(8)

where F (0.05, M, M) corresponds to the F-value computed at a 0.05 significance level. Ti,j = 

0 indicates that metrics i and j achieved statistically equivalent ε-RMSEs, whereas a Ti,j > 0 

indicates that metric i is statistically significant worse than j.

IV. Experimental Results

Table I presents the results obtained with four intrusive and four non-intrusive measures on 

the CI intelligibility database. Note that results for HASQI, HASPI, PEMO-Q-HI, and 

SRMR-HA have been omitted from the Table as they rely on the impaired listener's 

audiogram, which is not readily available from the CI participants. As can be seen from the 

Table, the STOI and SRMR-CI measures achieved the highest ^sig and lowest ε-RMSE 

amongst the tested intrusive and non-intrusive metrics, respectively. The scatter plots in 
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Figures 1 (a) and (b) depict the subjective versus objective scores obtained for these two 

metrics, respectively, along with their fitted sigmoidal curves.

Table II, in turn, presents the results obtained with seven intrusive and four non-intrusive 

measures on the HA nonlinear frequency compression quality database. Note that the results 

for SRMR-CI have been omitted from the Table as they rely on filterbank information from 

CI devices. As observed, the PEMO-Q-HI metric achieved the best ρsig and ε-RMSE of the 

intrusive metrics, followed closely by the STOI metric (and the HASQI, in terms of ρsig). 

For the non-intrusive metrics, all tested measures performed poorly, with ModA achieving 

somewhat better performance. The scatter plots in Figures 2 (a) and (b) depict the subjective 

versus objective scores obtained for the PEMO-Q-HI and ModA metrics, respectively, along 

with their fitted sigmoidal curves.

Lastly, Table III presents the results obtained with seven intrusive and four non-intrusive 

metrics on the noisy, reverberant, and enhanced HA quality database. As in Table II, 

SRMR-CI is omitted as it was developed for CI users and not HA. As can be seen, in the 

non-enhanced condition, all intrusive measures achieved similar ρsig values with PESQ 

achieving the lowest ε-RMSE, followed closely by STOI. For the enhanced condition, 

HASPI achieved the highest ρsig, but STOI, PESQ, and PEMO-Q-HI achieved lower ε-

RMSE (over three times lower). For the non-intrusive metrics, ModA outperformed all 

others across both the enhanced and non-enhanced conditions. The scatter plots in Figures 3 

(a) and (b) depict the subjective versus objective scores obtained for the PESQ and ModA 

metrics, respectively, along with their fitted sigmoidal curves.

V. Discussion

Table IV summarizes the recommendations for metric usage based on distortion condition 

type (i.e., overall, non-enhanced, enhanced, NFC), assistive device (CI, HA), and the 

availability or not of a reference signal (intrusive and non-intrusive). The recommended 

metrics include those that attained the highest ρsig and lowest ε-RMSE, shown in bold in the 

Table, as well as all others which attained insignificantly different ρsig and ε-RMSE levels. 

A more detailed discussion is given in the subsections to follow.

A. CI: Noisy and Enhanced Conditions

As can be seen from Table IV, for users of CI devices the STOI metric outperformed all 

other intrusive measures, thus corroborating the usefulness of the measure as a channel 

selection criteria for CI processing [9]. This was true for both non-enhanced and speech-

enhanced conditions. The NCM metric, on the other hand, despite having similar processing 

stages with STOI and achieving insignificantly different ρsig values in the non-enhanced 

case, resulted in significantly higher ε-RMSE values. Such finding shows the importance of 

short-time processing for CI users. Interestingly, while PESQ and PEMO-Q have been 

shown to be highly correlated with subjective quality ratings of NH listeners in a number of 

telephony applications, poor performance was obtained for CI users, particularly under 

speech enhancement. For the non-intrusive measures, the SRMR-CI measure achieved the 

best results with performance levels inline with those obtained with STOI, but with the 

advantage of not requiring a reference signal. In fact, overall when both noisy and enhanced 

Falk et al. Page 12

IEEE Signal Process Mag. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditions were considered, the SRMR-CI metric outperformed STOI across all four 

performance criteria. By incorporating CI processing percepts into the original SRMR 

measure, significant gains could be observed. Overall, the findings observed here resonate 

with those reported in the literature showing the importance of spectral envelopes for CI 

intelligibility.

B. HA: NFC Conditions

For users of hearing aids with frequency lowering strategies, PEMO-Q-HI and STOI 

attained insignificantly different ρsig and ε-RMSE results. The HASQI measure, in turn, 

resulted in the highest ρsig, but achieved a significantly higher ε-RMSE than the two 

aforementioned metrics. This higher error may be a result of the range of conditions used 

during training of the internal parameter (i.e., noise, linear, and nonlinear terms) mapping 

available in the HASQI. Notwithstanding, given the burgeoning popularity of such nonlinear 

frequency compression schemes for HI listeners with severe to profound high frequency 

sensorineural hearing loss, our results suggest that users have a few reliable intrusive metrics 

to choose from. On the other hand, the tested non-intrusive measures were not capable of 

correctly characterizing the perceptual artefacts caused by NFC in HA users. For example, 

none of the metrics surpassed the correlation threshold of 0.8 established by ITU-T during 

the competition that resulted in the P.563 Recommendation [20]. These findings motivate 

the need for more research on the development of innovative non-intrusive quality measures 

for frequency-lowering strategies. As an exploratory test, the modulation energy 

thresholding and modulation filterbank compression strategies implemented in the SRMR-

CI metric (see Section II-B4) were tested on the original SRMR and SRMR-HA metrics and 

significant improvements (p < 0.05) could be observed (e.g., ρsig = 0.80 and ε-RMSE = 4.68 

with the so-called SRMR-HAcomp). In fact, these newly obtained results were inline with 

some of the intrusive metrics, such as PEMO-Q, and suggest that further improvements may 

be obtained with non-intrusive measures.

