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Abstract—The difficulties faced by existing Multi-objective
Evolutionary Algorithms (MOEAs) in handling many-objective
problems relate to the inefficiency of selection operators, high
computational cost and difficulty in visualization of objective
space. While many approaches aim to counter these difficulties
by increasing the fidelity of the standard selection operators, the
objective reduction approach attempts to eliminate objectives that
are not essential to describe the Pareto-optimal Front (POF).
If the number of essential objectives are found to be two or
three, the problem could be solved by the existing MOEAs.
It implies that objective reduction could make an otherwise
unsolvable (many-objective) problem solvable. Even when the
essential objectives are four or more, the reduced representation
of the problem will have favorable impact on the search efficiency,
computational cost and decision-making. Hence, development
of generic and robust objective reduction approaches becomes
important. This paper presents a Principal Component Analysis
and Maximum Variance Unfolding based framework for linear
and nonlinear objective reduction algorithms, respectively. The
major contribution of this paper includes: (a) the enhancements
in the core components of the framework for higher robustness
in terms of–applicability to a range of problems with disparate
degree of redundancy; mechanisms to handle an input data
that is mis-representative of the true POF; and dependence on
fewer parameters to minimize the variability in performance,
(b) proposition of an error measure to assess the quality of
results, (c) sensitivity analysis of the proposed algorithms for
the parameters involved and on the quality of the input data,
and (d) study of the performance of the proposed algorithms
vis-à-vis dominance relation preservation based algorithms, on a
wide range of test problems (scaled up to 50 objectives) and two
real-world problems.
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I. INTRODUCTION

Optimization problems involving four or more conflicting

objectives are typically referred to as many-objective prob-

lems. With the multiple conflicting demands faced by the

industry today for superior quality, low cost and higher safety

etc., competitive edge could only be established by designing

the products and processes that account for as many perfor-

mance objectives as possible. It implies that many objectives

need to be simultaneously dealt with, in an optimization
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problem. While this recognition is growing, it is alarming

that the search ability of some of the most well known

MOEAs severely deteriorates when more than three objectives

are involved [1]–[3]. This makes evolutionary many-objective

optimization one of the most challenging research areas in the

field of evolutionary optimization and explains the growing

research emphasis in this direction. The main difficulties

associated with many-objective problems relate to:

1) High computational cost: If a continuous multi-objective

optimization problem (with M objectives) meets the regularity

property, the dimensionality of its Pareto-optimal front (POF)

can be M − 1 [4]. Therefore, the number of points needed

for approximating the whole POF increase exponentially with

M . The same phenomenon can also be observed in discrete

problems.

2) Poor scalability of most existing MOEAs: With an increase

in M , almost the entire population acquires the same-rank

of non-domination. This makes the Pareto-dominance based

primary selection ineffective and the role of secondary se-

lection based on diversity preservation becomes crucial. The

density based MOEAs (such as NSGA-II [5], SPEA2 [6]

and PESA [7]) worsen the situation by favoring the remote

and boundary solutions, implying that the best diversity gets

associated with poorly converged solutions. This explains the

performance deterioration reported in [1]–[3]. The more recent

MOEA/D [8], [9] and indicator based MOEAs [10], [11] are

found to cope better with an increase in M . For example, in

SMS-EMOA [11], the problems faced by the density based

MOEAs are countered by the use of S-metric [12] based

secondary selection. However, the utility of such MOEAs is

limited by the fact that their running times increase exponen-

tially with M [13]–[15].

3) Difficulty in visualization of a POF for problems with

M ≥ 4, which in turn makes the task of decision making more

difficult. Although techniques such as decision maps [16] and

self-organizing maps [17] exist to aid in visualization, they

require a large number of solutions.

In the context of many-objective problems, the above diffi-

culties are often referred to as the curse of dimensionality.

Here, it is important to discriminate between the curse of

dimensionality caused by: (i) the difficulties inherent in the

problems, e.g., problems with a high-dimensional Pareto-set

with complicated shapes [18], and (ii) the poor scalability of

most of the existing MOEAs for M ≥ 4, even when the corre-

sponding Pareto-set has simple shapes. For instance, a many-

objective problem whose Pareto-set is 1- or 2-dimensional with

a linear or a quadratic shape, represents a case where the
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problem in itself does not have the curse of dimensionality,

yet most of the existing MOEAs may suffer from it.

The approaches for dealing with many-objective problems

can be broadly categorized as:

1) Preference-ordering approaches: These approaches assume

that no objective in the given problem is redundant and aim to

counter the low selection pressure for convergence by induc-

ing a preference ordering over the non-dominated solutions.

Some of these approaches include: reducing the number of

non-dominated points [19]; assigning different ranks to non-

dominated points [20]–[23]; using scalarizing functions for

fitness evaluation [2], [24]; using indicator functions [10], [11],

[25]; or using decision maker’s preference information [26]–

[29]. While more details can be found in [30], it may be noted

that most of these approaches either aim for only a part of the

POF, report an improvement in convergence with the loss in

diversity, or their computational time increases exponentially

with the number of objectives.

2) Objective reduction approaches: These approaches [31]–

[35] assume the existence of redundant objectives in a given

M -objective problem. Operating on the objective vectors of

the non-dominated solutions obtained from an MOEA, these

approaches aim to identify a smallest set of m (m ≤ M )

conflicting objectives which: (i) generates the same POF as the

original problem, or (ii) alternatively, preserves the dominance

relations of the original problem. Such m objectives are termed

as essential and the remaining ones as redundant. If m ≤ 3,

an otherwise unsolvable problem will become solvable. Even

if 4 ≤ m ≤ M , objective reduction will contribute to

higher search efficiency, lower computational cost and ease

in visualization and decision-making.

This paper builds upon [34], [35] and presents a framework

for both linear and nonlinear objective reduction algorithms,

namely, L-PCA and NL-MVU-PCA. The distinctive contribu-

tion of this paper relates to:

1) The four goals that the framework pursues:

• Generality: The scope of [34], [35] was limited to

highly redundant problems, where m ≪ M . The scope

of the proposed framework is broadened to include

problems with moderate (m < M ) and negligible

(m ≈ M ) redundancy. This is significant because the

core components of the framework need to adapt to

conflicting goals while handling the above cases with

different degree of redundancy.

• De-noising of the input data: Unlike [34], [35], the

proposed framework accounts for the fact that the input

data, namely, the non-dominated solutions obtained from

an MOEA is mis-representative of the true POF (noisy).

Towards it, an eigenvalue based dynamic interpretation

of the strength of correlation between objective vec-

tors of the non-dominated solutions is proposed, which

serves to negate the effect of noise in the data.

• Parameter reduction: The number of parameters in-

volved in the proposed framework have been minimized

as much as possible, so that the variability in the results

corresponding to different parameter settings is mini-

mized. This is a significant shift in approach from [34],

[35], where a lot of parameters were involved, making

the algorithms less robust.

• Proposition of an error measure: An error measure

has been proposed (not in [34], [35]) that allows an

assessment of the quality of the obtained results.

2) Extensive simulations and results: The results presented

in this paper are new and are based on 12800 simu-

lations1 performed on 30 versions of 7 test problems

and two real-world problems. In this, the sensitivity of

the proposed algorithms on: (i) the randomness, (ii) the

parameters involved, and (iii) the size and the quality of

the underlying non-dominated sets, is discussed.

3) Performance comparison: Here, the performance of

the proposed algorithms vis-à-vis dominance relation

preservation [31] based algorithms is studied, with re-

ference to their general strengths and limitations. It is

established that while the scope of the latter is limited

to linear objective reduction, the proposed NL-MVU-

PCA efficiently performs nonlinear objective reduction.

Besides this, the misinterpretation by peer researchers

of the previous versions of this work, in terms of the

computational complexity, is clarified.

This paper is organized as follows: The fundamental is-

sues in objective reduction and the existing approaches are

discussed in Section II. Section III presents the rationale for

viewing of objective reduction as a machine learning problem,

while Section IV presents the proposed framework. The test-

suite and the experimental settings are defined in Section V.

The working of the proposed algorithms is demonstrated in

Section VI, while Section VII presents the experimental results

for the considered test-suite. The proposed and the alternative

objective reduction algorithms are compared in Section VIII,

while the real-world problems are covered in Section IX. The

paper concludes with Section X.

II. OBJECTIVE REDUCTION: DEFINITION, USEFULNESS,

SALIENT ISSUES AND EXISTING APPROACHES

Objective reduction refers to finding an essential objective

set for a given problem. In that:

• An essential objective set is defined as the smallest

set of conflicting objectives (FT , |FT | = m) which can

generate the same POF as that by the original problem,

given by F0 = {f1, f2, . . . , fM}.

• The dimensionality of the problem refers to the number

of essential objectives2 (m, m ≤ M ).

• The redundant objective set associated with an FT

(Fredn = F0 \ FT ) refers to the set of objectives, elim-

ination of which does not affect the POF of the given

problem. Notably, an objective could be redundant if

it is non-conflicting (or correlated) with some other

objectives.

1Each of the proposed L-PCA and NL-MVU-PCA has been applied for 32
test cases. For every test case, the populations obtained from 20 runs each
of NSGA-II and ǫ-MOEA are used, resulting in 2560 simulations. These
simulations are repeated for four different algorithm-parameter settings and
also for dominance relation preservation based objective reduction approach.

2Under regularity condition [4], for m conflicting objectives, the dimen-
sionality of the POF is m − 1. However, in the current context, it is meant
to refer to the number of essential objectives.
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The usefulness of objective reduction is illustrated below

in the context of the non-dominated solutions obtained from

NSGA-II (denoted by, NNS ) for two problems, namely,

DTLZ5(3, 5) and DTLZ5(2, 3). While these problems are

instances of the DTLZ5(I,M) problem introduced later, here

it is sufficient to note that:

• DTLZ5(2, 3) is a 3-objective problem, where (i) f1–f2
are positively correlated, and (ii) the essential objective

set: FT = {f2, f3} with m = 2.

• DTLZ5(3, 5) is a 5-objective problem, where (i) f1–f2–

f3 are positively correlated, and (ii) the essential objective

set: FT = {f3, f4, f5} with m = 3.

True POF

 0

 1

f2

f3

 0  0.7

(a) DTLZ5(2, 3): True POF

front
Non−dominated 

 0

 1

f2

f3

 0  0.7

(b) DTLZ5(2, 3): NNS

True POF

AB

Non−dominated solutions

 1

 2

 0

 2.5

 1.5

 0.5

f3

f5

 3.5

 0  0.5
 1  1.5

 2  2.5

f4

(c) DTLZ5(3, 5): Obtained NNS vis-à-vis the true POF

Fig. 1. Illustrating that the presence of redundant objectives can hinder the
search efficiency of an MOEA. The NNS corresponds to a population size
of 200 and 2000 generations (one run).

NSGA-II is known to perform well for problems with two

or three conflicting objectives. This is affirmed in the case

of DTLZ5(2, 3), where the obtained NNS (Figure 1a) can be

seen to conform with the true POF (Figure 1b). Ironically,

in the case of DTLZ5(3, 5) which has three conflicting objec-

tives, Figure 1c shows that NSGA-II could not converge to the

true POF. This can be attributed to the presence of redundant

objectives, as explained below. In the FT subspace shown in

Figure 1c, solution A dominates B. However, B qualifies as a

non-dominated solution by being better than A in one of the

redundant objectives, namely, f1 or f2. This illustrates how the

presence of redundant objectives hindered the search efficiency

of the NSGA-II, resulting in its poor convergence to the true

POF. If NSGA-II were allowed to run for infinitely many

generations, the spurious solutions like B would die out and the

population would converge to the true POF. However, with a

reasonable number of generations, the spurious solutions will

prevail. This example illustrates the importance of objective

reduction. In that:

• If the problem could be reduced to m ≤ 3: an otherwise

unsolvable problem could be solved using any of the

existing MOEAs. For example, in the above problem, if

FT were known, NSGA-II would have converged to the

true POF.

• Even if 4 ≤ m ≤ M : the benefits of objective reduction

could be realized in the form of relatively higher search

efficiency, lower computational cost and ease in visual-

ization and decision-making.

• Objective reduction could play a complimentary role for

the preference-ordering approaches. If the latter were to

be applied to the reduced representation of the original

problem, higher gains can be expected.

• Besides the above, the benefits of the gain in knowledge

about the problem itself, can not be discounted in real-

world problems. This is significant because quite often,

there is a tendency among practitioners to account for all

the performance indicators as objectives, while it may not

be intuitive if some of them are correlated.

A. Modes and scope of objective reduction approaches

It is important to highlight some salient issues around ob-

jective reduction, before introducing the existing approaches.

Firstly, that all these approaches operate on the objective vec-

tors of the non-dominated solutions obtained from an MOEA.

Secondly, that objective reduction can be performed during

an MOEA run (online reduction) to simplify the search or it

can be performed post MOEA run (offline reduction) to assist

in the decision making. Thirdly, that an essential objective

set may be expressed as a subset of the original problem or

its elements may be expressed as a linear combination of the

original objectives. While the former approach is referred to

as feature selection, the latter, as feature extraction. It may be

noted that all the existing objective reduction approaches pur-

sue feature selection towards the ease in subsequent decision

making.

