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Objective Quality Assessment of
Tone-Mapped Images
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Abstract— Tone-mapping operators (TMOs) that convert high
dynamic range (HDR) to low dynamic range (LDR) images pro-
vide practically useful tools for the visualization of HDR images
on standard LDR displays. Different TMOs create different tone-
mapped images, and a natural question is which one has the best
quality. Without an appropriate quality measure, different TMOs
cannot be compared, and further improvement is directionless.
Subjective rating may be a reliable evaluation method, but it
is expensive and time consuming, and more importantly, is
difficult to be embedded into optimization frameworks. Here
we propose an objective quality assessment algorithm for tone-
mapped images by combining: 1) a multiscale signal fidelity
measure on the basis of a modified structural similarity index
and 2) a naturalness measure on the basis of intensity statistics
of natural images. Validations using independent subject-rated
image databases show good correlations between subjective
ranking score and the proposed tone-mapped image quality index
(TMQI). Furthermore, we demonstrate the extended applications
of TMQI using two examples—parameter tuning for TMOs and

adaptive fusion of multiple tone-mapped images.1

Index Terms— High dynamic range image, image fusion, image
quality assessment, naturalness, perceptual image processing,
structural similarity, tone mapping operator.

I. INTRODUCTION

T
HERE has been a growing interest in recent years in

high dynamic range (HDR) images, where the range of

intensity levels could be on the order of 10,000 to 1 [1].

This allows for accurate representations of the luminance

variations in real scenes, ranging from direct sunlight to faint

starlight [1]. With recent advances in imaging and computer

graphics technologies, HDR images are becoming more widely

available. A common problem that is often encountered in

practice is how to visualize HDR images on standard display

devices that are designed to display low dynamic range (LDR)

images. To overcome this problem, an increasing number of

tone mapping operators (TMOs) that convert HDR to LDR
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images have been developed, for examples [2]–[5]. Because

of the reduction in dynamic range, tone mapping procedures

inevitably cause information loss. With multiple TMOs avail-

able, one would ask which TMO faithfully preserves the

structural information in the original HDR images, and which

TMO produces natural-looking realistic LDR images.

TMO assessment in the past mostly relied on human sub-

jective evaluations. In [6], perceptual evaluations of 6 TMOs

were conducted with regard to similarity and preferences.

An overview and a subjective comparison of 8 TMOs were

reported in [7]. HDR capable monitor was employed in [8] to

compare 6 TMOs in a subjective experiment using a paired

comparison method. In [9], 14 subjects were asked to rate

2 architectural interior scenes produced by 7 TMOs based

on basic image attributes as well as the naturalness of the

LDR images. A more comprehensive subjective evaluation was

carried out in [10], where tone mapped images generated by 14

TMOs were shown to 2 groups of 10 human observers to rate

LDR images, concerning overall quality, brightness, contrast,

detail reproduction and color. In [11], subjects were asked to

choose the best LDRs derived from 2 TMOs with different

parameter settings to optimally tune the algorithms. The value

of subjective testing cannot be overestimated. However, they

have fundamental limitations. First, it is expensive and time

consuming. Second, it is difficult to be incorporated into an

optimization framework to automatically improve TMOs and

adjust their parameter settings. Furthermore, important image

structures contained in HDR images may be missing in tone

mapped images, but human observers may not be aware of

their existence. In this sense, subjective evaluation should

not be regarded as a golden standard for the quality of tone

mapped images.

Typical objective image quality assessment (IQA)

approaches assume the reference and test images to have

the same dynamic range [12], and thus cannot be directly

applied to evaluate tone mapped images. Only a few objective

assessment methods have been proposed for HDR images.

The HDR visible differences predictor (HDR-VDP) [1], [13]

is a human visual system (HVS) based fidelity metric that

aims to distinguish between visible (suprathreshold) and

invisible (subthreshold) distortions. The metric reflects the

perception of distortions in terms of detection probability.

Since HDR-VDP is designed to predict the visibility of

differences between two HDR images of the same dynamic

range, it is not applicable to compare an HDR image with

an LDR image. A dynamic range independent approach

was proposed in [14], which improves upon HDR-VDP and
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produces three types of quality maps that indicate the loss

of visible features, the amplification of invisible features, and

reversal of contrast polarity, respectively. These quality maps

show good correlations with subjective classifications of image

degradation types including blur, sharpening, contrast reversal,

and no distortion. However, it does not provide a single

quality score for an entire image, making it impossible to be

validated with subjective evaluations of overall image quality.