C. HA: Noisy and Enhanced Conditions

Lastly, for HA users in complex listening environments comprised of noise, reverberation 

and noise-plus-reverberation, it was observed that all intrusive measures achieved 

insignificantly different ρsig and ε-RMSE values (with the exception of HASPI, in the latter 

case). In the scenario where nonlinear speech enhancement (noise suppression and 

dereverberation) was activated, three measures stood out, namely HASQI, PEMO-Q, and 

PEMO-Q-HI. Interestingly, for the non-enhanced and enhanced cases, HASPI, a metric 

tailored for intelligibility prediction, outperformed HASQI (its quality predictor counterpart) 

and all other metrics in terms of ρsig. Such findings resonate with what was mentioned in 

Section V-B that alternate mappings of HASQI's internal parameters could be devised to 

reduce ε-RMSE. For non-intrusive measures, in turn, it was found that all tested metrics 

achieved insignificantly different ρsig values in the noisy condition, with ModA achieving 

the highest ρsig and lowest ε-RMSE. In the enhanced conditions, on the other hand, only 

ModA achieved levels above ITU-T's “acceptability threshold.” Interestingly, in the non-

enhanced conditions (i.e., noise-alone, reverberation-alone, and noise-plus-reverberation) 

ITU-T P.563 achieved reliable results in line with those obtained with SRMR-HA and 

Falk et al. Page 13

IEEE Signal Process Mag. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ModA. With speech enhancement enabled, however, both P.563 and SRMR-HA 

performances decreased to unacceptable levels, thus suggesting that these two metrics are 

not capable of detecting and quantifying the effects of speech enhancement artefacts on 

perceived quality. These findings motivate the need for more research on the development 

of innovative non-intrusive quality measures for HA devices with non-linear speech 

enhancement.

VI. Conclusion

This paper has provided a comprehensive review of twelve existing objective quality and 

intelligibility prediction algorithms that have been developed for normal hearing and hearing 

impaired listeners who are users of assistive listening devices, such as hearing aids (HA) and 

cochlear implants (CI). The algorithms were tested on three common subjectively-rated 

speech datasets: one with subjective ratings collected from CI users in noisy and reverberant 

environments, one from HA users in noisy and reverberant environments with and without 

speech enhancement, and one from HA users with nonlinear frequency compression (NFC). 

The recommended metrics to be used under each condition (non-enhanced, enhanced, NFC) 

were tabulated for the two different assistive devices. In summary, for CI devices, two 

measures stood out: STOI (intrusive) and SRMR-CI (non-intrusive). For HA with NFC, 

several intrusive measures attained comparable results, including the recently-proposed 

PEMO-Q-HI. None of the tested non-intrusive measures, on the other hand, achieved 

acceptable results, thus leading us to explore the development of a new metric called 

SRMR-HAcomp. Lastly, for HA with speech enhancement enabled, the HASQI and PEMO-

Q-HI intrusive measures stood out alongside ModA, a recently-proposed non-intrusive 

measure. It is hoped that these insights will be useful not only for those in the assistive 

listening device Research & Development community, but also clinicians, audiologists, and 

patients who wish to quickly gauge the performance of different devices across different 

practical environmental conditions.
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Figure 1. 
Scatterplots of subjective intelligibility versus objective scores for condition-averaged data 

points obtained from the (a) STOI and (b) SRMR-CI metrics for the CI intelligibility 

database
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Figure 2. 
Scatterplot of subjective quality versus objective scores for condition-averaged data points 

obtained from the (a) PEMO-Q-HI and (b) ModA metrics for the HA nonlinear frequency 

compression quality database.

Falk et al. Page 19

IEEE Signal Process Mag. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Scatterplots of subjective quality versus objective scores for condition-averaged data points 

obtained from the (a) PESQ and (b) ModA metrics for the HA reverberation/enhancement 

quality database.
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Table II

Per-condition performance criteria for the HA nonlinear frequency compression quality database. Numbers in 

bold represent the best attained performances (statistically indifferent) amongst all tested intrusive and non-

intrusive algorithms.

Metric ρ ρ spear ρ sig ε-RMSE

NCM 0.67 0.67 0.89 7.46

STOI 0.77 0.67 0.92 2.24

PESQ 0.62 0.56 0.79 5.73

HASQI 0.71 0.71 0.93 7.67

HASPI 0.83 0.72 0.81 9.90

PEMO-Q 0.67 0.60 0.79 5.06

PEMO-Q-HI 0.89 0.71 0.92 1.83

P.563 −0.27 −0.38 −0.33 23.25

ModA 0.52 0.48 0.54 8.86

SRMR 0.49 0.59 0.40 17.06

SRMR-HA 0.51 0.58 0.46 14.39
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Table IV

Summary of recommended objective metrics for different conditions. Metrics in bold represent those that 

achieved highest ρsig and lowest ε-RMSE. Metric SRMR-HAcomp corresponds to an exploratory measure 

described in Section V-B.

CI HA

Condition Intrusive Non-intrusive Intrusive Non-intrusive

Combined STOI, NCM SRMR-CI PESQ, STOI, PEMO-Q-HI, NCM ModA, SRMR-HA

Non-enhanced STOI SRMR-CI All except HASPI (PEMO-Q) All (ModA)

Enhanced STOI SRMR-CI PEMO-Q-HI, HASQI, PEMO-Q ModA

NFC – – PEMO-Q-HI, STOI SRMR-HA comp
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