Finally, objective reduction approaches can also be distin-

guished as linear and nonlinear reduction approaches. These

two refer to identification of an essential objective set when

the underlying non-dominated front is linear and nonlinear,

respectively. Here, it is important to discriminate between the

linearity and nonlinearity of the non-dominated front and that

of the objective functions. While the latter depends on how an

objective varies across the search space, the former depends

on how the given objectives covary. In that:

1) While linear objectives (Figures 2a) ensure a linear non-

dominated front (Figure 2c), even two nonlinear objectives

(Figure 2b) can lead to a linear non-dominated front (Fig-

ure 2c) provided the degree of nonlinearity of both the

objectives is the same (identically nonlinear).

2) If the objectives have different degree of nonlinearity (for

example, if one objective is linear and the other is nonlinear),

then the resulting non-dominated front can only be nonlinear.

This is evident from Figures 3a and 3b.

It is important to recognize that an objective reduction

approach would need to rely on some form of a distance

measure while evaluating the non-dominated solutions. Fig-

ure 3b highlights that a distance measure based on either L1

or L2 norm will be inadequate to account for nonlinearity, as

both of these, do not account for the distribution of solutions
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Fig. 2. Illustration: (a) Two linear objectives, and (b) Two identically
nonlinear objectives, resulting in (c) a linear non-dominated front. x ∈ [0,1].
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(b) Non-dominated front

Fig. 3. Illustration: (a) Two objectives with different degree of nonlinearity
resulting in (b) a nonlinear non-dominated front, where use of L1 or L2 norm
will be inadequate to account for nonlinearity. x ∈ [0,1].

between any two solutions of interest. For example, since

L1(a, b) = L1(e, f) = D, the distribution of intermediate so-

lutions will be assumed to be identical for both the solution

pairs. The same will hold for the solution pairs (a, b) and

(c, d), in the case of L2 norm, since L2(a, b) = L2(c, d) = D.

To summarize, the scope of an objective reduction approach

relying either on L1 or L2 norm will be limited to linear ob-

jective reduction (unless used in clusters–where the variability

of solutions in each cluster is linear; or used after unfolding

the data–as discussed later).

B. The existing objective reduction approaches

With the background established above, the existing objec-

tive reduction approaches are presented below.

1) Dominance Relation Preservation (DRP): The objective

reduction approach proposed in [31] is based on preserving

the dominance relations in the given non-dominated solutions.

For a given objective set F , if the dominance relations among

the objective vectors remains unchanged when an objective

f ∈ F is removed, then f is considered to be non-conflicting

with the other objectives in F . Based on this criterion, an

exact and a greedy algorithm is proposed to address δ-MOSS

(finding the minimum objective subset corresponding to a

given error δ) and k-EMOSS (finding an objective subset of

size k with minimum possible error) problems. However, due

to the underlying assumptions [36], this approach is limited to

linear objective reduction and equally distributed solutions in

the objective space (discussed in Section VIII).

2) Unsupervised Feature Selection: This approach [32]

utilizes the correlation between objectives and treats the more

distant objectives as more conflicting ones. In this: (i) the

objective set is divided into neighborhoods of size q around

each objective (where, q is reduced during the search), and

(ii) the most compact neighborhood is selected, whose center

is retained and the neighbors are eliminated. This process is

repeated until a pre-specified criterion is achieved. Based on

this, two algorithms have been proposed to deal with δ-MOSS

and k-EMOSS problems, respectively. However, the role of the

parameter q on the performance of the technique and the issue

of how to adaptively reduce q needs to be investigated.

3) Pareto Corner Search: A Pareto corner search evolu-

tionary algorithm (PCSEA) has been proposed in [33], which

instead of aiming for the complete POF, searches for only the

corners of the POF. The solutions so obtained are assumed to

appropriately capture the dependency of the POF on different

objectives. Then objective reduction is based on the premise

that omitting a redundant and an essential objective will have

negligible and substantial effect, respectively, on the number

of non-dominated solutions in the population.

4) Machine Learning based objective reduction: This ap-

proach [34], [35] utilizes the machine learning techniques like

Principal Component Analysis (PCA) and Maximum Variance

Unfolding (MVU) to remove the second- and higher-order

dependencies in the non-dominated solutions. As this approach

lies at the heart of the framework proposed in this paper, the

basic concepts are discussed below.

III. MACHINE LEARNING BASED OBJECTIVE REDUCTION

This approach is based on the premise that the intrinsic

structure of a garbled high-dimensional data can be revealed

by transforming it such that the effect of noise and redundancy

(dependencies) is minimized. PCA [37] achieves this goal

by projecting the given data X on the eigenvectors of the

correlation matrix of X .

Notably, PCA is based on removing the second order de-

pendencies in the given data. Hence, PCA is likely to be inef-

fective in capturing the structure of data sets with multi-modal

Gaussian or non-Gaussian distributions [37], as in Figure 4(a).

Several nonlinear dimensionality reduction methods, such as

Kernel PCA [38] and Graph-based methods [39], exist for

removing the higher order dependencies. In that, the former

nonlinearly transforms the data by using a standard kernel

function and then applies PCA in the transformed/kernel space.

However, its success depends on the apriori chosen kernel.

The latter does away with this limitation by deriving “data-

dependent” kernels.

Maximum Variance Unfolding (MVU) [40] is a graph-based

method that computes the low-dimensional representation by

explicitly attempting to ‘unfold’ the high-dimensional data

manifold, as in Figure 4. The unfolding is achieved by maxi-

mizing the Euclidean distances between the data points while

locally preserving the distances and angles between nearby

points. Mathematically, this can be posed as a semidefinite

programming (SDP) problem [40], the output of which is the

kernel matrix (say, K) representing the kernel space to which

PCA can be applied.

The discussion below presents the rationale for viewing of

the objective reduction in many-objective optimization as a

machine learning problem:

• The intrinsic structure of the POF refers to its intrinsic

dimensionality (m) and the essential components (FT ).
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Fig. 4. Maximum Variance Unfolding (taken from [40] and edited). The use
of L2 norm based PCA will be erroneous in (a) but appropriate in (g).

• The garbled high-dimensional data set refers to the

non-dominated solutions (denoted by, N ) obtained from

an MOEA. It has previously been mentioned that the

objective reduction approaches operate on the objective

vectors of N to identify an essential objective set. Hence,

an important pre-requisite for accurate objective reduction

is that the given N should be representative of the true

POF. However, as has been discussed in Sections I and II,

the N obtained from most of the existing MOEAs fail

on this requirement owing to poor convergence and good

diversity in areas of poor convergence. This explains the

usage of the term garbled for N .

• Unnoised signal refers to those non-dominated solutions

which are exact optimal solutions. For example, the

NNS for DTLZ5(2, 3) (Figure 1b) represents unnoised

signal. Similarly, the fraction of NNS for DTLZ5(3, 5)
which conformed with the true POF (solutions like A in

Figure 1c) represents the unnoised signal.

• Noised signal refers to those non-dominated solutions

which are not optimal. For example, the fraction of NNS

for DTLZ5(3, 5) which did not conform with the true

POF (solutions like B in Figure 1c) represents the noised

signal. Noise refers to the departure in the characteristics

of the noised signal and those of the unnoised signal,

for example, the difference in the dimensionality (m) of

unnoised signal and that of the noised signal (which could

be greater than m).

• Redundancy refers to the presence of objectives which

are non-conflicting (or correlated) with some other ob-

jectives. Based on discussions in Section II, it can be

inferred that redundancy may contribute to garbled data.

Such a conformance in the definitions and terminology, justi-

fies the viewing of objective reduction as a machine learning

problem. It also needs to be recognized that MOEAs are

stochastic methods, hence, they can be considered as sampling

methods. Depending on the characteristics of different MOEAs

and the different properties of the problems, the solutions

sampled in objective space may have a uniform, Gaussian

(more solutions close to the midrange than the extremes)

or non-Gaussian (say, more solutions close to the some/all

extremes than midrange) distributions.

IV. PROPOSED FRAMEWORK FOR LINEAR AND

NONLINEAR OBJECTIVE REDUCTION

In the wake of the above background, this section proposes

the framework for both linear and nonlinear objective reduc-

tion algorithms, namely, L-PCA and NL-MVU-PCA, respec-

tively. Presented as Framework 1, it aims to find an essential

objective set for a given problem, offline. To achieve this aim,

the framework assumes that the non-dominated solution set

obtained from an MOEA is representative of the true POF, and

adopts the following steps: (i) treats the objective vectors of

the non-dominated solutions as the input data, (ii) determines

the directions of significant variance in the data, (iii) identifies

the conflicting objectives along these significant directions and

composes a set of such objectives, and (iv) finally eliminates

the identically correlated objectives in the above set.

Framework 1: The proposed framework for linear and

nonlinear objective reduction algorithms

Input:

t = 0 and Ft = {f1, f2, . . . , fM}.

1 begin

2 Obtain a set of non-dominated solutions by running

an MOEA corresponding to Ft, for Ng generations

with a population size of N .

3 Compute a positive semi-definite matrix: R
(Equation 1) or K (Equation 2), for L-PCA and

NL-MVU-PCA, respectively.

4 Compute the eigenvalues and eigenvectors of R or K
as the case may be (Section IV-B).

5 Perform the Eigenvalue Analysis (Section IV-C) to

identify the set of important objectives Fe ⊆ Ft.

6 Perform the Reduced Correlation Matrix Analysis

(Section IV-D) to identify the identically correlated

subsets (S) in Fe. If there is no such subset,

Fs = Fe.

7 Apply the selection scheme (Section IV-E) to identify

the most significant objective in each S , to arrive at

Fs, such that Fs ⊆ Fe ⊆ Ft.

8 Compute and store Et (Equation 6).

9 if Fs = Ft then

10 Stop and declare Ft as the essential objective set;

11 Set T = t and compute the total error ET
(Equation 7).

12 end

13 else

14 set t = t+ 1, Ft = Fs, and go to Step 2.

15 end

16 end

While the preliminary proof-of-concept of this approach can

be found in [34], [35], this paper is novel in multiple ways, as

summarized in Section I. In that, besides the extensive range of

results and their analysis, the proposed framework distinctively

pursues the four goals of generality, de-noising of input data,

parameter reduction and proposition of an error measure.

These goals are achieved through conceptual enhancements

which are highlighted in the description of the framework’s

steps below, and also summarized in Section IV-G.

As can be seen in Framework 1, it is designed to perform

objective reduction iteratively, until the objective sets deduced

as essential–in two successive iterations, remain the same. As
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the framework’s steps are identical for every iteration, they are

described below with reference to the first iteration.

A. Construction of a Positive Semi-definite Matrix

This step describes the construction of the correlation (R)

and the kernel (K) matrix, to be used for linear and nonlin-

ear objective reduction, respectively. First, the non-dominated

solutions are obtained by running an MOEA with the initial

objective set F0 = {f1, . . . , fM}, corresponding to a popula-

tion size of N . For each objective vector in the non-dominated

set, fi ∈ R
N , let the mean and standard deviation be given by

µfi and σfi , respectively, and let f̈i = (fi − µfi)/σfi . Then,

the input data X , an M ×N matrix, can be composed as

X = [f̈1 f̈2 . . . ¨fM ]T .

1) Construction of correlation matrix for linear objective

reduction (L-PCA): For a given X , the correlation matrix R
is defined by Equation 1. It may be noted that L-PCA will

be based on de-correlation of R, i.e., removal of second-order

dependencies in X . Hence, the scope of L-PCA will largely

be limited to linear objective reduction.

R =
1

M
XXT (1)

2) Construction of kernel matrix for nonlinear objective re-

duction (NL-MVU-PCA): It may be noted that NL-MVU-PCA

will be based on de-correlation of the kernel matrix K, i.e.,

removal of higher-order dependencies in X (due to unfolding

by MVU). This will allow for nonlinear objective reduction.

K can be learnt from the SDP formulation3 presented in

Equation 2.

Maximize trace(K) =
∑

ij

(Kii−2Kij+Kjj)

2M
subject to the following constraints :
(a)Kii − 2Kij +Kjj = Rii − 2Rij +Rjj , ∀ ηij = 1
(b)

∑

ij Kij = 0
(c)K is positive-semidefinite,
where : Rij is the (i, j)th element of the correlation matrix R

(2)

The neighborhood relation ηij in Equation 2 is governed by

the parameter q. For each input feature (fi ∈ R
N ), q represents

the number of neighbors with respect to which the local

isometry4 is to be retained during the unfolding, as in Figure 4.

While a high value of q ensures better retention of isometry, it

delays the unfolding process (say, incremental unfolding from

(a) to (b), in Figure 4). In contrast, a low value of q offers fast

unfolding (say, direct unfolding from (a) to (g), in Figure 4)

but at the risk of distorting the isometry. Given this trade-off,

proper selection of q is crucial. While q = 4 is mostly used in

literature [40], experiments were conducted in [35] to identify

the q as a function of M and q = ⌈
√
M⌉ was found to offer

accurate results.

This paper aims to propose a robust framework for objective

reduction which relies on as few parameters, as possible.

3This is the novel implementation of the original MVU, as proposed in [35]
4Two data sets {xi}Mi=1 and {yi}Mi=1 that are in one-to-one correspondence

are said to be q-locally isometric if: for every point φi, there exists a rotation
and translation that maps φi and its q nearest neighbors {xi1, . . . xiq}
precisely onto ψi and {yi1, . . . yiq}. In other words, the distances and angles
between nearby inputs are preserved.