The purpose of the current work is to develop an objective

IQA model for tone mapped LDR images using their corre-

sponding HDR images as references. Our work is inspired

by the success of two design principles in IQA literature.

The first is the structural similarity (SSIM) approach [15] and

its multi-scale derivations [16], [17], which asserts that the

main purpose of vision is to extract structural information

from the visual scene and thus structural fidelity is a good

predictor of perceptual quality. The second is the natural scene

statistics (NSS) approach, which maintains that the visual

system is highly adapted to the natural visual environment

and uses the departure from natural image statistics as a

measure of perceptual quality [18]. Here we propose a method

that combines a multi-scale structural fidelity measure and a

statistical naturalness measure, leading to Tone Mapped image

Quality Index (TMQI). Moreover, we demonstrate that TMQI

can be employed for optimizing parameters in TMOs and for

adaptively fusing multiple tone mapped images.

II. QUALITY ASSESSMENT METHOD

Due to the reduction in dynamic range, TMOs cannot

preserve all information in HDR images, and human observers

of the LDR versions of these images may not be aware of

this. Therefore, structural fidelity plays an important role in

assessing the quality of tone-mapped images [19]. On the other

hand, structural fidelity alone does not suffice to provide an

overall quality evaluation. A good quality tone mapped image

should achieve a good compromise between structural fidelity

preservation and statistical naturalness, which are sometimes

competing factors.

A. Structural Fidelity

The SSIM approach provides a useful design philosophy as

well as a practical method for measuring structural fidelities

between images [20]. The original SSIM algorithm is applied

locally and contains three comparison components − lumi-

nance, contrast and structure. Since TMOs are meant to change

local intensity and contrast, direct comparisons of local and

contrast are inappropriate. Let x and y be two local image

patches extracted from the HDR and the tone-mapped LDR

images, respectively. We define our local structural fidelity

measure as

Slocal(x, y) =
2σ ′

xσ
′
y + C1

σ ′
x

2 + σ ′
y

2 + C1

·
σxy + C2

σxσy + C2
(1)

where σx , σy and σxy are the local standard deviations and

cross correlation between the two corresponding patches in

HDR and LDR images, respectively, and C1 and C2 are posi-

tive stabilizing constants. Compared with the SSIM definition

[15], the luminance comparison component is missing, and

the structure comparison component (the second term in (1))

is exactly the same. The first term in (1) compares signal

strength and is modified from that of the SSIM definition

based on two intuitive considerations. First, the difference

of signal strength between HDR and LDR image patches

should not be penalized when their signal strengths are both

significant (above visibility threshold) or both insignificant

(below visibility threshold). Second, the algorithm should

penalize the cases that the signal strength is significant in one

of the image patches but insignificant in the other. This is

different from the corresponding term in the original SSIM

definition where any change in signal strength is penalized.

To distinguish between significant and insignificant signal

strength, we pass the local standard deviation σ through a

nonlinear mapping, which results in the σ ′ value employed in

(1). The nonlinear mapping should be designed so that signif-

icant signal strength is mapped to 1 and insignificant signal

strength to 0, with a smooth transition in-between. Therefore,

the nonlinear mapping is related to the visual sensitivity of

contrast, which has been an extensively studied subject in the

literature of visual psychophysics [21]. Practically, the HVS

does not have a fixed threshold of contrast detection, but

typically follows a gradual increasing probability in observ-

ing contrast variations. Psychometric functions describing the

detection probability of signal strength have been employed

to model the data taken from psychophysical experiments.

Generally, the psychometric function resembles a sigmoid

shape [22], [23] and the sensory threshold is usually defined at

the level of 50% of detection probability. A commonly adopted

psychometric function is known as Galton’s ogive [21], which

takes the form of a cumulative normal distribution function

given by

p(s) =
1

√
2πθs

∫ s

−∞
exp

[

−
(x − τs)

2

2θ2
s

]

dx (2)

where p is the detection probability density, s is the amplitude

of the sinusoidal stimulus, τs is the modulation threshold, and

θs is the standard deviation of the normal distribution that

controls the slope of detection probability variation. It was

found that the ratio

k =
τs

θs

(3)

is roughly a constant, known as Crozier’s law [21], [24].

Typical values of k ranges between 2.3 and 4, and k = 3

makes the probability of false alarm considerably small [21].

The reciprocal of the modulation threshold τs is often used

to quantify visual contrast sensitivity, which is a function

of spatial frequency, namely the contrast sensitivity function

(CSF) [21]. A CSF formula that fits well with data collected

in various psychological experiments is given by [25]

A( f ) ≈ 2.6[0.0192 + 0.114 f ] exp[−(0.114 f )1.1] (4)

where f denotes spatial frequency. This function is normalized

to have peak value 1, and thus only provides relative sensitivity

across the frequency spectrum. In practice, it needs to be

scaled by a constant λ to fit psychological data. In our
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implementation, we follow Kelly’s CSF measurement [26].

