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Abstract—We propose an objective quality assessment method

for image retargeting. The key step in our approach is to generate

a structural similarity (SSIM) map that indicates at each spatial

location in the source image how the structural information is

preserved in the retargeted image. A spatial pooling method em-

ploying both bottom-up and top-down visual saliency estimations

is then applied to provide an overall evaluation of the retargeted

image. To evaluate the performance of the proposed IR-SSIM

algorithm, we created an image database that contains images

produced by different retargeting algorithms and carried out

subjective tests to assess the quality of the retargeted images. Our

experimental results show that IR-SSIM is better correlated with

subjective evaluations than existing methods in the literature. To

further demonstrate the advantages and potential applications of

IR-SSIM, we embed it into a multi-operator image retargeting

process, which generates visually appealing retargeting results.

Index Terms—Image quality assessment, image retargeting,

image saliency, structural similarity.

I. INTRODUCTION

W ITH the fast spread of various mobile devices, max-

imizing the visual experiences of end users on small

display screens has become ever important. Image and video

retargeting techniques are essential to adapt the original vi-

sual content to different sizes and aspect ratios of the display

screens. Traditional retargeting methods such as linear scaling

and cropping often suffer from serious distortions or loss of

significant information [1]–[3]. To overcome this problem,

many content-aware image retargeting algorithms have been

proposed [3]–[10], so as to preserve important image content

with minimal distortions during the image resizing process.

Nevertheless, how to objectively evaluate the quality of retar-

geted images remains an unresolved problem.
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One popular image retargeting algorithm is named seam

carving [1], where a seam is defined as eight-connected path of

pixels (from top to bottom or left to right) that includes only one

pixel in each row or column. Seam carving reduces the width

(height) of an image by removing the unimportant seams. The

seam carving approach has been extended for video retargeting

[4], [5]. In [6], a saliency map, a facial map and a motion map

are integrated to calculate a significance map indicating the

importance of image pixels [6]. In mesh parametrization based

retargeting algorithm [3], the significance map is composed of

a saliency map, a facial map and a body estimation map, and

an optimal user input map. An adaptive image retargeting algo-

rithm based on Fourier analysis was proposed in [7]. In [8], a

scale-and-stretch warping algorithm is developed by iteratively

computing the optimal local scaling factors. Another important

class of image retargeting algorithms are patch-based. In [9],

a shift-map is employed to describe the relative geometric

relationship between the reference and retargeted images. In

[10], a randomized algorithm is proposed to find approximate

nearest neighbor matches between image patches. In [11],

patch-based method is extended to the compressed domain

based on saliency maps computed from DCT coefficients. A

recent user study suggested that multi-operator operation can

obtain better retargeting results than those using only a single

operator [12]. Promising results were produced by dynamically

applying a sequence of operators including seam carving,

scaling and cropping [12]. In [13], a multi-operator algorithm

based on seam carving and image scaling was proposed that

uses a bidirectional similarity function of image Euclidean dis-

tance, a dominate color descriptor similarity, and seam energy

variation, to determine the number of seam carving operations

[13].

Much less has been done to evaluate the quality of retargeted

images quantitatively. Most existing studies of image retar-

geting were validated using small-scale subjective tests. The

subjective evaluation method is expensive, time-consuming,

and cannot be embedded into retargeting algorithms for op-

timization purposes. As such, objective quality assessment is

highly desirable. In the past decades, there has been significant

progress in the field of objective image quality assessment

(IQA) [14]–[16]. Unfortunately, popular IQA algorithms, such

as peak signal-to-noise-ratio, the structural similarity index

(SSIM) [17] and the visual information fidelity index (VIF)

[18], do not apply in retargeting applications because they

require the sizes of the reference and distorted images to be the

same. To the best of our knowledge, only a few IQA studies

has been conducted on image retargeting [19]–[23]. A large
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Fig. 1. Framework of the proposed approach.