Towards it, the most constrained case of q = M − 1 is

recommended and used5. The rationale for this choice of

q is the following: (i) the number of unknown elements in

K equals to M(M + 1)/2 (accounting for symmetry), (ii)

Equations 2(b) and (c) jointly represent two constraints, and

(iii) for q = M − 1, Equations 2(a) leads to M(M − 1)/2
constraints. Hence, even with q = M − 1, the matrix K is

not fully specified by the constraints and sufficient degree

of freedom (M(M + 1)/2−M(M − 1)/2− 2 = M − 2) is

available for the unfolding process, while ensuring that the

local isometry is retained.

It may be noted that: (i) this SDP is convex for which

polynomial time off-the-shelf solvers, such as SeDuMi [41]

and CSDP [42] toolbox in MATLAB, are available in public

domain, and (ii) computational complexity for solving sparse

SDPs [42] is O(M3 + c3) where c = Mq, represents the

number of constraints. In this paper, Sedumi has been used.

B. Computation of Eigenvalues and Eigenvectors

Once R or K are computed (each, an M × M matrix),

their eigenvalues and eigenvectors are determined. Let these be

given by: λ1 ≥ λ2 . . . ≥ λM and V1, V2, . . . VM , respectively.

To lay the background for discussions ahead, it is important

to note the following:

(a) If ej = λj/
∑M

j=1
λi, then

∑M
j=1

ej = 1.

(b) The ith component of jth principal component, say fij ,

reflects on the contribution of fi towards Vj ∈ R
M .

(c) From orthonormality of eigenvectors, it follows that:

|Vj | =
∑M

i=1
f2
ij = 1 ∀j = 1, . . . ,M .

(d) The contribution of fi for all Vj’s can be given by

cMi =
∑M

j=1
ejf

2
ij , where

∑M
i=1

cMi = 1.

C. Eigenvalue Analysis

This step aims to identify the conflicting objectives (in F0)

along the significant principal components (Vjs), as follows:

1) The number (Nv) of significant Vjs are determined using
∑Nv

j=1
ej ≥ θ, where the variance threshold θ ∈ [0, 1] is

an algorithm parameter. In this study, θ = 0.997 is used6.

2) Each significant Vj is interpreted as follows7:

(i) Let F+ = {fi|fij ≥ 0} and F− = {fi|fij < 0}.

Also, let fp and fn be the objectives with the highest

magnitudes in F+ and F−, respectively.

• if |fp| ≥ |fn|, then fp and all the objectives in F−

are picked as conflicting objectives.

• if |fp| < |fn|, then fn and all the objectives in F+

are picked as conflicting objectives.

5Experiments are also performed with q = ⌈
√
M⌉ and the results are

presented in the supplementary file provided with this paper
6This is an enhancement over [34], [35], to make the interpretation scheme

more robust in terms of its ability to handle problems with moderate or
negligible redundancy wherein more principal components may be required
to identify the conflicting objectives. This value is simply chosen in analogy
with Gaussian distributions where it accounts for ±3σ. It does not imply that
the scope of the framework is limited to Gaussian distributions.

7This is an enhancement over [34], [35] wherein a maximum of two
objectives per principal component were picked as conflicting, depending on
several parameters. The interpretation scheme proposed here is parameterless
and also allows for more objectives per principal component to be picked as
conflicting. These two factors contribute to the goal(i) and (iii) of framework.
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(ii) If F+ = ∅ or F− = ∅, then the objectives with the

highest and the second highest magnitudes are picked.

Let ME denote the number of objectives deduced as important

after the above eigenvalue analysis and let the corresponding

set be referred as Fe. Clearly, Fe ⊆ F0.

D. Reduced Correlation Matrix (RCM) Analysis

This step aims to identify the subsets of identically corre-

lated objectives within Fe. If such subsets exist, then the most

significant objective in each subset can be retained while the

rest could be discarded, allowing for further reduction of Fe.

Towards it, the following steps are proposed:

1) Construction of a Reduced Correlation Matrix (RCM):

RCM is the same as R except that the columns corre-

sponding to the objectives in F0 \ Fe, are not included8.

2) Identification of identically correlated subset for each

objective in Fe: For each fi ∈ Fe, all fj ∈ Fe which

satisfy the conditions of identical correlation given by

Equation 3, constitute an identically correlated subset S .

(i) sign(Rik) = sign(Rjk), k = 1, 2, . . . ,M
(ii) Rij ≥ the correlation threshold (Tcor)

(3)

Equation 3(i) ensures that correlation between objectives is

interpreted as a set-based property. Equation 3(ii) accounts for

the fact the non-dominated set based on which R is computed

is garbled (Section III) and hence the correlations evident from

R may not represent the true correlations on the POF. In a

sense, Equation 3(ii) serves to have a de-noising effect, while

interpreting a matrix based on gabled data, to minimize the

chances of inaccurate identification of S .

The following description is on the determination of Tcor.

There exist a few guidelines on interpreting the strength of

correlation, one of which is the Cohen scale [43]. It interprets

a correlation strength of 0.1 to 0.3 as weak, 0.3 to 0.5 as

moderate and 0.5 to 1.0 as strong. However, in the current

context, a rigid interpretation of the correlation strength will

not be helpful because Tcor needs to adapt to conflicting

goals depending on the problem being solved. In that, a

low and a high Tcor is desired while solving problems with

high and negligible redundancy, respectively. Towards it, this

paper proposes a dynamic computation of Tcor based on

the spectrum of the eigenvalues for a specific problem. This

is based on the understanding that with an increase in the

redundancy of a problem: (i) the first eigenvalue e1 becomes

predominantly higher, and (ii) fewer principal components are

required to account for a certain variance threshold. For a given

M -objective problem, let M2σ denote the number of principal

components required to account for 95.4% variance9, then the

proposed Tcor is given by Equation 4.

Tcor = 1.0− e1(1.0−M2σ/M) (4)

8This is an enhancement over [34], [35], where both the rows and columns
corresponding to the objectives F0 \ Fe were eliminated from R. It
acknowledges that correlation is a set based property, hence any inference
on whether or not two objectives in Fe are correlated, should be based on
the entire set of objectives for which R is computed, namely, F0.

9This is simply chosen in analogy with Gaussian distributions where it
accounts for ±2σ but here it is recommended for all purposes.

It can be realized that for a highly redundant problem where

e1 will be very high, and M2σ will be small compared to M ,

Tcor will have a small value. In contrast, for a problem with

low redundancy, e1 will be low, and M2σ will be comparable

to M , Tcor will have a very high value.

E. Selection Scheme for Final Reduction based on RCM

Analysis

Once the subsets of identically correlated objectives in Fe

are identified by the RCM analysis, the goal is to identify

and retain the most significant objective in each subset (S)

and eliminate the remaining ones. This is achieved by: (i)

attributing a selection score10 for each objective, as given by

Equation 5, and (ii) retaining the objective with highest ci in

each S and eliminating the rest.

ci =
∑Nv

j=1 ej |fij | (5)

Doing so, will reduce Fe to Fs which becomes an essential

objective set, after one iteration of the proposed framework.

F. Computation of Error

This section proposes a measure for the error incurred in

one iteration of the proposed framework. The error measure

proposed here aims to compute the variance that is left

unaccounted when objectives constituting Fredn = F0 \ Fs

are discarded, as given below:

Et =
∑

i∈Fredn

cMi (1.0− max
j∈Fs

{δi j .Rij})

where:

cMi =
∑M

k=1 ekf
2
ik

δi j =

{

1, if fi and fj are identically correlated
0, otherwise

Rij = strength of correlation betweenfi andfj



































(6)

The rationale for the proposed measure can be realized from

the following: (i) when fi ∈ Fredn is not identically correlated

with any fj ∈ Fs: δi j = 0 and the variance left unaccounted

by elimination of fi is cMi , and (ii) when fi ∈ Fredn is

identically correlated with some fj ∈ Fs: the variance left

unaccounted by elimination of fi reduces by a factor of Rij

as this is already accounted for, by fj . Equation 6 generalizes

this argument.

Suppose, for a given problem, the framework terminates

after T iterations. While the error Et (Equation 6) represents

the error incurred in each iteration, the total error incurred by

the framework in T iterations can be given by Equation 7, the

rationale for which is the following. For the first iteration, the

error E0 is the variance that will be left unaccounted if the

objectives in Fredn were to be eliminated. Hence, the error

E1 in the second iteration will only be with respect to 1− E0
variance of the original problem. This argument is generalized

in Equation 7.

ET = E0 +
∑T

t=1 Et(1− Et−1) (7)

10This is based on capturing an objective’s contribution to the significant

principal components, given by ci =
∑Nv

j=1 ejf
2
ij (Section IV-B). However,

ej and fij being individually less than one, may lead to indiscriminatingly
small values for ci. A remedial form is proposed in Equation 5.
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TABLE I
SUMMARY OF THE ENHANCEMENTS IN THE PROPOSED FRAMEWORK, OVER [34], [35]

Proposed Status Classification of proposed enhancements Conflicting settings for problems with:

Steps in [34], [35] Adaptation Correction Addition Parameter reduction m≪M m ≈M

A). q A parameter ✓

C). θ
Suitable for

✓ Low High
m≪M

Fe

Parameter

✓ ✓

Few objectives per More objectives per
dependent, principal component principal component
suitable for so that: so that:
m≪M |Fe| ≪ |F0| |Fe| ≈ |F0|

D). RCM
Erroneousa ✓

Eq. 3(i) ✓

Eq. 3(ii) Absent ✓ Low High

E). Eq. 5 Absentb ✓

F). Eq. 6 Absent ✓

a The manner is which the reduced correlation matrix (RCM) was constructed, did not allow for correlation to be treated as a set based property.
b It was pursued on an ad hoc basis.

G. On the generality and efficiency of the framework

This section summarizes the enhancements over [34], [35]

and reflects on the broader issues of generality and efficiency

of the proposed framework.

Table I shows, that while the basic steps of the proposed

framework overlap with those in the previous versions, these

steps are implemented differently in the wake of the four

goals that the framework pursues. In that, the steps in [34],

[35] have either been adapted to cater to the requirements of

problems with disparate degree of redundancy; corrected for

their anomalies; incorporated with additional features to de-

noise the input data or compute the error; or made more robust

through parameter reduction which helps in minimizing the

variability in performance.

Table I also details the facts that the requirements of the

proposed framework for handling problems with contrasting

degree of redundancy, are opposite in nature. It could be

inferred from this table, that the algorithms (resulting from

the proposed framework) could be customized to offer higher

efficiency for different problems. For example, for problems

where m ≪ M (as in [34], [35]): (i) a low θ, (ii) composition

of F by picking only a few objectives as conflicting, per

principal component, and (iii) a low Tcor, may be used.

Similarly, for problems where m ≈ M or m = M , the step of

eigenvalue analysis may be skipped and RCM analysis may

directly be performed on F0 with a high value of Tcor. It

is important to recognize that while doing so will improve

the efficiency of the algorithms on the problems they are

customized for, it will come at the loss of generality. In that,

an algorithm customized for the case of m ≪ M will perform

poorly for the case of m ≈ M or m = M , and vice-versa11.

11In relative terms, the efficiency of an algorithm customized for m≪M ,
when applied to m ≈M or m =M will be lower than the reverse case. This
because, in the former case, the requirement of the latter that |Fe| ≈ |F0| is
likely to be violated, leaving no room for accurate deductions. However, in
the reverse case, |Fe| would just be over-sized than desired for m≪M but
it could still be reduced to FT based on Tcor . This explains why the right
tail of the left curve in Figure 5 is lower than the left tail of the right curve.

For the sake of generality, the proposed framework assumes

that no a priori information about the nature of the problem

is available. In that, it adopts a high value of θ and a uniform

approach of composing Fe, but dynamically assigns Tcor

based on the problem information revealed by the eigenvalues.

Figure 5 summarizes the above discussions.

Efficiency

Scope of Application

0.00

1.00

Scope of
[13,14]

Highly
redundant
problems

Ex: DTLZ5(2,50)

Moderately
redundant
problems

Ex: DTLZ5(3,5)

Non-redundant
problems

Ex: DTLZ2(15)

Proposed
framework

Algorithms could be
customized for

highly redundant
problems

Algorithms could be 
customized for
non-redundant

problems

Fig. 5. Highlighting the scope and efficiency of the proposed framework.

V. TEST SUITE AND EXPERIMENTAL SETTINGS

The test suite used in this paper consists of both redundant

and non-redundant problems, described below.