Combining this with (4), we obtain

τs( f ) =
1

λ A( f )
. (5)

This threshold value is calculated based on contrast sensitivity

measurement assuming pure sinusoidal stimulus. To convert

it to a signal strength threshold measured using the standard

deviation of the signal, we need to take into account that signal

amplitude scales with both contrast and mean signal inensity,

and there is a
√

2 factor between the amplitude and standard

deviation of a sinusoidal signal. As a result, a threshold value

defined on signal standard deviation can be computed as

τσ ( f ) =
µ

√
2 λ A( f )

(6)

where µ is the mean intensity value. Based on Crozier’s law

[21], [24], we have

θσ ( f ) =
τσ ( f )

k
. (7)

We can then define the mapping between σ and σ ′ as

σ ′ =
1

√
2πθσ

∫ σ

−∞
exp

[

−
(x − τσ )2

2θ2
σ

]

dx (8)

In (1), σ ′
x and σ ′

y are the mapped versions of σx and σy ,

respectively. They are bounded between 0 and 1, where 0 and

1 represent completely insignificant and completely significant

signal strengths, respectively.

The local structural fidelity measure Slocal is applied to an

image using a sliding window that runs across the image space.

This results in a map that reflects the variation of structural

fidelity across space. The visibility of image details depends

on the sampling density of the image, the distance between the

image and the observer, the resolution of the display, and the

perceptual capability of the observer’s visual system. A single-

scale method cannot capture such variations. Following the

idea used in multi-scale [16] and information-weighted SSIM

[17], we adopt a multi-scale approach, where the images are

iteratively low-pass filtered and downsampled to create an

image pyramid structure [27], as illustrated in Fig. 1. The

local structural fidelity map is generated at each scale. Fig. 2

shows two examples of such maps computed at multiple scales

for the LDR images created from two different TMOs. It is

interesting to observe these fidelity maps and examine how

they correlate with perceived image fidelity. For example, the

structural details of the brightest window regions are missing

in Image (b), but are more visible in Image (a). For another

example, there are detailed structures in the top-right dark

regions that are not easily discerned in Image (a), but are better

visualized in Image (b). All of these are clearly reflected in

the structural fidelity maps.

At each scale, the map is pooled by averaging to provide a

single score:

Sl =
1

Nl

Nl
∑

i=1

Slocal(xi , yi ) (9)

where xi and yi are the i -th patches in the HDR and LDR

images being compared, respectively, and Nl is the number of

L  2
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HDR

image
L  2 L  2

L  2
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image
L  2 L  2
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Fig. 1. Framework of multiscale structural fidelity assessment.

patches in the l-th scale. In the literature, advanced pooling

strategies such as information content based pooling [17] have

been shown to improve the performance of IQA algorithms.

However, in our current experiment, these advanced pooling

methods did not result in notable performance gain in the

proposed structural fidelity measure. The overall structural

fidelity is calculated by combining scale level structural fidelity

scores using the method in [16]

S =
L

∏

l=1

S
βl

l (10)

where L is the total number of scales and βl is the weight

assigned to the l-th scale.

There are several parameters in the implementation of our

structural fidelity model. First, when computing Slocal, we

set C1 = 0.01 and C2 = 10, and we find that the overall

performance of the structural fidelity model is insensitive to

these parameters within an order of magnitude. Second, to

create the fidelity map at each scale, we adopt the same setting

as in the SSIM algorithm [15] by employing a Gaussian sliding

window of size 11×11 with standard deviation 1.5. Third, as in

[16], we assume a viewing distance of 32 cycles/degree, which

can represent signals up to 16 cycles/degree of resolution

without aliasing, and thus we use 16 cycles/degree as the

spatial frequency parameter when applying the CSF in (4) to

the finest scale measurement. The spatial frequency parameters

applied to the subsequent finer scales are then 8, 4, 2, 1

cycles/degree, respectively. Fourth, the mean intensity value in

(6) is set to be the mean of the dynamic range of LDR images,

i.e., µ = 128. Fifth, when combining the measures across

scales, we set L = 5 and {βl} = {0.0448, 0.2856, 0.3001,

0.2363, 0.1333}, which follows the psychophysical experiment

results reported in [16]. Finally, in order to assess the quality

of color images, we first convert them from RGB color space

to Yxy space and then apply the proposed structural fidelity

measure on the Y component only.