scale user study was conducted using a paired comparison

approach [19]. The study found that humans generally agree

with each other upon the quality of retargeted images, and some

retargeting algorithms are consistently more favorable than

others. According to [19], some objective distance metrics,

such as color layout descriptor (CL) [24], bidirectional warping

(BDW) [12], and edge histogram (EH) [25], are useful in

assessing the visual quality of retargeted images, though their

correlations with subjective evaluations is not always consis-

tent. In [20], it was shown that visual fixation maps obtained

from eye tracking experiments can improve the visual quality

assessment performance of objective metrics. Based on the eye

tracking data, Chamaret et al. proposed an objective metric to

assess the visual quality of video retargeting [21]. In [22], both

global geometric structures and local pixel correspondence

are established to evaluate the visual quality of the retargeted

image. In [23], another user study was carried out, where

subjects evaluated the quality of retargeted images on linear

scales, rather than the paired comparison method used in [19].

In this work, we aim to develop an objective quality assess-

ment algorithm for image retargeting (Section II). Our work is

inspired by the success of the SSIM approach [17] in general-

purpose IQA [15]. A critical step in our approach is to create an

SSIM quality map that indicates at each spatial location of the

reference image how the structural information is preserved in

the retargeted image. This is appealing because an SSIM quality

map not only can be pooled to produce an overall quality evalu-

ation of the retargeted image, but also provides additional infor-

mation about how the structural details are preserved over the

image space. Such information is useful because future image

retargeting algorithms may be designed accordingly to better

preserve local structural information. In the pooling stage of

our IQA algorithm, we employ an automatic saliency prediction

approach that combines both bottom-up and top-down mecha-

nisms. A saliency map is thus generated and used as a spatially

varying weighting factor of the SSIM map. The resulting image

retargeting SSIM (IR-SSIM) algorithm demonstrates promising

quality prediction performance when tested using subject-rated

image retargeting databases (Section III). Its potentials are also

demonstrated when it is embedded into a multi-operator image

retargeting process, which produces visually appealing retar-

geting results (Section IV).

II. PROPOSED METHOD

The general framework of the proposed method is depicted

in Fig. 1. For each image pixel in the reference image, we

first find its best matching pixel in the retargeted image. The

SSIM measure is then calculated between the local regions sur-

rounding and in the reference and retargeted images, respec-

tively. An SSIMmap is generated by applying this process to all

pixels in the reference image. Based on the reference image, a

bottom-up saliency map is computed using data-driven, task-in-

dependent visual attentionmodels, and a top-down saliencymap

is created based on task-dependent, high-level prior knowledge

about the scene. The bottom-up and top-down saliency maps

are combined to form an overall saliency map of the scene.
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The final IR-SSIM score of the retargeted image is computed

by weighting the SSIM map using the overall saliency map. In

the current study, we only use a face detector in the calculation

of the top-down saliency map. In the future, saliency detection

models based on other high level features may also be integrated

into the proposed framework. The general framework may be

implemented in different ways, depending on the selection of

the shift estimation, saliency estimation, and SSIM computation

methods. Details about our current implementation are given in

the following subsections.

A. SSIM Map Estimation

The reference and retargeted images have different sizes

and pixel correspondences are missing, thus the original SSIM

algorithm [17] cannot be applied directly. To overcome this

problem, we would need to employ shift estimation methods

to build dense pixel correspondence between the images. The

scale-invariant feature transform (SIFT) descriptors [26] allow

robust matching across different scenes. Analogous to the com-

putational framework of optical flow, the SIFT flow algorithm

matches SIFT descriptors instead of raw pixels between two

images [27]. SIFT flow has been proven to be effective in

finding dense correspondence between two images [27]. Here

we use SIFT flow to find the matching pixel in the retargeted

image for each pixel in the original image. Given the SIFT

images and computed from the original and retargeted

images, respectively, the SIFT flow algorithm [27] attempts to

find the pixel-match dense correspondence by minimizing the

energy function.

Ideally, one would desire the local structural details in the ref-

erence image to be well preserved in the corresponding regions

in the retargeted image. Once the pixel correspondence is es-

tablished, the local structures in the corresponding regions can

be compared. The SSIM index has been shown to be a simple

but effective measure in predicting the perceptual structural dis-

tortions between image patches [15], [17]. Given two image

patches and centered at and in the reference and re-

targeted images, respectively, the SSIM index between them is

given by

(1)

where , , , , and denote the local mean of

and , the local variance of and , and the local covariance

between and , respectively. and are small positive

stability constants that account for the saturation effects of the

visual system at low luminance and contrast [17].