A. Redundant Problems

In the DTLZ test suite [44], DTLZ5 and DTLZ6 were

designed to degenerate to m = 2 for any given M . However,

it has been reported in [45] that when M ≥ 4, these problems

fail to degenerate to m = 2. For DTLZ5, this issue has been

addressed in the form of DTLZ5(I,M). While its formulation

is presented in Table II, it may be noted that:

• For any M , the dimension of the POF (characterized by

parameter g = 0) is I ≤ M ,
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• All objectives within {f1, . . . , fM−I+1} are positively

correlated, while each objective in {fM−I+2, . . . , fM}
is conflicting with every other objective in the problem,

• FT = {fk, fM−I+2, . . . , fM} defines the true POF,

where k ∈ {1, . . . ,M − I + 1}. Notably, among the pos-

sible indices for k, the variance of fk=M−I+1 is the

highest. Given that the PCA based dimensionality reduc-

tion is based on the assumption that large variances have

important dynamics:
FT

DTLZ5(I,M)
= {fM−I+1, . . . , fM} (For L-PCA and NL-MVU-PCA)

(8)

TABLE II
DESCRIPTION OF DTLZ5(I,M). M DENOTES THE NUMBER OF

OBJECTIVES AND I DENOTES THE DIMENSIONALITY OF THE POF. ALL

OBJECTIVES ARE TO BE MINIMIZED. ALL xi ∈ [0, 1]. AS AN EXAMPLE,
THE COMPOSITION OF FT IS DERIVED FOR DTLZ5(4, 5)a

f1 = (1 + g) 0.5 ΠM−1
i=1 cos(θi)

fm=2:M−1 = (1 + g) ΠM−m
i=1 cos(θi) sin(θM−m+1)

fM = (1 + g) sin(θ1)

g = ΣM+k−1
i=M

(xi − 0.5)2

θi=1:I−1 = π
2
xi

θi=I:M−1 = π
4(1+g)

(1 + 2gxi)

subject to M − I + 1 constraints: ΣI−2
j=0f

2
M−j + 2pif2i > 1

where i = 1, . . . ,M − I + 1, and:
pi=1 = M − I
pi=2:M−I+1 = (M − I + 2)− i

a Substituting M = 5, I = 4 and g = 0, leads to following Equations:

i. cos(θ1) cos(θ2) cos(θ3) =
√
2f1 =

√
2f2 iii. cos(θ1) sin(θ2) = f4

ii. cos(θ1) cos(θ2) sin(θ3) = f3 iv. sin(θ1) = f5

Squaring and adding Equations i. to iv. helps define the POF as:
2f22 + f23 + f24 + f25 = 1 or 2f21 + f23 + f24 + f25 = 1.
Hence, FT = {fk, f3, f4, f5}; k ∈ {1, 2}.

Another redundant problem considered in this paper is

WFG3 [45], in which the POF degenerates into a linear hyper-

plane, such that (i) ΣM
m=1fm = 1, and (ii) all incomparable so-

lutions evolve out of the conflict between only two objectives,

fM and any one of the rest. Hence, FT = {fk, fM}, where,

k ∈ {1, . . . ,M − 1}. Notably, among all possible indices for

k, the variance of fk=M−1 is the highest, hence, based on the

above argument:

FT
WFG3(M)

= {fM−1, fM} (For L-PCA and NL-MVU-PCA)
(9)

B. Non-redundant Problems

Among the non-redundant problems in the scalable DTLZ

suite: the DTLZ1 to DTLZ4, and the DTLZ7 problems are

considered. This is because in each of these, the degree of

convergence is explicitly quantified by a problem parameter.

This will enable the study of the impact of the quality (in terms

of convergence and diversity) of the non-dominated solution

set on the performance of the objective reduction algorithms.

C. Variable-settings and Properties for the Test Problems

The authors in [45] have categorized the variables as either a

‘distance’ variable (say, κ: changing which results in compara-

ble solutions) or a ‘position’ variable (say, ρ: changing which

results in incomparable solutions). Hence, the total number of

variables in a given problem is equal to the sum of κ and ρ.

For an M -objective version of the problems considered in this

paper, while |ρ| = M − 1 is used, the values used for κ are

reported in Table III.

TABLE III
TEST PROBLEMS: VARIABLE-SETTINGS AND QUALITY INDICATORS

Name Obj |κ| Quality Indicators for POFa

g(X) D2
T

DTLZ1(M) f1:M 5 0 0.25M
DTLZ2(M) f1:M 10 0 M
DTLZ3(M) f1:M 10 0 M
DTLZ4(M) f1:M 10 0 M

DTLZ5(I,M) f1:M 10 0 Noteb

DTLZ7(M) f1:M−1 –
1 M − 1 + t2max, Notec

fM 20
WFG3(M) f1:M 20 NA NA

a While g(X) values are picked from [44], the derivations for D2
T can be

found in the supplementary file provided with this paper.
b
(

1
2

)M−I
+

∑M−I+1
i=2

(

1
2

)M−I+2−i
+ I − 1

c t =
∑M−1

i=1 xi(1 + sin(3πxi)) and tmax ≈ 0.8594009(M − 1).

D. Experimental Settings for the MOEAs used

To enable a study on the effect of the underlying N on the

objective reduction algorithms, two MOEAs, namely, NSGA-

II and ǫ-MOEA [46] have been used. The obtained non-

dominated sets are referred as NNS , and Nǫ, respectively.

The choice of these algorithms is driven by the fact that while

the quality of NNS is known to deteriorate with an increase in

M , Nǫ is likely to be better because the underlying notion of

ǫ-dominance [47] has been shown to simultaneously preserve

the convergence and diversity properties.

For both these algorithms, the following settings are used

for experiments: the probability of crossover and mutation as

0.9 and 0.1, respectively; the distribution index for crossover

and mutation as 5 and 20, respectively; and, the population

size (N ) and the number of generations (Ng) as 200 and

2000, respectively. For each test problem, experiments are

performed for 20 different runs (evenly spaced seeds in the

range between [0, 1]). In case of ǫ-MOEA, different values

such as ǫ = 0.1, 0.2 and 0.3 were experimented with. However,

for the test problems used in this paper, the quality of Nǫ did

not significantly change with ǫ. Hence, ǫ = 0.3 was arbitrarily

chosen for use in this paper.

E. Quality Indicators for the Non-dominated Solution Sets

The quality of NNS and Nǫ for each for the DTLZ problems

including DTLZ5(I,M) will be assessed in terms of (i)

convergence: measured by the g(X), and (ii) diversity: mea-

sured by the normalized maximum spread indicator denoted

by Is [48]. As the name suggests, Is normalizes the actual

dispersal of solutions in the obtained non-dominated set (say,

DA) by the dispersal of solutions on the true POF (say, DT );

i.e., Is = DA/DT . The g(X) and DT for the test problems

considered (wherever applicable) are reported in Table III.



10

TABLE IV
DTLZ5(3, 5): THE R AND THE K MATRIX WITH THEIR CORRESPONDING EIGENVALUES AND EIGENVECTORS, FOR NNS (ONE RUN)

(a) Correlation matrix (R)

f1 f2 f3 f4 f5

f1 1.0000 0.7391 0.8291 -0.3985 -0.3653
f2 0.7391 1.0000 0.8761 -0.4357 -0.3226
f3 0.8291 0.8761 1.0000 -0.3410 -0.2537
f4 -0.3985 -0.4357 -0.3410 1.0000 -0.4598
f5 -0.3653 -0.3226 -0.2537 -0.4598 1.0000

(b) Kernel matrix (K)

f1 f2 f3 f4 f5

f1 3.2335 1.1500 3.2519 -3.8127 -3.8228
f2 1.1500 2.5984 3.3141 -3.9315 -3.1310
f3 3.2519 3.3141 16.3678 -12.3313 -10.6025
f4 -3.8127 -3.9315 -12.3313 23.3217 -3.2461
f5 -3.8228 -3.1310 -10.6025 -3.2461 20.8026

(c) Eigenvalues and eigenvectors of R

e1=0.5893 e2=0.2913 e3=0.0604 e4=0.0501 e5=0.0087

V1 V2 V3 V4 V5

0.535 -0.054 0.366 -0.652 -0.390
0.545 -0.008 -0.260 0.609 -0.514
0.548 -0.021 -0.540 -0.212 0.602
-0.281 -0.672 -0.531 -0.269 -0.339
-0.196 0.738 -0.475 -0.293 -0.326

(d) Eigenvalues and eigenvectors of K

e1=0.5492 e2=0.3773 e3=0.0481 e4=0.0252 e5=0.0000

V1 V2 V3 V4 V5

0.184 -0.045 0.665 -0.567 0.447
0.176 -0.018 0.339 0.809 0.447
0.640 -0.100 -0.601 -0.137 0.447
-0.613 -0.616 -0.208 -0.041 0.447
-0.387 0.780 -0.195 -0.064 0.447

e1=0.961 e2=0.038 e3 ≈ 0

V1 V2 V3

0.583 0.400 0.707
0.583 0.400 -0.707
-0.565 0.825 0.000

(a) The principal components
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V
 2
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 1

 0

 0

 0

 0.7
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principal components
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(d) Conflict between f3 and f1
or f2 captured along V1

Fig. 6. Use of PCA for feature selection: Demonstrated on DTLZ5(2, 3).

VI. WORKING OF THE PROPOSED ALGORITHMS

This section first demonstrates the basis on which the

proposed algorithms pursue the feature selection approach for

objective reduction. Then, the working demonstration of the L-

PCA and NL-MVU-PCA on the DTLZ5(3, 5) problem, based

on both NNS and Nǫ, is presented. The DTLZ5(3, 5) with

moderate degree of redundancy is chosen for demonstration,

to highlight the absence of any bias in the proposed algorithms

for a particular class of problems (discussed in Section IV-G).

A. Feature selection by the proposed algorithms

The proposed framework infers the objectives as conflicting

or non-conflicting, depending on whether their contributions

along any principal components are with the same-signs or

opposite-signs. This is demonstrated on DTLZ5(2, 3) problem

for which the principal components and the corresponding

eigenvalues obtained from R are presented in Figure 6a, and

also plotted in Figure 6b vis-à-vis the underlying NNS .

Notably, the V1 accounts for 96.1% variance and while

the contribution of both f1 and f2 towards it is positive in

sign (f11 = f21 = 0.583), the contribution of f3 is negative

(f31 = −0.565). These facts are reflected in: (i) Figure 6c

where both f1 and f2 can be seen to simultaneously increase

or decrease, from any point on V1 to another, and (ii) Figure 6d

where an increase/decrease in f1 and f2 corresponds to a

decrease/increase in f3. These observations imply that either

f1 or f2 is redundant and also demonstrate the basis for PCA

based feature selection in many-objective context.

In the above problem: (i) the NNS fully conformed with

the true POF (no noise, Section III), and (ii) visualization

of the 3-dimensional objective space was possible. Hence,

the redundancy of either f1 or f2 was evident directly from

Figure 6b, without requiring any analysis of the principal

components. However, this may not be possible in the case of

many-objective problems where not only the visualization is

difficult but the underlying data is predominantly characterized

by noise. This is evident for the DTLZ5(3, 5) problem in

Figure 1c, where the redundancy of f1 and f2 cannot be

deduced visually. This justifies the need for an analytical

approach, which the proposed algorithms provide.

B. Linear (L-PCA) and Nonlinear (NL-MVU-PCA) Objective

Reduction for DTLZ5(3, 5) based on NNS

The correlation matrix R and the kernel matrix K based on

NNS , and also the corresponding eigenvalues and eigenvec-

tors, are presented in Table IV.

1) L-PCA based on NNS : L-PCA is based on the eigen-

values/eigenvectors of R. Table Va shows that all the prin-

cipal components together, meet θ = 0.997, to give Fe =
{f1, f2, f3, f4, f5}. Towards the RCM analysis (Table Vb), R
in Table IVa shows that the signs of correlation between f1
and all the remaining objectives are the same as those of f2
or f3. In other words, {f1, f2, f3} satisfies the Equation 3(i).
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TABLE V
DTLZ5-(3, 5): ITERATION 1 OF L-PCA WITH NNS

(a) Eigenvalue Analysis

PCA Variance Cumulative Objectives Selected

(Nv) (%) (%) f1 f2 f3 f4 f5

1 58.93 58.93 f3 f4 f5
2 29.13 88.06 f1 f2 f3 f4 f5
3 06.04 94.10 f1 f3
4 05.01 99.11 f1 f2
5 00.87 99.98 f1 f2 f3 f4 f5

(b) RCM Analysis

1) Corr. over whole set Eq 3(i) Spossible = {f1, f2, f3}
2) Corr. threshold: Tcor Eq 4 1.0-0.5893(1.0-4/5) = 0.8821
3) Corr. meeting Tcor Eq 3(ii) S = ∅

TABLE VI
DTLZ5-(3, 5): ITERATION 1 OF NL-MVU-PCA WITH NNS

(a) Eigenvalue Analysis

PCA Variance Cumulative Objectives Selected

(Nv) (%) (%) f1 f2 f3 f4 f5

1 54.92 54.92 f3 f4 f5
2 37.73 92.65 f1 f2 f3 f4 f5
3 04.81 97.46 f1 f3 f4 f5
4 02.52 99.98 f1 f2 f3 f4 f5

(b) RCM Analysis

1) Corr. over whole set Eq 3(i) Spossible = {f1, f2, f3}
2) Corr. threshold: Tcor Eq 4 1.0-0.5492(1.0-3/5) = 0.7803
3) Corr. meeting Tcor Eq 3(ii) S1 = {f1, f3}, S2 = {f2, f3}

(c) Selection scheme

e1=0.5492 e2=0.3773 e3=0.0481 e4=0.0252
ci

V1 V2 V3 V4

f1 0.184 -0.045 0.665 -0.567 0.1642
f2 0.176 -0.018 0.339 0.809 0.1401
f3 0.640 -0.100 -0.601 -0.137 0.4219

However, the condition imposed by Equation 3(ii) is violated

as R12 = 0.7391, R13 = 0.8291 and R23 = 0.8761,

while Tcor = 0.8821. It implies that {f1, f2, f3} can not be

considered as an identically correlated set. This eliminates

the need for the last step of the algorithm (Section IV-E)

and Fs = Fe, which does not coincide with FT . Clearly,

as Fredn = ∅, Et = 0 based on Equation 6.