B. Statistical Naturalness

A high quality tone mapped LDR image should not only

faithfully preserve the structural fidelity of the HDR image,

but also look natural. Nevertheless, naturalness is a subjective

quantity that is difficult to define quantitatively. A large

literature has been dedicated to the statistics of natural images

which have important significance to both image processing

applications and the understanding of biological vision [28].

An interesting study of naturalness in the context of subjective

evaluation of tone mapped images was carried out in [29],
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(a)

(b)

Fig. 2. Tone-mapped LDR images and their structural fidelity maps in five scales. The images were created using Adobe Photoshop “Highlight compression”
and “Exposure and Gamma” methods (not optimized for quality), respectively. (a) S = 0.9152 (S1 = 0.8940; S2 = 0.9341; S3 = 0.9428; S4 = 0.9143;
S5 = 0.8277). (b) S = 0.8614 (S1 = 0.9161; S2 = 0.9181; S3 = 0.8958; S4 = 0.8405; S5 = 0.7041).

which provided useful information regarding the correlations

between image naturalness and different image attributes

such as brightness, contrast, color reproduction, visibility and

reproduction of details. The results showed that among all

attributes being tested, brightness and contrast have more

correlation with perceived naturalness. This motivates us to

build our statistical naturalness model based on these two

attributes. This choice may be oversimplifying in defining

the general concept of statistical image naturalness (and may

not generalize to other image processing applications that

uses the concept of naturalness), but it provides an ideal

compromise between the simplicity of our model and the

capability of capturing the most important ingredients of

naturalness that are related to the tone mapping evaluation

problem we are trying to solve, where brightness mapping

is an inevitable issue in all tone mapping operations. It also

best complements the structural fidelity measure described in

Section II-A, where brightness modeling and evaluation are

missing.

Our statistical naturalness model is built upon statistics con-

ducted on about 3,000 8bits/pixel gray-scale images obtained

from [30], [31] that represent many different types of natural

scenes. Fig. 3 shows the histograms of the means and standard

deviations of these images, which are useful measures that

reflect the global intensity and contrast of images. We found

that these histograms can be well fitted using a Gaussian and

a Beta probability density functions given by

Pm(m) =
1

√
2πσm

exp

[

−
m − µm

2σ 2
m

]

(11)

and

Pd (d) =
(1 − d)βd−1dαd−1

B(αd , βd)
(12)

where B(·, ·) is the Beta function. The fitting curves are

shown in Fig. 3, where the model parameters are estimated

by regression, and the best values we found are µm = 115.94

and σm = 27.99 in (11), and αd = 4.4 and βd = 10.1 in (12),

respectively.

Recent studies suggested that brightness and contrast are

largely independent quantities in terms of both natural image

statistics and biological computation [32]. As a result, their

joint probability density function would be the product of the
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Fig. 3. Histograms of (a) means (fitted by Gaussian PDF) and (b) standard
deviations (fitted by Beta PDF) of natural images.

two. Therefore, we define our statistical naturalness measure

as

N =
1

K
Pm Pd (13)

where K is a normalization factor given by K = max{Pm Pd }.
This constrains the statistical naturalness measure to be

bounded between 0 and 1.

C. Quality Assessment Model

The structural fidelity measure S introduced in Section II-A

and the statistical naturalness measure N described in

Section II-B characterizes different aspects of the quality of

tone mapped images. They may be used individually or jointly

as a vector valued measure. In many practical applications,

however, users prefer a single score that indicates the overall

quality of the image. Therefore these parameters should be

combined in some manner. In the literature of IQA, there had

been earlier work that combines image statistics and measures

of structure and contrast [33], though in a different context.

Here we define a three-parameter function to scalarize the joint

measure, resulting in a Tone Mapped image Quality Index

(TMQI)

Q = aSα + (1 − a)Nβ (14)

where 0 ≤ a ≤ 1 adjusts the relative importance of the

two components, and α and β determine their sensitivities,

respectively. Since both S and N are upper-bounded by 1, the

overall quality measure is also upper-bounded by 1.

The parameters in (14) are left to be determined. In our

implementation, they are tuned to best fit the subjective evalua-

tion data provided by the authors of [34]. In their experiments,

the subjects were instructed to look simultaneously at two

LDR images created by two different TMOs applied upon

the same HDR image, and then pick the one with better

overall quality. Two studies have been done, involving two

groups of subjects. The first study was carried out at Zheijang

University, where 59 naive volunteers were invited to do

the pair-wise comparison task and fill the preference matrix.