Applying the local SSIM computation using a sliding window

approach at every pixel across the reference image space, we ob-

tain an SSIM map that indicates how the structural details are

preserved at each spatial location. Fig. 2 provides visual sam-

ples of two retargeted images created from the same reference

image together with their SSIM maps. It appears that the SSIM

maps reasonably estimate the perceived local structure preser-

vations of the retargeted images. In particular, Fig. 2(d) is gener-

ated by directly cropping the center part of the reference image.

Therefore, the structures at the center region are perfectly pre-

served (corresponding to the white center region in the SSIM

Fig. 2. Examples of SSIM maps. (a) Reference image. (b) Retargeted image

by cropping (by 50% of the reference image). (c) Retargeted image by seam

carving [4] (by 50% of the reference image). (d) SSIM map of the retargeted

image in (b) (the structures of the center region are perfectly preserved, since

the SSIM map is generated by directly cropping the center part of the reference

image.). (e) SSIM map of the retargeted image in (c). In (d) and (e), brighter

pixels indicate higher SSIM values.

map), and most distortions occur in the left and right parts of

the image (corresponding to the dark regions in the SSIM map).

Fig. 2(e) is obtained by seam carving, and the center regions are

distorted more than Fig. 2(d), while more structural information

at the two sides of the image is preserved. All the observations

are well captured by the SSIM maps.

The basic SSIM computation is a single-scale approach,

while the perceived image quality varies with the sampling

density, the viewing distance, and the perceptual ability of the

observer’s visual system [28]. The multi-scale SSIM approach

[28] provides a flexible framework to account for such varia-

tions. Following this framework, we iteratively apply low-pass

filtering and downsample the reference and retargeted images

by a factor of 2, and then compute the SSIM map at each scale.

We index the original image scale as Scale 1, and the highest

scale as Scale . The overall SSIM value is computed by

fusing the SSIM measures across all scales

(2)

where is the SSIM measure at the th scale, and for

are weighting parameters determining the

relative importance of different scales. Here, we up-sample the

SSIMmaps from different scales based on bilinear interpolation

to match the size of the final SSIM map. As in [28], we set

and adopt the weighting factors given in [28] that

are obtained through psychovisual experiments.
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Fig. 3. First row: reference image and its saliency map. Second to last rows:

retargeted images (left), SSIMmaps (middle), and product of SSIM and saliency

maps (right). Retargeted images from the second to last rows are generated by

MO, SCL, SC, SM, andWARP algorithms, respectively. IR-SSIM scores of the

retargeted images from MO, SCL, SC, SM, and WARP are 0.920, 0.893, 0.859,

0.888, and 0.901, respectively.

B. Saliency Estimation

When observers look at a natural scene, the information cap-

tured by human eyes is much more than the visual informa-

tion processing system can handle. As a result, the observers

focus on the most important regions in the scene, characterized

by the visual attention mechanisms of the human visual system

(HVS) [29]–[31]. There are two different strategies of selec-

tive attention: the bottom-up strategy is a data-driven, task-in-

dependent process for automatic salient region selection [11],

[32], while the top-down strategy is related to the prior knowl-

edge or specific tasks to be performed [33]–[35]. Generally,

observers would pay more attention on salient regions in an

image. Here we perform both bottom-up and top-down estima-

tions to create saliency maps, which are subsequently used as

a weighting factor in predicting the overall quality of the retar-

geted image.

Previous studies have demonstrated that salient regions often

pop out in natural scenes due to their differences in low-level

features from the surrounding regions [31], [32]. As a result,

they may be detected based on center-surround differences in

low-level features, such as color, intensity, orientation, and mo-

tion [11], [32]. Here we adopt a modified version of the saliency

detection model in [11] to extract the bottom-up saliency map.