2) NL-MVU-PCA based on NNS : NL-MVU-PCA is based

the eigenvalues/eigenvectors of K (Tables IVb and IVd). It

can be seen that Table VIa deduces Fe = {f1, f2, f3, f4, f5}.

Further, based on R in Table IVa, {f1, f2, f3} satisfies Equa-

tion 3(i) and is the potential set of identically correlated

objectives. However, as R12 = 0.7391, R13 = 0.8291,

R23 = 0.8761 and Tcor = 0.7803, Equation 3(ii) is vio-

lated by the pair of f1 and f2. Hence, S1 = {f1, f3} and

S2 = {f2, f3} become the identically correlated sets. Finally,

the selection scheme shown in Table VIc identifies f3 as the

more significant objective in both S1 and S2. To summarize,

NL-MVU-PCA identifies Fs = {f3, f4, f5}, which coincides

with FT . Given that Fredn = {f1, f2}, the error computation

based on Equation 6 is as follows:

Et =
∑

i∈{1,2}

cMi (1.0− max
j∈{3,4,5}

{δi j .Rij})

= cM1 (1.0−R13) + cM2 (1.0−R23)
= 0.0131804 or 1.3%

since:

cM1 =
∑M

k=1 ekf
2
1k = 0.048754 and R13 = 0.8291

cM2 =
∑M

k=1 ekf
2
2k = 0.039178 and R23 = 0.8761

TABLE VII
DTLZ5(3, 5): THE R AND THE K MATRIX WITH THEIR CORRESPONDING

EIGENVALUES AND EIGENVECTORS, FOR Nǫ (ONE RUN)

(a) Correlation matrix (R)

f1 f2 f3 f4 f5

f1 1.0000 0.9875 0.9736 -0.4310 -0.3384
f2 0.9875 1.0000 0.9644 -0.4496 -0.3040
f3 0.9736 0.9644 1.0000 -0.4689 -0.3229
f4 -0.4310 -0.4496 -0.4689 1.0000 -0.5136
f5 -0.3384 -0.3040 -0.3229 -0.5136 1.0000

(b) Kernel matrix (K)

f1 f2 f3 f4 f5

f1 2.4039 2.4928 4.1692 -4.4405 -4.6255
f2 2.4928 2.7527 4.4084 -5.0861 -4.5678
f3 4.1692 4.4084 8.1727 -9.0340 -7.7163
f4 -4.4405 -5.0861 -9.0340 27.0187 -8.4579
f5 -4.6255 -4.5678 -7.7163 -8.4579 25.3677

(c) Eigenvalues and eigenvectors of R

e1=0.6567 e2=0.3007 e3=0.0333 e4=0.0069 e5=0.0021

V1 V2 V3 V4 V5

0.546 -0.056 -0.219 0.225 -0.775
0.544 -0.030 -0.274 0.505 0.610
0.545 -0.030 -0.059 -0.820 0.165
-0.285 -0.660 -0.686 -0.114 0.007
-0.166 0.748 -0.635 -0.097 -0.020

(d) Eigenvalues and eigenvectors of K

e1=0.5322 e2=0.4608 e3=0.0057 e4=0.0011 e5=0.0000

V1 V2 V3 V4 V5

0.059 0.269 -0.376 -0.764 -0.447
0.076 0.282 -0.553 0.639 -0.447
0.142 0.490 0.730 0.086 -0.447
-0.821 -0.337 0.108 0.027 -0.447
0.545 -0.704 0.091 0.011 -0.447

C. Linear (L-PCA) and Nonlinear (NL-MVU-PCA) Objective

Reduction for DTLZ5(3, 5) based on Nǫ

The correlation matrix R and the kernel matrix K based on

Nǫ, and also the corresponding eigenvalues and eigenvectors,

are presented in Table VII.

1) L-PCA based on Nǫ: From Table VIII, it follows that

Fs = {f1, f4, f5}. Hence, the corresponding error is:

Et = cM2 (1.0−R21) + cM3 (1.0−R31) = 0.007766 or 0.77%.
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2) NL-MVU-PCA based on Nǫ: From Table IX, it follows

that Fs = {f3, f4, f5}. Hence, the corresponding error is:

Et = cM1 (1.0−R13) + cM2 (1.0−R23) = 0.002455 or 0.24%

TABLE VIII
DTLZ5-(3, 5): ITERATION 1 OF L-PCA WITH Nǫ

(a) Eigenvalue Analysis

PCA Variance Cumulative Objectives Selected

(Nv) (%) (%) f1 f2 f3 f4 f5

1 65.67 65.67 f1 f4 f5
2 30.07 95.74 f1 f2 f3 f4 f5
3 03.33 99.07 f4 f5
4 00.69 99.76 f1 f2 f3

(b) RCM Analysis

1) Corr. over whole set Eq 3(i) Spossible = {f1, f2, f3}
2) Corr. threshold: Tcor Eq 4 1.0-0.6567(1.0-2/5) = 0.6059
3) Corr. meeting Tcor Eq 3(ii) S = {f1, f2, f3}

(c) Selection scheme

e1=0.6567 e2=0.3007 e3=0.0333 e4=0.0069
ci

V1 V2 V3 V4

f1 0.546 -0.056 -0.219 0.225 0.3859
f2 0.544 -0.030 -0.274 0.505 0.3805
f3 0.545 -0.030 -0.059 -0.820 0.3749

TABLE IX
DTLZ5-(3, 5): ITERATION 1 OF NL-MVU-PCA WITH Nǫ

(a) Eigenvalue Analysis

PCA Variance Cumulative Objectives Selected

(Nv) (%) (%) f1 f2 f3 f4 f5

1 53.22 53.22 f1 f2 f3 f4 f5
2 46.08 99.30 f1 f2 f3 f5
2 00.57 99.87 f1 f2 f3

(b) RCM Analysis

1) Corr. over whole set Eq 3(i) Spossible = {f1, f2, f3}
2) Corr. threshold: Tcor Eq 4 1.0-0.5322(1.0-2/5) = 0.6806
3) Corr. meeting Tcor Eq 3(ii) S = {f1, f2, f3}

(c) Selection scheme

e1=0.5322 e2=0.4608 e3=0.0057
ci

V1 V2 V3

f1 0.059 0.269 -0.376 0.1580
f2 0.076 0.282 -0.553 0.1743
f3 0.142 0.490 0.730 0.3054

D. Discussion: Effect of the quality of the non-dominated

solutions on the performance of L-PCA and NL-MVU-PCA

This section revisits the performance of the proposed algo-

rithms vis-à-vis the underlying data set, to highlight some key

issues. For the DTLZ5(3, 5) problem:
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(a) NNS : Parallel coordinate plot
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(b) Nǫ: Parallel coordinate plot

Fig. 7. DTLZ5-(3, 5): Parallel coordinate plots for NNS and Nǫ (one run).

TABLE X
CONVERGENCE AND DIVERSITY: FOR THE REDUNDANT DTLZ5(I,M)

AND NON-REDUNDANT DTLZ PROBLEMS. THE MEAN (µ) AND STANDARD

DEVIATION (σ) ARE AVERAGED OVER 20 RUNS

Problems Convergence (g) Diversity (Is)
DTLZ5 Nǫ NNS Nǫ NNS

I M (µ± σ) (µ± σ) (µ± σ) (µ± σ)

2 05 0.15± 0.09 0.48± 0.63 1.93± 0.01 4.20± 0.17
2 10 0.19± 0.09 1.64± 0.75 1.99± 0.05 6.58± 0.13
2 20 0.20± 0.07 2.10± 0.58 1.91± 0.02 8.06± 0.17
2 30 0.22± 0.08 2.24± 0.47 1.98± 0.03 8.40± 0.17
2 50 0.23± 0.08 2.34± 0.34 1.99± 0.02 8.18± 0.22
3 05 0.08± 0.04 0.70± 0.61 1.48± 0.00 3.54± 0.02
3 10 0.15± 0.07 1.83± 0.59 1.57± 0.00 5.62± 0.03
3 20 0.17± 0.07 2.25± 0.03 1.59± 0.02 6.67± 0.01
5 10 0.14± 0.07 2.06± 0.34 1.38± 0.02 4.29± 0.02
5 20 0.15± 0.07 2.25± 0.31 1.37± 0.00 5.00± 0.01
7 10 0.16± 0.07 1.99± 0.38 1.27± 0.01 3.30± 0.01
7 20 0.16± 0.08 2.17± 0.38 1.28± 0.00 3.94± 0.02

DTLZ M
1 05 170± 129 410± 141 480± 0 539± 6
1 15 313± 154 948± 165 321± 4 507± 2
1 25 346± 152 944± 207 269± 1 331± 6
2 05 0.09± 0.05 0.11± 0.06 1.16± 0.00 1.08± 0.02
2 15 0.23± 0.11 2.08± 0.45 0.99± 0.01 2.41± 0.00
2 25 0.22± 0.11 2.12± 0.49 0.77± 0.01 2.10± 0.00
3 05 709± 223 0738± 220 1168± 5 1047± 18
3 15 903± 225 1733± 356 0880± 7 1358± 08
3 25 908± 220 1808± 400 0669± 4 1187± 13
4 05 0.12± 0.06 0.13± 0.06 1.13± 0.05 1.14± 0.00
4 15 0.22± 0.09 2.20± 0.15 1.21± 0.00 2.80± 0.01
4 25 0.29± 0.13 2.18± 0.15 1.24± 0.01 2.63± 0.00
7 05 1.24± 0.10 1.17± 0.07 1.77± 0.03 2.09± 0.02
7 15 5.04± 0.57 2.94± 0.72 3.61± 0.05 5.50± 0.02
7 25 5.44± 0.56 3.12± 0.66 3.62± 0.04 5.28± 0.12

1) The POF is characterized by g(X) = 0 and Is = 1.0:

Given this, Nǫ is better than NNS in terms of the quality

indicators, because Table X shows that:

• For Nǫ: g(X) = 0.08± 0.04 and Is = 1.48± 0.00,

• For NNS : g(X) = 0.70±0.61 and Is = 3.54±0.02.

2) FT = {f3, f4, f5} and f1–f2–f3 are non-

conflicting (correlated) among themselves, where,

R12 = R13 = R23 = 1.0. However:

• NNS (Table IVa) reports R12 = 0.73, R13 = 0.82
and R23 = 0.87.

• Nǫ (Table VIIa) reports R12 = 0.98, R13 = 0.97
and R23 = 0.96.

This highlights the superiority of Nǫ over NNS in

capturing the inter-relationships of the objective vectors–

on the true POF. The same is also evident in Figure 7a

for NNS , where compared to Nǫ (Figure 7b), more solu-

tions are wrongly in conflict with respect to {f1, f2, f3}.
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TABLE XI
PERFORMANCE OF DIFFERENT OBJECTIVE REDUCTION ALGORITHMS ON REDUNDANT TEST PROBLEMS, CORRESPONDING TO NNS AND Nǫ AND

θ = 0.997. THE NUMBERS IN THE TABLE INDICATE THE FREQUENCY OF SUCCESS IN IDENTIFYING THE TRUE I AND FT , OUT OF 20 RUNS. THE DASHES

(-) REPLACE 0 TO IMPLY INCONSEQUENTIAL ENTRIES WHEREVER THE PREREQUISITE OF ACCURATE I IS NOT MET. THE TABLE’S FOOTNOTE REPORTS

THE PROBLEMS THAT REQUIRE MULTIPLE ITERATIONS OF THE ALGORITHM TO OBTAIN ACCURATE RESULTS, AS: P—AR(BI), IMPLYING THAT FOR THE

PROBLEM P, A RUNS OUT OF 20, REQUIRED B ITERATIONS EACH

Dominance relation preservation [31], [36]:
Proposed approaches δ-MOSS, 0% Error

Test problems NL-MVU-PCA L-PCA Greedy Approach Exact Approach

DTLZ5(I,M) Nǫ NNS Nǫ NNS Nǫ NNS Nǫ NNS

I M Ib FT Ic FT Id FT I FT I FT I FT I FT I FT

2 5 20 20 20 20 20 14 20 1 0 - 0 - 0 - 0 -
2 10 20 20 11 11 20 7 0 - 0 - 0 - 0 - 0 -
2 20 20 20 7 7 20 2 0 - 0 - 0 - 0 - 0 -
2 30 20 20 14 14 20 1 0 - 0 - 0 - 0 - 0 -
2 50 20 20 14 14 20 0 10 - 0 - 0 - 0 - 0 -
3 5 20 20 18 18 20 9 0 0 0 - 0 - 0 - 0 -
3 10 20 20 0 - 20 2 0 - 0 - 0 - 0 - 0 -
3 20 20 20 0 - 20 1 0 - 0 - 0 - 0 - 0 -
5 10 19 19 0 - 19 3 0 - 0 - 0 - 0 - 0 -
5 20 19 19 0 - 18 3 0 - 0 - 0 - 0 - 0 -
7 10 19 19 0 - 20 6 0 - 0 - 0 - 0 - 0 -
7 20 16 16 0 - 13 3 0 - 0 - 0 - 0 - 0 -

WFG3
5 20 20 20 20 20 19 20 4 0 - 0 - 0 - 0 -
15 15 15 20 20 10 1 19 0 0 - 0 - 0 - 0 -
25 9 9 20 20 6 0 20 0 0 - 0 - 0 - 0 -

a The tabulated results are obtained using the source codes at: http://www.tik.ee.ethz.ch/sop/download/supplementary/objectiveReduction/. The same codes
are used for the results presented later in Tables XII and XVII.

b DTLZ5(2, 30)—1R(2I); DTLZ5(5, 10)—3R(2I); DTLZ5(5, 20)—8R(2I); DTLZ5(7, 10)—7R(2I); DTLZ5(7, 20)—9R(2I) and 1R(4I); WFG3(15)—
6R(2I) and 3R(3I); WFG3(25)—5R(2I), 1R(3I) and 1R(4I).

c DTLZ5(2, 10)—11R (2I), 5R(3I) and 2R(4I); DTLZ5(2, 20)—7R(2I) iterations, 2R(4I), 2R(5I), 1R(6I) and 1R(7I); DTLZ5(2, 30)—3R(2I), 3R(3I), 4R(4I)
and 4R(5I); DTLZ5(2, 50)—8R(2I) and 2R(3I); DTLZ5(3, 5)—9R(2I).

d For DTLZ5(5, 20)—1R(2I); DTLZ5(7, 10)—3R(2I); DTLZ5(7, 20)—1R(2I); WFG3(5)—11R(2I); WFG3(15)—1R(2I).