The second study was conducted using Amazon Mechanical

Turk, an online service of subjective evaluation. Each paired

comparison was assigned to 150 anonymous subjects. The

database includes 6 data sets, each of which contains images

generated by 5 well-known TMOs, introduced by Drago

et. al. [4], Durand & Dorsey [35], Fattal et. al. [5], Reinhard

et. al. [2] and Mertens et. al. [36]. The subjective ranking

scores in each folder are then computed using the preference

matrix.

Finding the best parameters in (14) using subjective data is

essentially a regression problem. The major difference from

traditional regression problems is that here we are provided

with relative ranking data between images only, but not quality

scores associated with individual images. We developed a

learning method where the parameters are learnt from an

iterative method. At each iteration, one pair of images is

randomly selected from one randomly selected data set. If

the model generates objective scores that give the same order

of the pair as the subjective rank order, then there is no

change to the model parameters; Otherwise, each parameter

is updated towards the direction of correcting the model error

by a small step. The iteration continues until convergence.

In our experiment, we observe good convergence property

of this iterative learning process. Furthermore, to ensure the

robustness of our approach, we conducted a leave-one-out

cross validation procedure, where the database (of 6 data sets)

was divided into 5 training sets and 1 testing set, and the

same process was repeated 6 times, each with a different

division between training and testing sets. Although each time

ends up with a different set of parameters, they are fairly

close to each other and result in the same ranking orders

for all the training and testing sets. In the end, we select

a = 0.8012, α = 0.3046, and β = 0.7088 as our final model

parameters.

III. VALIDATION OF QUALITY ASSESSMENT METHOD

The validation process is conducted by comparing our

objective quality assessment results with subjective data. Two

evaluation metrics are employed which are given as follows.
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1) Spearman’s rank-order correlation coefficient (SRCC) is

defined as

SRCC = 1 −
6

∑N
i=1 d2

i

N(N2 − 1)
(15)

where di is the difference between the i -th image’s ranks

in subjective and objective evaluations. SRCC is a non-

parametric rank-order based correlation metric, inde-

pendent of any monotonic nonlinear mapping between

subjective and objective scores.

2) Kendall’s rank-order correlation coefficient (KRCC) is

another non-parametric rank correlation metric com-

puted as

KRCC =
Nc − Nd

1
2 N(N − 1)

(16)

where Nc and Nd are the numbers of concordant (of

consistent rank order) and discordant (of inconsistent

rank order) pairs in the data set, respectively.

The proposed TMQI is the only objective quality mea-

sure being tested. To the best of our knowledge, almost no

other method has been proposed to compare images with

different dynamic ranges. The only exception is the method

proposed in [14], which creates probability maps to distinguish

between visible (suprathreshold) and invisible (subthreshold)

degradations. The probability maps are shown to be useful

in classifying image distortion types but are not meant to be

pooled to produce an overall quality score of a tone mapped

image. As a result, direct comparison with the proposed

method is not possible.

Three experiments have been carried out in our validation

process, each uses a different subject-ranked database. The first

database is from [34], which was also used in the parameter

training step discussed in Section II-C. Our leave-one-out cross

validation method described in Section II-C creates SRCC and

KRCC values for each of the six testing data sets, where for

each data set, the parameters were trained using the other five

data sets. Table I shows the means and standard deviations of

KRCC and SRCC values between subjective rankings and our

model predictions, respectively.

In the second experiment, we use the database introduced in

[10], [37], from which we employ the overall quality ranking

data by 10 naive subjects of 14 tone mapped images created

from the same HDR image. The KRCC and SRCC values

between subjective rankings of the images and our structural

fidelity, statistical naturalness and overall quality scores are

given in Table II, where we observe that the structural fidelity

measure alone can provide reasonable predictions of subjective

rankings. The statistical naturalness measure by itself is not a

good predictor of the overall quality ranking, but it comple-

ments the structural fidelity measure. When the two measures

are combined, better prediction of the overall image quality is

achieved. It is worth mentioning that the test data here is not

used in the training process, but the resulting KRCC and SRCC

values are comparable with those obtained in the test using the

first database, which is used for training. This implies good

generalization capability of the training method described in

Section II-C.