Fig. 4. First row: reference image and its saliency map. Second to last rows:

retargeted images (left), SSIMmaps (middle), and product of SSIM and saliency

maps (right). Retargeted images from the second to last rows are generated by

MO, SCL, SC, SM, andWARP algorithms, respectively. IR-SSIM scores of the

retargeted images from MO, SCL, SC, SM and WARP are 0.957, 0.937, 0.964,

0.943, and 0.956, respectively.

Given an image, we first convert it into YCbCr color space and

divide the image into 8 8 patches. Four features are extracted

from the DCT coefficients of each patch, including one lumi-

nance feature , two color features and , and one tex-

ture feature . The luminance feature is represented as the dc

coefficient of the Y component, and the color features are the

dc coefficients of the Cb and Cr components, respectively. The

texture feature is calculated as the total ac energy of the Y com-

ponent. Four feature maps are created by computing these fea-

tures for all patches. The saliency of each patch is estimated by

a contrast-of-feature approach. The saliency value for Patch

based on the contrast from feature is given by

(3)

where , is the absolute feature dif-

ference between Patches and , is the spatial distance

between Patches and , and is a width parameter of the

Gaussian weighting function, which imposes more impor-

tance to the patches closer to the current Patch . Here, the

texture difference between image patches is calculated by the

Euclidean distance rather than Hausdorff distance in [11] to

reduce the computational complexity. For each given feature
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Fig. 5. Left to right: reference image; retargeted image; bottom-up saliency map; overall saliency map (combining bottom-up and top-down saliency maps); SSIM

map; point multiplication of SSIM and bottom-up saliency map; point multiplication of SSIM and overall saliency map.

TABLE I

PERFORMANCE COMPARISONS OF IR-SSIM WITH DIFFERENT

SALIENCY WEIGHTING OPTIONS

, we normalize the saliency map for all to the dynamic

range of [0,1]. The normalized values are denoted by . The

final bottom-up saliency map is obtained by averaging the

saliency maps calculated by all features

(4)

where denotes the number of features .

Various factors could contribute to the top-down mecha-

nisms of visual attention. Without additional knowledge about

the scene and the visual task, it is difficult to determine a full

list of top-down factors to be included in saliency modeling.

Here, we pay special attention to human faces, which have

been repeatedly shown to be a major factor that attract visual

attention. Therefore, face detection based top-down saliency

would be useful in general visual attention prediction tasks.

Here, we adopt the Viola-Jones face detection algorithm [36],

which has shown consistent performance in a variety of tests.

By applying the algorithm on the reference image, a face map

is created, which is subsequently normalized and employed as

the top-down saliency map in our algorithm.

Finally, the overall saliency map is obtained by averaging

bottom-up and top-down saliency maps

(5)

C. Saliency Weighted Pooling

The SSIM map provides a useful local indicator about how

the image structures perceived in the reference image is pre-

served in the retargeted image. Meanwhile, recent studies show

that eye tracking data may be used to improve the performance

of objective quality metrics for retargeted images [20]. It was

found that even strong artifacts may be unnoticed in the loca-

tions outside the regions of interest [20]. This suggests that a

saliency map that predicts the locations in the reference image

that are more likely to attract visual attention would be useful in

assessing the quality of the retargeted image. Given the SSIM

value and the saliency value at each spatial location

, we define the final image retargeting SSIM index (IR-SSIM)

based on saliency weighted pooling given by

(6)

Figs. 3 and 4 show visual examples of retargeted images

produced by different retargeting algorithms, together with the

saliency map of the reference image, the SSIM maps of the re-

targeted image, and the product of the saliency and SSIM maps.

By close inspection of these images, we observe that different

retargeting algorithms lead to substantially different structure

preserving behaviors across the image space while saliency

weighting help to focus on the regions of higher interests.

III. VALIDATION

We use two subject-rated image retargeting databases to val-

idate the proposed IR-SSIM method. The first is built by our-

selves, and the second is a widely used public benchmark [19].