The superiority of Nǫ over NNS is reflected in the following:

1) Higher accuracy for L-PCA corresponding to Nǫ: L-PCA

based on NNS could not even identify the true dimension of

the POF (I = 3), let alone its composition (FT ). However,

with Nǫ, it accurately identifies I but not FT . In this, f1 with

lower variance is erroneously picked as more important than

f3 with higher variance. This relates to the limitations of linear

PCA approach discussed in Section III.

2) Higher efficiency for NL-MVU-PCA corresponding to Nǫ:

NL-MVU-PCA correctly identifies I and FT in case of both

NNS and Nǫ. However, the efficiency in latter case (Nv = 3
for Nǫ) is higher than the former (Nv = 4, for NNS ).

3) Higher reliability of the reported errors: It can be realized

that the reliability of the error measure (Equation 6) depends

on the accuracy the three factors, namely, cMi (contribution of

fi across all Vj’s); δij (whether or not fi and fj are identically

correlated); and Rij (strength of correlation between fi and

fj). The accuracy of these factors in turn depends on the

interplay of how accurate an algorithm is (controlling cMi )

and how well the underlying solutions (controlling δij and

Rij) represent the true POF (for which Et = 0 corresponding

to FT = {f3, f4, f5}).

In the wake of the results in Sections VI-B and VI-C

and the observations in Items VI-D (1) and VI-D (2), the

above argument explains why the reliability of the reported Et
improves in the following order: (i) L-PCA (NNS , Et = 0),

(ii) NL-MVU-PCA (NNS , Et = 0.0131), (iii) L-PCA (Nǫ,

Et = 0.0077) and (iv) NL-MVU-PCA (Nǫ, Et = 0.0024).

E. Benefit of objective reduction

It is worth highlighting here the benefit that objective

reduction offers. Figure 1c illustrated the poor performance

of NSGA-II as the number of objectives grew to five, and

the poor performance was linked to the hinderance in search

caused by the presence of redundant objectives. However,

with NL-MVU-PCA identifying that f1 and f2 are redundant,

an apparently many-objective problem is reduced to a three-

objective problem. The improvement in the quality of the

NNS , accompanying this reduction can be assessed from

Figure 8, where NNS conforms with the true POF.
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Fig. 8. DTLZ5-(3, 5): Illustrating that the NNS (one run) obtained for the
reduced problem, FT = {f3, f4, f5}, conforms with the true POF.

VII. EXPERIMENTAL RESULTS ON OTHER BENCHMARK

PROBLEMS

This section presents the experimental results for a wide

range of redundant and non-redundant problems, in Tables XI
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TABLE XII
PERFORMANCE OF DIFFERENT OBJECTIVE REDUCTION ALGORITHMS ON NON-REDUNDANT TEST PROBLEMS, CORRESPONDING TO NNS AND Nǫ AND

θ = 0.997. THE NUMBERS IN THE TABLE INDICATE THE FREQUENCY OF SUCCESS IN IDENTIFYING THE FT , OUT OF 20 RUNS. THE DASHES (-) DENOTE

CASES WHICH WERE NOT TRIED DUE TO HUGE COMPUTATIONAL TIME

Test problems Proposed approaches Dominance relation preservation [31], [36]: δ-MOSS, 0% Error

DTLZ(M) NL-MVU-PCA L-PCA Greedy Approach Exact Approach

Name M Nǫ NNS Nǫ NNS Nǫ NNS Nǫ NNS

DTLZ1 5 20 20 20 20 20 20 20 20
15 6 20 14 20 8 0 7 0
25 0 20 3 20 0 0 – –

DTLZ2 5 20 20 20 20 20 20 20 20
15 20 20 20 20 1 0 0 0
25 16 20 17 20 0 0 – –

DTLZ3 5 20 20 20 20 20 20 20 20
15 11 20 20 20 8 0 2 0
25 0 20 5 20 0 0 – –

DTLZ4 5 20 20 20 20 14 20 20 20
15 20 20 20 20 0 0 0 0
25 20 20 20 20 0 0 – –

DTLZ7 5 20 20 20 20 20 20 20 20
15 19 17 20 20 1 0 0 0
25 20 20 20 20 0 0 – –

and XII, respectively. These results need to be interpreted

in the wake of: (i) the quality of the underlying NNS and

Nǫ summarized in Table X, and (ii) the resulting errors

associated with NL-MVU-PCA and L-PCA (reported in the

supplementary file provided with the paper).

Reference to the quality indicators for the DTLZ5(I,M)
problems in Table X, reveals that Nǫ is superior than NNS .

The discussion in Section VI-D on DTLZ5(3, 5) highlighted

that Nǫ is also better than NNS , in terms of capturing the inter-

relationships of the objective vectors–on the true POF. The

same trend holds true for the other DTLZ5(I,M) problems,

and explains the results in Table XI. In that, superior results

are obtained by both NL-MVU-PCA and L-PCA in the case

of Nǫ as against NNS .

For interpretation of the results for non-redundant problems,

refer to Tables X and XII. It can be seen that:

1) In contrast to the redundant problems, the performance of

both NL-MVU-PCA and L-PCA is found to be better with

NNS as against Nǫ. For example, all the three versions of

the DTLZ1 problem are accurately solved in case of NNS .

However, the accuracy with Nǫ falls as objectives increase

from 5, 15 to 25. The explanation lies in the following.

The true POF of DTLZ1(15), as shown in Figure 9c, is

characterized by two main features: (i) all the objectives are

conflicting, and (ii) the variance of all the objectives on the

true POF is equal. For an accurate analysis, the proposed

algorithms need a solution set that exhibits the above two

features. Clearly, these features of the POF are better retained

by NNS (Figure 9b) than Nǫ (Figure 9a). In that, while the

former exhibits conflict between all the objectives, the latter

suggests that some of the objectives may be non-conflicting

(such as f1 to f4). Hence, from the perspective of the proposed

algorithms, NNS is more representative of the true POF

than Nǫ despite the fact that the latter is better in terms on

convergence and diversity measures (Tables X).

To summarize, from the PCA based objective reduction

perspective, the interpretation of the population quality based

on convergence and diversity measures alone is inadequate. In

that, how far the inter-relationships of the objective vectors on

the true POF in terms of their conflict and relative variance

are retained in a solution set, is critical. It may be noted

that NL-MVU-PCA when applied to the analytically generated

solution set (Figure 9c), accurately solved the problem. Based

on these observations, the poor performance of NL-MVU-PCA

corresponding to Nǫ could be attributed to the latter’s mis-

represention of the true POF.
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Fig. 9. DTLZ1(15): Parallel coordinate plots for Nǫ, NNS (one run) and
analytically generated POF.

2) In contrast to the redundant problems, the performance

of L-PCA based on Nǫ, is better than NL-MVU-PCA. This

observation is highly misleading, as explained below. If

Nǫ for DTLZ1(15), shown in Figure 9a, is to be treated

as the representative of the true POF, it suggests that: (i)

some objectives may be non-conflicting (such as f1 to f4),
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TABLE XIII
EFFECT OF THE VARIANCE THRESHOLD (θ = 0.682) ON THE PERFORMANCE OF THE PROPOSED L-PCA AND NL-MVU-PCA ALGORITHMS ON BOTH

REDUNDANT AND NON-REDUNDANT TEST PROBLEMS, CORRESPONDING TO NNS AND Nǫ . THE NUMBERS IN THE TABLE INDICATE THE FREQUENCY

OF SUCCESS IN IDENTIFYING THE TRUE I AND/OR FT , OUT OF 20 RUNS. THE DASHES (-) REPLACE 0 TO IMPLY INCONSEQUENTIAL ENTRIES, AS THE

PREREQUISITE I IS NOT MET. THE TABLE’S FOOTNOTE REPORTS THE PROBLEMS THAT REQUIRE MULTIPLE ITERATIONS OF THE ALGORITHM TO OBTAIN

ACCURATE RESULTS, AS: P—AR(BI), IMPLYING THAT FOR THE PROBLEM P, A RUNS OUT OF 20, REQUIRED B ITERATIONS EACH

Test problems NL-MVU-PCA L-PCA Test Problems

DTLZ5(I,M) Nǫ NNS Nǫ NNS DTLZ(M ) NL-MVU-PCA L-PCA

I M Ia FT Ib FT Ic FT Id FT Name M Nǫ NNS Nǫ NNS

2 5 20 20 20 20 20 1 20 18 DTLZ1 5 17 18 15 19
2 10 20 20 12 12 20 0 7 4 15 6 18 10 20
2 20 20 20 8 8 20 0 2 1 25 0 20 3 20
2 30 20 20 14 14 20 0 10 1 DTLZ2 5 19 18 17 17
2 50 20 20 19 19 20 0 20 2 15 19 19 20 17
3 5 20 20 18 18 20 5 1 1 25 14 20 15 20
3 10 20 20 0 - 20 1 0 - DTLZ3 5 16 17 19 18
3 20 20 20 0 - 20 0 0 - 15 6 20 12 19
5 10 17 17 0 - 18 3 0 - 25 0 20 2 20
5 20 19 19 0 - 10 0 0 - DTLZ4 5 15 20 19 18
7 10 16 15 0 - 18 7 0 - 15 19 20 20 20
7 20 13 13 0 - 9 1 0 - 25 20 20 20 20

WFG3
5 20 20 20 20 20 14 20 1 DTLZ7 5 20 20 19 20
15 15 15 20 20 3 1 20 0 15 19 17 20 20
25 9 9 20 20 0 - 20 0 25 20 20 20 20

a DTLZ5(2, 30)—1R(2I); DTLZ5(5, 10)—2R(2I); DTLZ5(5, 20)—6R(2I); DTLZ5(7, 10)—4R(2I); DTLZ5(7, 20)—5R(2I) and 1R(4I); WFG3(3, 10)—
6R(2I) and 3R(3I); WFG3(3, 20)—5R(2I), 1R(3I) and 1R(4I).

b DTLZ5(2, 10)—6R(2I), 5R(3I) and 1R(4I); DTLZ5(2, 20)—1R(2I), 4R(3I), 1R(4I), 1R(5I) and 1R(7I); DTLZ5(2, 30)—4R(2I), 4R(3I), 5R(4I) and 1R(5I);
DTLZ5(2, 50)—11R(2I), 2R(3I) and 2R(4I); DTLZ5(3, 5)—10R(2I).

c DTLZ5(7, 10)—3R(2I); WFG3(5)—9R(2I); WFG3(15)—1R(2I).
d DTLZ5(2, 10)—3R(2I) and 1R(3I); DTLZ5(2, 20)–1R(5I); DTLZ5(2, 30)—1R(3I); DTLZ5(2, 50)—2R(2I).

(ii) different objectives have different degrees of conflict,

and (iii) the variance of the objectives on the POF is

significantly different. These characteristics imply that the

DTLZ1(15) is a redundant problem, and hence an accurate

objective reduction algorithm should bring out this fact.

That is what NL-MVU-PCA does but L-PCA fails to do.

However, as this Nǫ is highly mis-representative of the true

POF (Figure 9c), the reduction of objectives by NL-MVU-

PCA ironically shows up as its inaccuracy in Table XII.

Similarly, the inability of L-PCA to reduce the objectives in

a data set like in Figure 9a ironically shows up as its accuracy.