TABLE I

CROSS-VALIDATION RESULTS USING DATA FROM [34]

KRCC SRCC

Mean 0.7333 0.8333

Std 0.1632 0.1211

TABLE II

PERFORMANCE EVALUATION USING DATA FROM [10], [37]

KRCC SRCC

Structural Fidelity 0.6923 0.7912

Statistical Naturalness 0.3846 0.5385

Overall Quality 0.7179 0.8187

The third experiment is conducted using a database devel-

oped by ourselves. Twenty subjects were provided with 15 sets

of tone mapped images, each of which includes 8 images

generated by 8 TMOs from the same HDR image. The results

created by five of the TMOs developed by Reinhard et al. [2],

Drago et. al. [4], Durand & Dorsey [35], Mantiuk et. al. [38]

and Pattanaik et. al. [39] are computed using the publicly avail-

able software Qtpfsgui [40]. In addition, three other images

were created using the built-in TMOs in Adobe Photoshop,

namely “Exposure and Gamma,” “Equalize Histogram,” and

“Local Adaptation,” respectively. The parameters used in all

8 TMOs are set as their default values and are not optimized.

The reference HDR images are selected to represent different

indoor and outdoor scenes and are all available online [10],

[41]–[43]. In the subjective test, each of the 20 observers was

asked to rank the 8 images in each image set from the best

to the worst. The subjective rankings for each image is then

averaged, resulting in its mean ranking score within the set.

To evaluate the TMQI method, we calculate the KRCC

and SRCC values between the mean ranking scores and the

objective quality measures for each image set. The results are

given in Table III. To provide an anchor in evaluating the

performance of TMQI, we compare it with the behavior of an

average subject. To do this, we first compute the KRCC and

SRCC values between the mean ranking scores and the ranking

scores given by each individual subject for each image set. We

then compute the mean and standard deviation of these KRCC

and SRCC values over subjects, which are shown in Table III.

The average KRCC and SRCC values over all 15 image set

are given in the last row. It can be seen that for all image

sets, the KRCC and SRCC values of TMQI are well within

the range of ±1 standard deviation from the KRCC and SRCC

values of the mean over all subjects. This indicates that TMQI

behaves quite similarly to an average subject.

Since the TMQI algorithm does not involve any expensive

search or iterative procedure, it is computationally efficient.

Our unoptimized MATLAB implementation on an Intel Quad-

Core 2.67 GHz computer takes on average around 0.75 and 2.7

seconds to evaluate images of sizes 512×512 and 1024×1024,

respectively. Fig. 4 illustrates the scatter plot of runtime versus

the number of image pixels for 20 HDR-LDR comparisons.

It shows that the computational complexity of the TMQI

algorithm is approximately linear with respect to the number
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TABLE III

PERFORMANCE EVALUATIONS USING 15 IMAGE SETS AND 8 TMOS

Image Set

KRCC SRCC

Mean Subject STD of Subject TMQI Mean Subject STD of Subject TMQI

Performance Performance Performance Performance Performance Performance

1 0.8071 0.1038 0.7857 0.9071 0.0650 0.9048

2 0.7269 0.2072 0.6429 0.8251 0.1709 0.7857

3 0.7642 0.1064 0.6429 0.8797 0.0758 0.8095

4 0.8107 0.1141 0.7143 0.9130 0.0746 0.8571

5 0.4714 0.2116 0.6429 0.6000 0.2030 0.7381

6 0.6464 0.1646 0.7857 0.7630 0.1707 0.9048

7 0.7250 0.1275 0.5714 0.8285 0.1006 0.6905

8 0.7000 0.1862 0.5714 0.8023 0.1813 0.6905

9 0.6607 0.1978 0.5714 0.7857 0.1625 0.7619

10 0.8418 0.0991 0.7857 0.9276 0.0581 0.9048

11 0.7428 0.1815 0.7143 0.8523 0.1352 0.8810

12 0.6250 0.2084 0.5714 0.7595 0.2055 0.7143

13 0.5637 0.2298 0.5455 0.6970 0.2343 0.6587

14 0.6214 0.1720 0.6429 0.7702 0.1474 0.7381

15 0.8142 0.0994 0.7857 0.9035 0.0705 0.9048

Average 0.7014 0.1606 0.6649 0.8143 0.1368 0.7963
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Fig. 4. Run time versus the number of image pixels of the proposed
algorithm.

of pixels in the image. The relatively low computational cost

makes it easily adapted to practical applications that involve

iterative optimization processes.

IV. APPLICATIONS OF QUALITY ASSESSMENT METHOD

The application scope of objective IQA measures is beyond

evaluating images and comparing algorithms. A wider range

of applications extends to developing novel image processing

algorithms optimized for the novel IQA measures. In this

section, we use two examples to demonstrate the potentials

of TMQI.