Before conducting our subjective user study, we built a data-

base of 25 source images with diverse resolutions and image

content, including scenes with outstanding objects (such as

human faces, cars, etc.), scenes without any outstanding object,

scenes containing smooth or texture regions, and scenes with

sharp features and edges. Five image retargeting algorithms

are employed to create retargeted images. These include seam

caving (SC) [4], scaling (SCL), warping (WP) [6], shift-map

(SM) [9], and multi-operator (MO) [11] retargeting. Among

these algorithms, SC is a popular and discrete retargeting algo-

rithm; SCL is a traditional and continuous resizing algorithm;

WP is a popular, content-aware, and continuous retargeting

algorithm; SM is a patch-based and discrete resizing algorithm;

and MO is a content-aware retargeting algorithm by combining

two resizing operators of SC and SCL. The source images are

resized in one dimension (either horizontally or vertically). To

generate the retargeting results, the image sizes are reduced by

25%, a resizing factor widely used in existing studies [2], [11],

[19].

As in [19], we carried out our subjective test using a paired

comparison approach, where the reference image and two re-

targeted images created by two different retargeting algorithms

were shown to the subject each time. The subject was asked to

vote for the retareted image with relatively better visual quality

by referring to the reference image. For each source image,
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TABLE II

PERFORMANCE COMPARISON BETWEEN IR-SSIM USING SINGLE

SCALE SSIM AND MULTI-SCALE SSIM

TABLE III

PERFORMANCE COMPARISONS OF IMAGE RETARGETING QUALITY

ASSESSMENT MODELS ON OUR DATABASE

TABLE IV

KRCC PERFORMANCE COMPARISONS OF IMAGE RETARGETING

QUALITY ASSESSMENT MODELS ON DATABASE [19]

given five retargeting algorithm, there are 10 possible combina-

tions of paired comparisons, and thus the total number of paired

comparisons for all 25 source images is 250. A total of 30 sub-

jects, including 20 males and 10 females, were involved in the

test. They all have normal vision and have no prior knowledge

about the experiment. They voted for the retargeted image with

relatively better visual quality by clicking a button on the screen.

For each reference image, the subjective rankings of the re-

targeted images are averaged and used to compare with the

rankings given by objectivemeasures. Kendall’s rank-order cor-

relation coefficient (KRCC) (or Kendall Distance [37]) and

Spearman’s rank-order correlation (SRCC) [38] are computed

to measure the level of agreement between subjective and objec-

tive rankings. In both cases, higher correlation coefficient repre-

sents higher agreement, and both measures are upper-bounded

by 1, which corresponds to perfect agreement. Before applying

the test to evaluate objective quality assessment methods, we

first compute how an average subject would perform in such as

test. This is done by computing the KRCC and SRCC values

between the average rankings of all subjects and the rankings

given by any particular individual subject (out of the 30 sub-

jects in total). When this is done for all 30 subjects, we compute

the mean and standard deviation of the KRCC and SRCC values

across all subjects. Such a quantitative measure of average sub-

ject performance gives a useful reference point on how an ob-

jective method behaves relative to a typical human subject. The

average subject performance is given in Table I, where the av-

erage KRCC and SRCC values of 0.641 and 0.661 suggests that

Fig. 6. First row: reference image and its saliency map. Second to last rows:

retargeted images (left), SSIMmaps (middle), and product of SSIM and saliency

maps (right). Retargeted images from the second to last rows are generated by

CR, MO, SC, SCL, SM, SNS, SV, and WARP algorithms, respectively.

although subjects generally agree with each other on the quality

of retargeted images, unsurprisingly, there also exist significant

variations between subject opinions.

Based on our subjective test results, we first test the sig-

nificance of saliency weighting in the IR-SSIM measure.

Specifically, we compare the performance between IR-SSIM

without any saliency weighting (w/o SW), IR-SSIM with

top-down saliency weighting only (w/TD-SW), IR-SSIM

with bottom-up saliency weighting only (w/BU-SW), and full

IR-SSIM. The results are given in Table I. It can be seen that

both bottom-up and top-down saliency weighting are helpful
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Fig. 7. Diagram of IR-SSIM directed iterative multi-operator image retargeting.

in improving the performance and the impact of bottom-up

saliency weighting is more significant. This is not surprising

because the top-down saliency maps are based on face detection

and only a small proportion of the test images contain faces. The

usefulness of top-down saliency estimation is demonstrated in

Fig. 5, where the bottom-up saliency detection algorithm fails

to emphasize on the face region. By contrast, the face detection

based top-down saliency map allows us to focus on the face

region that are of high interests to human observers. Overall,

the best performance is obtained when both saliency weighting

factors are included, as shown in Table I.