A. Effect of Threshold Parameter

To assess the sensitivity of the proposed algorithms on

θ, experiments are also performed with12 θ = 0.682 and

θ = 0.954. Based on the discussions in Section IV-G, a

reduction in θ could expectedly have the following effects:

1) For problems with high redundancy: Only a few of the

top principal components are likely to reveal the essential

objectives. Hence, the deterioration in the performance with

a reduction in θ (smaller Nv) should not be too drastic for

an accurate algorithm (such as NL-MVU-PCA) when applied

on a data set that approximates the true POF with reasonable

accuracy (such as Nǫ). However, the performance deterioration

may be more significant in the case of either an inaccurate

12This is in analogy with Gaussian distributions where ±σ and ±2σ,
account for 68.2% and 95.4% variance, respectively. While, the results for
θ = 0.682 are presented in Table XIII, those with θ = 0.954 are presented
in the supplementary file provided with this paper.

algorithm (such as L-PCA) or a poor data set (such as NNS ).

2) For non-redundant problems where all objectives are essen-

tial: Reduction in θ (smaller Nv) implies a lesser chance for all

the objectives to be picked as essential by the eigenvalue anal-

ysis. Hence, the performance deterioration of the algorithms is

likely to be more significant than that in the case of redundant

problems.

It can be seen that the results presented in Table XIII for

θ = 0.682 comply13 with the expected trend discussed above.

B. Effect of Population Size

Acknowledging that the approximation of the entire POF

for a many-objective problem requires a larger population

size (N ), this section investigates if the performance of the

proposed algorithms improves with an increase in N . Towards

it, some of the poor performing cases in Table XII, such

as the 15- and 25-objective versions of DTLZ1 and DTLZ3

problems, corresponding to Nǫ are solved with increased

N = 400. Figure 10a shows a marked improvement in

the results for the 15-objective versions along with a lesser

improvement in the 25-objective instances. The poor results

for these cases, with N = 200, were earlier explained through

Figure 9 in the context of the disparity in the convergence

levels of different objectives. Figure 10b shows that with an

increase in N , this disparity has moderated down, leading

to improved results. The same trend is observed for other

problems, though not shown for brevity.

13The same holds for the results corresponding to θ = 0.954, presented in
the supplementary file provided with this paper.
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Problem
(M ) NL-MVU-PCA

DTLZ1
15 16
25 6

DTLZ3
15 20
25 3

(a) These results indicate the suc-
cessful cases in 20 random runs
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(b) Parallel coordinate plot of
DTLZ1(15), for one run.

Fig. 10. Sample results for Nǫ with N = 400 and θ = 0.997.

C. Inferences Drawn from the Experimental Results

The experimental results presented above suggest that:

1) The accuracy of the proposed algorithms depends on

how closely the given non-dominated solution set repre-

sents the true POF. In that: (i) reference to convergence

and diversity indicators alone is inadequate, and (ii) how

far the given solution set is characterized by the inter-

relationships of the objective vectors on the true POF, in

terms of their conflict and relative variance, is critical.

2) A high value of θ (θ = 0.997) makes the proposed

algorithms more robust in terms of their performance

on both the redundant and non-redundant problems.

3) The accuracy of the proposed algorithms increases with

an increase in the size of the non-dominated set.

4) The DRP based greedy and exact algorithms, operating

on either Nǫ or NNS , could not accurately identify the

true dimension (I) of the POF for the redundant prob-

lems (for reasons discussed in the Section VIII). Even

in the case of non-redundant problems, the performance

of DRP based algorithms was poor, except for the 5-

objective problems.

VIII. COMPARATIVE ANALYSIS OF DIFFERENT OBJECTIVE

REDUCTION ALGORITHMS

The results presented above highlight that the accuracy of

both L-PCA and NL-MVU-PCA, in terms of identifying an

essential objective set, is higher than that of the DRP based

exact and greedy algorithms. In that, the latter, with δ = 0: (i)

fail to identify the true dimension of the POF for the redundant

DTLZ5(I,M) problems (Table XI), and (ii) over-reduce the

number of objectives in the non-redundant problems (except

for M = 5) as in Table XII. These results conform with those

presented in the original sources for the DRP approach, as

highlighted in Table XIV.

TABLE XIV
RESULTS FOR THE DRP BASED GREEDY ALGORITHM, AS REPORTED

IN [31], [36], [49], FOR THE IBEA POPULATION (100 GENERATIONS)

Test problems δ
M:Population size

5:100 15:200 25:300

DTLZ2 0 5 13 18
DTLZ7 0 5 10 11

The performance of the DRP based algorithms needs to

be interpreted in the wake of the goal that the DRP ap-

proach pursues and the fundamental limitations that its im-

plementation in [31], [36], [49] suffers from. Following the

discussions in Sections II and III, it is clear that the non-

dominated solutions obtained from most existing MOEAs can

be viewed as a combination of unnoised signal (representing

the intrinsic dimensionality m) and noised signal (which may

have dimensionality higher than m). Hence, the DRP approach

which aims at preserving the dominance relations will be

influenced by the dimension of noised signal. This explains

why a δ-minimum set with δ = 0 may not coincide with

an FT . This argument could be realized for DTLZ5(3, 5)
in Figures 1c and 7a (where some solutions are conflicting

in f1–f2–f3, even though the POF is characterized by non-

conflicting f1–f2–f3). Hence, for realistic data sets, the merit

of preserving the dominance relations is questionable—if the

aim is to identify an FT for a given problem. However, the

DRP approach could be useful when the optimal solutions are

available (all characterized by the same dimension) and the

decision maker is interested in knowing smaller objective sets

corresponding to different degrees of error in the dominance

relations. While the above argument partly explains the DRP

based results reported in this paper, the other reasons could be

attributed to the assumptions inherent in the implementation

of the DRP approach, discussed below.

A. On the limitations of the DRP based algorithms

The limitations of DRP based algorithms emanate from the

assumptions underlying the definition of δ error. Consider:

(i) a certain set (A) of the non-dominated solutions (X)

corresponding to the original objective set F , i.e., A ⊂ X ,

and (ii) F ′ ⊂ F . Then, δmax signifies the maximum error

incurred by wrongly assuming that ~x weakly dominates ~y
(~x, ~y ∈ A) with respect to F ′ and is given by Equation 10 [49].

In particular, if δmax = 0, it implies that the objectives in

F \ F ′ are redundant.

δmax(A,F ′,F) = max
~x, ~y ∈ A

~x �F ~y

~x �
F′ ~y

{

max
fi∈F

{fi(~x)− fi(~y)}
}

(10)

Equation 10 is based on two stringent assumptions, that:

1) δ error across all the solutions (~x, ~y ∈ A) is comparable: It

is assumed in [36]14 that an error made close to the Pareto-

optimal front is of the same importance as the same error

made far away from the Pareto-optimal front. For this to hold

true, the solutions on the non-dominated front need to be

equally distributed, else the importance of δ in more dense

regions which in general signify more important regions, will

be higher. It implies that the δ measure is likely to be erroneous

in situations where the density of solutions is not equal, such as

in distributions like Gaussian (more midrange solutions than

at extremes) or non-Gaussian (more extreme solutions than

at midrange). This is corroborated in [36] where it is stated

(not necessarily in the same sequence) that situations where

the objective function values are not equally distributed are

not considered in the study, for example: (i) situations where

14In footnote on Page 143.



17

the decision maker prefers extremal solutions with maximal

objective function values, or (ii) situations where the solutions

close to extremal values are more unlikely than ones with

midrange values.
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(c) f1 = x2 and f2 =
1− x5

Fig. 11. Illustration: Unless all the objectives are (a) linear, or (b) identically
nonlinear, the DRP approach’s assumption of comparable δ across all the
objectives, over the entire non-dominated front will not hold. For all three
cases, x ∈ [0, 1]. pi and qi show the variation in f1 and f2, respectively,
over different regions of the front.

2) δ error is comparable across all the objectives for

any two given solutions ( max
~x,~y∈A

{max
fi∈F

{fi(~x) − fi(~y)}}): It is

assumed in [36] that all objective values have the same

scale and reference point such that the small errors δ are

comparable among the objectives. This assumption limits the

scope of this approach to linear objective reduction, because

it can hold true only when all the objectives are either

linear (Figure 11a) or identically nonlinear (same degree of

nonlinearity, Figure 11b). It can be seen in Figure 11c, where

the objectives have different degree of nonlinearity, that the

δ error across the objectives is not comparable, at any region

of the non-dominated front. This is corroborated in [36]

where it is stated that an incorporation of nonlinear objective

functions would be extremely useful but remains future work.

An example problem defined by Equation 11, has been

considered below, to demonstrate that the scope of the DRP

based algorithms is limited to linear objective reduction.

f1 = x2 + 1; f2 = −x2 + x+ 3; f3 = −(f1 + f32 ),
where x ∈ [−2, 2]

}

(11)

As the second assumption (above) requires all the objectives

to have the same scale and reference points, N̄NS (normalized

NNS ) corresponding to a population size of 200 and 2000
generations, shown in Figure 12a, is used. Given the disparate

degree of nonlinearity in f3, compared to f1 and f2, the

assumption that the δ across all the objectives, over the

entire non-dominated front is comparable, is violated (as in

Figure 11c, but not shown for brevity).

This is a single-variable problem, hence, the number of

essential objectives should be equal to two (regularity prop-

erty [4]). The results in Table XV corresponding to N̄NS

show that unlike NL-MVU-PCA and L-PCA, the DRP based

algorithms fail to identify the redundancy of one objective. To

relate the failure of the latter with its limited scope of linear

reduction, the N̄NS is unfolded or linearized using the kernel

matrix (K) learnt by the MVU principle. Let the linearized

N̄NS be referred as LN̄NS , where LN̄NS = KN̄NS . While

the LN̄NS is shown in Figure 12b, Table XV shows that the

NNS NNS: Normalized
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(a) N̄NS : Normalized NNS .
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(b) LN̄NS : Linearized N̄NS .
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(c) Four solutions from N̄NS .
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(d) The same solutions as in (c) from
LN̄NS .

Solutions
. N̄NS Linearized N̄NS

f1 f2 f3 f1 f2 f3

a 0.053 0.901 0.056 0.074 0.926 0.074
b 0.172 0.934 0.041 0.085 0.915 0.085
c 0.224 0.717 0.080 0.217 0.783 0.217
d 0.259 0.683 0.079 0.243 0.757 0.243

(e) The objective values for the solutions from N̄NS and LN̄NS .

Fig. 12. An example to illustrate that DRP based approach offers linear

objective reduction. The plots are for one NSGA-II run.

DRP based algorithms applied to LN̄NS identify the presence

of a redundant objective. For a deeper understanding of the

effect of data linearization on the DRP based algorithms, four

solutions picked from N̄NS and their linearized counterparts

in LN̄NS , are shown in Figures 12c, 12d and 12e. It can

be verified that while the dominance relations are violated on

elimination of f3 in the case of four N̄NS solutions, they

remain preserved in the case of the LN̄NS solutions.

TABLE XV
RESULTS FOR THE EXAMPLE PROBLEM IN EQUATION 11,

CORRESPONDING TO 20 RUNS OF NSGA-II. THE ESSENTIAL OBJECTIVE

SETS OBTAINED ARE SHOWN, WITH THE FREQUENCY OF OCCURRENCE

BELOW

Data
Proposed approaches

DRP [31], [36] based
δ-MOSS, 0% Error

NL-MVU-PCA L-PCA Exact Greedy

N̄NS
{f1, f2} {f1, f2} {f1, f2, f3} {f1, f2, f3}
(20) (20) (20) (20)

LN̄NS
{f1, f2} {f1, f2} {f1, f2} {f1, f2}
(20) (20) (20) (20)

This example establishes that while the dominance relation

preservation approach is promising, the manner in which it

is implemented in [31], [36], [49] by ignoring the effect of

nonlinearity leads to erroneous results. This basically links to

the use of a distance measure that is inadequate to account

for nonlinearity (as discussed in Section II-A). The current

implementation relies on the absolute difference (δ) in the

values of two solutions on a particular objective vector.
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The assumptions stated above basically define the situations

(linearity) in which this δ may be valid.

B. On the computational complexities of different algorithms

It is also important to compare the objective reduction

approaches based on their computational complexity, summa-

rized in Table XVI. Focusing on the DRP approach it can

be seen that: (i) the exact algorithm is almost impractical to

use, since it is exponential in M and quadratic in N ; and (ii)

given that, in the case of many-objective problems N ≫ M ,

even the greedy algorithm is likely to be more expensive than

NL-MVU-PCA (worst case being O(M6), with k = M − 1).

TABLE XVI
COMPUTATIONAL COMPLEXITY OF OBJECTIVE REDUCTION ALGORITHMS.
N IS THE SIZE OF THE NON-DOMINATED SET; Ng THE GENERATIONS FOR

AN MOEA; M THE NUMBER OF OBJECTIVES

Approaches Computational complexity

A. Dom. rel. preservation (δ-MOSS)

(i) Exact Algorithm O(N2M2M )
(ii) Greedy Algorithm O(min{N2M3, N4M2})

B. Unsupervised feature selectiona O(NM2)+ clustering overhead

C. Removal of data dependencies

(i) PCA based reductiona O(NM2 +M3)
(ii) MVU-PCA based reduction O(M3q3) where q is the

neighborhood sizeb

a In [32], [50] and [51], the complexity of clustering has not been included.
Furthermore, the complexity of PCA based reduction is incorrectly cited
as O(NM2 +M3 +N2MNg). Notably, each of the above approaches
operate on the non-dominated set, hence, their is no rationale for adding
the computational complexity of obtaining this non-dominated set, only
to the complexity of PCA based reduction (O(N2MNg) for NSGA-II).

b In the most constrained case, q = O(M).