A. Parameter Tuning in TMO Algorithm

Many TMOs contain one or more parameters whose optimal

values are often image-dependent. Without human interfer-

ence, it is often a challenging task to choose these parameters,

which could lead to drastically different results. An objective
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Fig. 5. Overall quality measure Q versus parameter b for (a) Desk and
(b) Bristol Bridge images. The tone-mapped images corresponding to selected
b values are shown in Figs. 6 and 7, respectively.

quality measure provides a useful tool to pick these parameters

automatically. Here we use the TMO proposed in [4] as an

example, which uses logarithmic function with varying bases

in different locations to change the dynamic range adaptively.

The algorithm is given by

Ld =
Ldmax · 0.01

log10(Lwmax+1)
·

log(Lw + 1)

log

(

2+

(

(

Lw
Lwmax

)

log(b)
log(0.5)

)

· 8

) (17)
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(a) (b) (c)

Fig. 6. LDR images generated with different parameter b in (17). (a) b = 0.1, S = 0.8344, N = 0.4599, and Q = 0.8959. (b) b = 0.8, S = 0.8448,
N = 0.4874, and Q = 0.8998. (c) b = 1.0, S = 0.8337, N = 0.1423, and Q = 0.8485.

(a) (b) (c)

Fig. 7. LDR images generated with different parameter b in (17). (a) b = 0.1, S = 0.5214, N = 0.0249, and Q = 0.7535. (b) b = 0.7, S = 0.8137,
N = 0.1136, and Q = 0.7690. (c) b = 1.0, S = 0.8856, N = 0.2923, and Q = 0.7967.

where Lw and Lwmax are world luminance and maximum

luminance of the scene, Ld and Ldmax are display luminance

and maximum luminance of display, respectively, and b is a

tuning parameter. The perceptual quality of the tone mapped

image varies significantly with b. However, in the literature,

the b value is typically fixed around 0.8 through empirical

experimenting with multiple images [4], [40].

In Figs. 5(a) and 5(b), we plot how TMQI varies as a func-

tion of b for images “Desk” and “Bristol Bridge,” respectively

(No computation beyond b = 1 is conducted because it is

beyond the suggested value range by the algorithm). It appears

that the quality score behaves quite differently as a function

of b. Based on the plots, b = 0.8 and b = 1 are picked as the

optimal values for the two images, respectively. These results

confirm that the optimal b value is close to the empirical

value (around 0.8) selected in previous studies, but varies for

different images. The tone mapped LDR images corresponding

to three selected b values are shown in Fig. 6 and Fig. 7,

respectively. Careful inspection of these images shows that

the best b values lead to good balance between preserving

structural details and producing natural looking images.

B. Adaptive Fusion of Tone-Mapped Images

When experimenting with different TMOs on different HDR

images, we often find it difficult to pick a single TMO that

produces the best results for all HDR images. Furthermore,

within a single HDR image, the best TMO may also vary when

different regions in the image are under consideration. To take

the advantages of multiple TMOs, image fusion techniques

may be employed to combine multiple tone mapped images

and an objective quality measure can play an important role

in this process.

Given multiple tone mapped images created by different

TMOs, we first apply a Laplacian pyramid transform that

decomposes these images into different scales. In the pyra-

mid domain, this results in multiple coefficients at the same

scale and the same spatial location, each corresponds to a

different TMO. Examples are given in the first two rows

in Fig. 8, which demonstrate four-scale Laplacian pyramid

decompositions, where the fine scale coefficients (Scales 1–3)

represent image details and the coarsest scale coefficients

(Scale 4) preserve local mean intensities across space. A fusion

strategy can then be applied to combine multiple coeffi-

cients into one at each location in each scale before an

inverse Laplacian pyramid transform is employed to recon-

struct a fused image. Typical fusion schemes aim to locally

select the most salient image features [44]. The most widely

adopted approaches include averaging the coefficients or

picking one of the coefficients with the largest absolute

value.

Here we propose a different fusion scheme. The general

idea is to use the TMQI as the weighting factors in the fusion

process. Let S j and c j be the local structural fidelity measure

and the Laplacian pyramid transform coefficient computed

from the j -th tone mapped image being fused, respectively.

The fused coefficient is computed as

c( f used) =
∑

j S j c j
∑

j S j

. (18)

This is applied to all scales except for the coarsest scale,

for which we use the statistical naturalness measure as the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 8. Image fusion in Laplacian pyramid domain. Top row: first tone-mapped image (a) created by TMO proposed in [38], and its (b)–(e) Laplacian
pyramid subbands, S = 0.5034, N = 0.1263, Q = 0.6937. Middle row: second tone-mapped image (f) using “Exposure and Gamma” method in Adobe
Photoshop, and its (g)–(j) Laplacian pyramid subbands, S = 0.6642, N = 0.0786, and Q = 0.7386. Bottom row: fused image by (k) the proposed method,
and its (l)–(o) Laplacian pyramid domain representation, S = 0.7419, N = 0.3080, and Q = 0.8167.