To demonstrate the advantage of the multi-scale SSIM

approach in the proposed method. We compare single-scale

IR-SSIM and the proposed multi-scle IR-SSIM. The exper-

imental results are shown in Table II, where the KRCC and

SRCC values show that the IR-SSIM using multi-scale SSIM

can obtain better performance than that using single scale

SSIM.

We compare IR-SSIM with five existing image retargeting

quality assessment methods, including EH [25], BDW [12],

SIFT flow [27], CL [24], and GLM [22].

In EH algorithm [25], the distortion of the retargeted image

is computed based on the difference between edge distributions

of the reference and retargeted images. BDW calculates the dis-

tortion of the retargeted image based on nonuniform alignment

between the reference and retargeted images subject to order

constraints [12]. SIFT Flow measures the distortion of the re-

targeted image by the distance between the reference and re-

targeted images, which is represented as the energy cost from

pixel-matching correspondence between the reference and re-

targeted images [27]. In CL algorithm [24], the distortion of

the retargeted image is calculated by the difference between

the color distributions of the reference and retargeted images.

GLM calculates the distortion of the retargeted image based on

the difference of global geometric structures (from local pixel

correspondence) between the reference and retargeted images

[22]. Among these methods, BDW and GLM are the quality as-

sessment methods designed specifically for retargeted images;

SIFT flow is the pixel-matching algorithm used in this paper;

BDW is a bidirectional similarity measure from mid-level se-

mantic correspondence between images; while EH and CL are

low-level similarity measures which treat the image as a whole

[19]. For fair comparison, we use the same saliency map cre-

ated in Section II-C in the implementation of the GLM model

[22]. The results are shown in Table III, where IR-SSIM obtains

better performance than existing metrics, even without saliency

weighting. The reason may be that IR-SSIM directly evaluates

local quality within each image patch based on SSIM, while ex-

istingmethods often extract local features but leave quality anal-

ysis at global level. The local SSIM measure not only supplies a

useful spatial quality map, but also makes it naturally integrated

with saliency weighting or other spatial pooling approaches.

From the Table III, the proposed IR-SSIM with saliency con-

sideration outperforms all other models by a sizable margin in

terms of mean correlations with subjective rankings. Its lower

standard deviations of KRCC and SRCC values suggest that

IR-SSIM performs more consistently than other models across

different reference images. Visual examples are given in Figs. 3

and 4. Despite the promising results, significant gap still exists

between the performance of IR-SSIM and that of an average

subject given in Table I. Such a comparison is helpful for us

to better understand the current status of state-of-the-art image

retargeting quality assessment techniques, and gives a sensible

measure on the space for future improvement.

To further validate the proposed method, we test and compare

image retargeting algorithms using a public benchmark image

retargeting database [19]. The benchmark was collected by a

user study from 210 participants using a database containing 37

source reference images. Each reference image was resized by

eight image retargeting algorithms, which include scaling, crop-

ping, SV [41], MO [12], SC [4], SM [9], SNS [8], and WARP

[6]. In addition, the subjective evaluation data, together with the

correlations of six objective quality assessment models (BDS

[39], BDW [12], EH [25], CL [24], SIFT Flow [27], and EMD

[40]) are also provided [19]. The performance comparison re-

sults are shown in Table IV, where we computed the results for

IR-SSIM, and the results for all other models are extracted from

[19] directly. Again, IR-SSIM outperforms all other methods in
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Fig. 8. Sample images created by IR-SSIM directed multi-operator retargeting. Column 1: reference images. Columns 2–5: retargeted images for resizing factors

of 12.5%, 25%, 37.5%, and 50%, respectively.

this benchmark in terms of higher meanKRCC values and lower

standard deviation across different reference images. More vi-

sual examples are given in Fig. 6, where it can be observed that

different image retargeting algorithms preserve the structural in-

formation in different ways, leading to substantially different

SSIM maps.

IV. APPLICATION: IR-SSIM DIRECTED MULTI-OPERATOR

RETARGETING

The value of IQA models is far beyond assessing and com-

paring images or image processing algorithms. A broader po-

tential field of applications is to apply them in the design and

optimization of image processing algorithms and systems [15].

Here we demonstrate the value of IR-SSIM by embedding it into

a multi-operator image retargeting algorithm.

Previous studies have demonstrated that multi-operator

image retargeting algorithms often achieve better performance

in image resizing than single-operator methods [11], [12], [19].

Multi-operator algorithms iteratively apply a sequence of re-

sizing operations dynamically selected from several candidate

resizing operators, which often include scaling, cropping, and

seam carving. The most critical step is to determine the optimal

image resizing operator sequence for image resizing. For this

purpose, a quality/distortion measure is desired to assess the

similarity/dissimilarity between the reference and retargeted

images (generated by different image resizing operator se-

quences), and to decide on which image resizing operator

sequence creates the best result. In [12], the BDW metric is

playing such a role, but according to our results reported in

Section III, BDW is not among the best options in predicting

perceived quality of retargeted images. Naturally, one would

be curious to see the retargeted image obtained by replacing

the role of BDW with IR-SSIM.

We develop a modified MO method [12] that applies an iter-

ative method to decide on the sequence of retargeting operators

based on IR-SSIM. The diagram of the algorithm is shown in

Fig. 7, which searches for the best operator at each iteration

rather than in the entire multi-operator space as in [12], and

thus the computational cost is significantly lower. The whole

image retargeting task is divided into subtasks, each associated

with one iteration with only small changes in image size. In the

th iteration, IR-SSIM between the reference and retargeted im-

ages is employed to pick the best quality image among those

created by seam carving, scaling and cropping operators ap-

plied to the input image generated form the last iteration (in the

first iteration, the original reference image is used as the input

image). The iteration continues until the target resizing factor is

achieved.

Fig. 8 provides examples that demonstrate the iterative

process, where the reference images are gradually resized until

the target size is reached, generating a series of retargeted

images as mid-results. In Fig. 9, IR-SSIM directed multi-op-

erator retargeting is compared with the original BDW based

multi-operator method [12]. Both subjective and objective

IR-SSIM measures prefer the retargeted images produced by

the proposed approach. In the experiment, we also find that

IR-SSIM directed multi-operator retargeting algorithm leads

to cropping being chosen more frequently during the image

resizing process compared with BDW based method. The

results from 37 images in [19] show that the cropping operator
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Fig. 9. Left: reference images; middle: retargeted images by multi-operator

retargeting [12]; right: retargeted images by multi-operator retargeting directed

by IR-SSIM. The number below each retargeted image is the IR-SSIM value

computed from the reference and retargeted images.

occupies about 73% of the total resizing operation in IR-SSIM,

as opposed to 40% in BDW, based multi-operator algorithms.

This might be due to the fact that cropping preserves the

structural information better than scaling or seam carving, and

often leads to better perceptual preference, especially when the

cropped area coincides with visual saliency. This conjecture is

supported by the subjective experimental results in [19], where

cropping operator typically achieves better performance than

scaling and seam carving operators.

V. CONCLUSION

We propose an IR-SSIMmethod for image retargeting quality

assessment by combining a series of ideas including SIFT flow

based local shift estimation, SSIM based local quality assess-

ment, and saliency based perceptual pooling. Promising quality

prediction performance is achieved when testing the proposed

IR-SSIM algorithm using two subject-rated image retargeting

databases. To further demonstrate the advantages and potentials

of IR-SSIM,we embed it into amulti-operator image retargeting

process, resulting in visually appealing retargeted images.

Besides the good correlation with subjective evaluations

of image quality, a perhaps more interesting and more useful

output of the IR-SSIM approach is the SSIM map that indicates

the strength of structural information preservation at each spa-

tial location in the reference image. This is useful not only in

understanding how the image retargeting algorithms work, but

also in the design and optimization of novel image regargeting

algorithms. This would be an interesting and promising future

research direction to be explored.
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