TABLE IV

AVERAGE RANKING SCORES MADE BY 10 SUBJECTS FOR EACH SET

Image Set Source 1 Source 2 Fused Image

1 4.3 7 1.8
2 5.2 4 1.5
3 3.7 5.9 2.3
4 4.1 6.1 2.2
5 2.7 6.9 3

weighting factor:

c( f used) =
∑

j N j c j
∑

j N j

(19)

where N j denotes the statistical naturalness score of the j -th

tone mapped image.

The proposed Laplacian pyramid domain fusion method is

demonstrated in the bottom row of Fig. 8, where the fused

image preserves the details in the brightest region (light area

on the top) as in (f), while at the same time maintains higher

contrast in relatively darker regions, as in (a). Fig. 9 provides

an example with natural scene, where one tone mapped

image (a) better preserves structural details, and another

(b) gives more natural overall appearance (but loses structural

information, especially at the brightest areas). Three fused

images created by three different image fusion algorithms are

given in (c), (d) and (e), respectively. The image created by the

proposed method achieves the best balance between structure

preserving and statistical naturalness, and also results in the

best quality score using TMQI.

To further validate the proposed fusion scheme, we have

conducted an additional subjective experiment, where ten

subjects were invited to rank five sets of tone-mapped images,

each of which includes eight images. Seven of these images are

generated using the TMOs employed in the third experiment in

Section III. Two of these seven TMOs are chosen to produce

the eighth image using the proposed fusion method. Table IV

compares average subjective rankings of the source images

and their corresponding fused images, where lower ranking
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(a)

(b)

(c)

(d)

(e)

Fig. 9. Fusion of tone-mapped images. (a) First tone-mapped image using TMO proposed in [35], S = 0.8168, N = 0.1631, and Q = 0.8075. (b) Second
tone-mapped image using the “Exposure and Gamma” method in Adobe Photoshop, S = 0.6315, N = 0.8657, and Q = 0.8744. (c) Fused image by coefficient
averaging in Laplacian pyramid domain, S = 0.7561, N = 0.7409, and Q = 0.8955. (d) Fused image by selecting coefficient of maximal absolute value in
Laplacian pyramid domain, S = 0.7685, N = 0.9428, and Q = 0.9290. (e) Fused image by the proposed method, S = 0.7836, N = 0.9970, and Q = 0.9413.

scores correspond to better quality. It can be seen that the

fused image is almost always ranked significantly higher than

the two source images being fused.

V. CONCLUSION

We develop an objective model to assess the quality of

tone mapped images by combining a multi-scale structural

fidelity measure and a statistical naturalness measure. The

proposed measure not only provides an overall quality score

of an image, but also creates multi-scale quality maps that

reflect the structural fidelity variations across scale and space.

Our experiments show that TMQI is reasonably correlated

with subjective evaluations of image quality. Moreover, we

demonstrate the usefulness of TMQI in automatic parameter

tuning of tone mapping algorithms and in fusing multiple tone

mapped images.

As one of the first attempts on the research topic, our

method has several limitations that may be resolved or

improved in the future. First, TMQI is designed to evaluate

grayscale images only, but most HDR images of natural scenes

are captured in color. One simple method to evaluate tone

mapped color images is to apply the TMQI to each color

channel independently and then combine them. Color fidelity

and color naturalness measures may be developed to improve

the quality measure.

Second, simple averaging is used in the current pooling

method of the structural fidelity map. Advanced pooling

method that incorporate visual attention models may be

employed to improve the quality prediction performance.

Third, the current statistical naturalness measure is based

on intensity statistics only. There is a rich literature on

natural image statistics [28] and advanced statistical models

(that reflects the structural regularities in space, scale and

orientation in natural images) may be included to improve

the statistical naturalness measure.

Fourth, using TMQI as a new optimization goal, many exist-

ing TMOs may be redesigned to achieve better image quality.

Novel TMOs may also be developed by taking advantage of

the construction of the proposed quality assessment approach.

Finally, the current method is applied and tested using

natural images only. The application scope of HDR images

and TMOs is beyond natural images. For example, modern

medical imaging devices often capture HDR medical images

that need to be tone-mapped before visualization. The TMQI

and optimization methods may be adapted to these extended

applications.
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