To conclude, the following remarks can be made:

• Unlike the NL-MVU-PCA proposed in this paper, the

scope of the DRP based algorithms is limited to linear

objective reduction and equally spaced solutions. These

are major limitations because the real-world problems

may have objectives with different degree of nonlinearity,

in which case the results based on linear objective reduc-

tion could be misleading. Furthermore, it is unlikely that

the non-dominated solutions obtained from an MOEA

in the case of many-objective problems will be equally

spaced (as seen in Figure 1c). However, any departure

from linearity or equally spaced solutions is a matter of

degree and the performance of the these algorithms will

depend on the interplay of these two factors. For example,

these algorithms: (i) could solve the 5-objective instances

of the non-redundant problems (Table XII) but not those

with M > 5, and (ii) the performance in DTLZ1(15) with

linear POF is better than DTLZ2(15) with nonlinear POF.

• The use of the DRP based exact algorithm which guaran-

tees a δ-minimum objective set (subject to its assumptions

holding true) becomes impractical for large problems,

owing to its computational complexity. Furthermore, the

greedy algorithm does not guarantee the δ-minimum

objective set for a given problem. In other words, the

aim of finding the δ-minimum objective set based on

dominance relation preservation is practically difficult to

realize for large problems, which is also the limitation of

the algorithms proposed in this paper.

IX. REAL-WORLD PROBLEMS

This section considers two real-world problems.

A. Multi-Speed Gearbox Design Problem

This is a multi-speed gearbox design problem, comprising

of three objectives. It does not belong to the many-objective

domain, yet, it is included here for a comparative analysis of

the proposed L-PCA and NL-MVU-PCA vis-à-vis the DRP

based algorithms. While the problem formulation15 can be

found in [52], it may be noted that the three objectives relate

to (i) minimization of (f1) overall volume of gear material

used (which is directly related to the weight and cost of the

gearbox), (ii) maximization of (f2) power delivered by the

gearbox, and (iii) minimization of (f3) the center distance

between input and output shafts.
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(b) Parallel-coordinate plot (order of
f2 and f3 is swapped)

Fig. 13. Multi-speed gearbox design problem. The plots correspond to one
run of NSGA-II.

The NNS corresponding to a population size of 200 and

2000 generations is as shown in Figure 13a. Here, it can be

seen that f1 and f3 are non-conflicting among themselves,

while each is in conflict with f2. This is also affirmed

by Figure 13b. These observations are physically justifiable

because for a fixed number of gears, the lower the center

distance between the input and output shafts (f3), the smaller

the size of each gear will be, resulting in lower overall volume

of gear material (f1). It can be seen from the Table XVII that

while L-PCA and NL-MVU-PCA identify the redundancy in

the problem, the DRP based exact and greedy algorithms fail

to capture it. This can be explained through Figure 15a. In

that, while L-PCA and NL-MVU-PCA exploit the positive

correlation between f1 and f3 for objective reduction, the DRP

based algorithms fail owing to the nonlinearity (discussed in

detail, in Section VIII).

B. Storm Drainage System Problem

Originally described in [53], this is a five-objective, seven-

constraint problem which relates to optimal planning for a

storm drainage system in an urban area. The results for

this problem, presented in Table XVII, show that all the

algorithms identify either f1 or f3 as redundant. Both these

sets of results are correct because: (i) f1 and f3 are positively

15The version where the gear thickness, number of teeth, power and module
are all kept as variables.
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TABLE XVII
PERFORMANCE OF OBJECTIVE REDUCTION ALGORITHMS ON TWO REAL-WORLD APPLICATION PROBLEMS. THESE RESULTS CORRESPOND TO 20

NSGA-II RUNS WITH UNIFORMLY DISTRIBUTED SEEDS; EACH RUN CORRESPONDING TO 200 POPULATION SIZE AND 2000 GENERATIONS

Proposed approaches Dominance relation preservation [31], [36]: δ-MOSS, 0% Error

Real-world Problems NL-MVU-PCA L-PCA Greedy Approach Exact Approach

(a) Multi-speed gearboxa {f1, f2} {f1, f2} {f1, f2, f3} {f1, f2, f3}
(b) Storm drainage systemb {f2, f3, f4, f5} {f1, f2, f4, f5}c {f2, f3, f4, f5} {f2, f3, f4, f5}
a The error associated with NL-MVU-PCA and L-PCA is 0.00262± 0.00035 and 0.00559± 0.00074, respectively.
b The error associated with NL-MVU-PCA and L-PCA is 0.00002± 0.00001 and 0.00021± 0.00012, respectively.
c In 18 out of the 20 runs, L-PCA finds Fs = {f1, f2, f4, f5}, while twice it finds Fs = {f2, f3, f4, f5}.
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(a) NNS with all five objectives
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(b) f1 reconstructed from NNS ob-
tained with {f2, f3, f4, f5}

Fig. 14. Storm drainage problem: Parallel coordinate plots (normalized),
corresponding to one run of NSGA-II.

correlated (Figure 15b), and (ii) NNS obtained with either

{f2, f3, f4, f5} or {f1, f2, f4, f5} conforms with that for the

original problem (for brevity, only the former’s conformance

is shown in Figure 14).
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(a) Nonlinearity in f1–f3 subspace
of gearbox design problem
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(b) Linearity in f1–f3 subspace of
storm drainage problem

Fig. 15. Highlighting the nonlinear and linear characteristics of the two
real-world problems. These plots correspond to one run of NSGA-II.

The success of the DRP based algorithms can be attributed

to the linearity of this problem, as evident in Figure 15b (con-

sistent with the inferences from Section VIII). Furthermore,

among the positively correlated f1 and f3, NL-MVU-PCA

always picks f3 as important owing to its larger variance

(Figure 14) than f1–a fact that L-PCA could identify only

twice out of the 20 runs.

X. CONCLUSIONS

This paper has proposed a framework for both linear and

nonlinear objective reduction algorithms, namely, L-PCA and

NL-MVU-PCA, respectively. The performance of these al-

gorithms has been studied for 30 test instances (from both

redundant and non-redundant problems) and for two real-world

problems. The sensitivity of these algorithms on the critical

parameters involved and on the quality of the underlying non-

dominated sets has been discussed. An error measure has also

been proposed to assess the obtained results. A comparative

analysis of the proposed algorithms vis-à-vis the dominance

relation preservation based algorithms, has been done in terms

of their scope of application and the computational complexity.

For future work, the endeavor of the authors will be to

demonstrate the application of the proposed algorithms for

online objective reduction, δ-MOSS problems with different δs

and on k-EMOSS problems. The future work will also focus

on testing the framework on more real-world problems and

problems with high-dimensional and complicated Pareto-set

shapes.
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Supplement on Parameter Sensitivity, Data Quality

and Resulting Errors

TABLE I
DERIVATIONS FOR DT (DISPERSAL OF SOLUTIONS ON THE TRUE POF) FOR THE USED TEST PROBLEMS. DT ALLOWS FOR THE COMPUTATION OF

NORMALIZED MAXIMUM SPREAD INDICATOR (Is = DA/DT )

Problem POF Condition fmax fmin D2
T =

∑

M

i=1

(

fmax

i
− fmin

i

)2

DTLZ1 g = 0 fi = 1
2
, ∀i = 1, . . . ,M fi = 0, ∀i = 1, . . . ,M

∑

M

i=1

(

1
2

)

2 = 0.25M

DTLZ2

DTLZ3 g = 0 fi = 1, ∀i = 1, . . . ,M fi = 0, ∀i = 1, . . . ,M
∑

M

i=1
1 = M

DTLZ4

DTLZ5(I,M) g = 0 f1 =
(

1√
2

)

M−I

fi =
(

1√
2

)

M−I+2−i

, ∀i = 2, . . . ,M − I + 1 fi = 0, ∀i = 1, . . . ,M Notea

fi = 1, ∀i = M − I + 2, . . . ,M

DTLZ7 g = 1 fi = 1, ∀i = 1, . . . ,M − 1 fi = 0, ∀i = 1, . . . ,M − 1

fM = 2M fM = 2M − tmax M − 1 + t2
max

, Noteb

a
(

1
2

)

M−I +
∑

M−I+1

i=2

(

1
2

)

M−I+2−i +
∑

I−1

i=1
1

b t =
∑

M−1

i=1
xi(1 + sin(3πxi)) and tmax ≈ 0.8594009(M − 1)

TABLE II
ERRORS (Er ) ASSOCIATED WITH NL-MVU-PCA AND L-PCA FOR REDUNDANT AND NON-REDUNDANT TEST PROBLEMS, WITH θ = 0.997. THE MEAN

(µ) AND STANDARD DEVIATION (σ) IS OBTAINED FOR 20 RANDOM RUNS

Test problems NL-MVU-PCA L-PCA

DTLZ5(I,M)a Nǫ NNS Nǫ NNS

I M (µ ± σ) (µ ± σ) (µ ± σ) (µ ± σ)

2 5 0.00747 ± 0.00435 0.01541 ± 0.01271 0.05032 ± 0.02293 0.03306 ± 0.02591
2 10 0.00741 ± 0.00391 0.01813 ± 0.01805 0.05589 ± 0.02835 0.01387 ± 0.02214
2 20 0.00956 ± 0.00481 0.02437 ± 0.02425 0.05882 ± 0.02542 0.01173 ± 0.01836
2 30 0.01511 ± 0.00884 0.05226 ± 0.02069 0.07751 ± 0.04151 0.08508 ± 0.03425
2 50 0.01565 ± 0.01095 0.06615 ± 0.02003 0.10391 ± 0.04306 0.21139 ± 0.05023
3 5 0.00113 ± 0.00085 0.01382 ± 0.00566 0.00462 ± 0.00289 0.00000 ± 0.00000
3 10 0.00307 ± 0.00202 0.00000 ± 0.00000 0.03261 ± 0.01764 0.00000 ± 0.00000
3 20 0.00547 ± 0.00394 0.00020 ± 0.00054 0.05459 ± 0.02273 0.00044 ± 0.00113
5 10 0.00159 ± 0.00092 0.00000 ± 0.00000 0.01454 ± 0.00624 0.00000 ± 0.00000
5 20 0.00258 ± 0.00127 0.00000 ± 0.00000 0.02955 ± 0.01351 0.00000 ± 0.00000
7 10 0.00179 ± 0.00086 0.00000 ± 0.00000 0.01052 ± 0.00465 0.00000 ± 0.00000
7 20 0.00218 ± 0.00077 0.00000 ± 0.00000 0.03391 ± 0.01248 0.00000 ± 0.00000

WFG3a 5 0.00725 ± 0.00114 0.00261 ± 0.00074 0.09986 ± 0.04019 0.03722 ± 0.01396
15 0.00962 ± 0.00296 0.00293 ± 0.00112 0.24881 ± 0.18592 0.21041 ± 0.05908
25 0.01002 ± 0.00511 0.00266 ± 0.00177 0.13044 ± 0.09724 0.19117 ± 0.05063

DTLZ1b 5 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000
15 0.00058 ± 0.00070 0.00000 ± 0.00000 0.00167 ± 0.00321 0.00000 ± 0.00000
25 0.00140 ± 0.00077 0.00000 ± 0.00000 0.01728 ± 0.01241 0.00000 ± 0.00000

DTLZ2 5 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000
15 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000
25 0.00002 ± 0.00007 0.00000 ± 0.00000 0.00044 ± 0.00107 0.00000 ± 0.00000

DTLZ3 5 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000
15 0.00022 ± 0.00033 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000
25 0.00116 ± 0.00045 0.00000 ± 0.00000 0.01167 ± 0.01102 0.00000 ± 0.00000

DTLZ4 5 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000
15 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000
25 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000

DTLZ7 5 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000
15 0.00028 ± 0.00123 0.00236 ± 0.00692 0.00000 ± 0.00000 0.00000 ± 0.00000
25 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000

a Redundant Problems: In Section VI.D of the main paper, it has been discussed that the error measures could be reliable only if the following conditions are simultaneously

met: (i) the objective reduction algorithm is accurate, and (ii) the solution set on which an algorithm operates is representative of the true POF. In the current context, four

different combinations of accurate/inaccurate algorithms and good/bad solution sets are possible. For an accurate–good combination like NL-MVU-PCA operating on Nǫ, the

error measures should be reliable. This can be seen to be true above. Other error measures need to be interpreted in the light of algorithm–population combinations and the

results in Table XI.
b Non-Redundant Problems: In Section VII of the main paper, it has been discussed that Nǫ for these problems is highly mis-representative of the true POF. In that, it shows

characteristics of redundant problems, given which NL-MVU-PCA reduces the number of objectives, while L-PCA fails to. Ironically, this reflects as the inefficiency of

NL-MVU-PCA and efficiency of L-PCA in Table XII of the main paper. The above error measures need to be interpreted in the wake of this fact.
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TABLE III
EFFECT OF THE VARIANCE THRESHOLD (θ = 0.954, WITH q = M − 1) AND NEIGHBORHOOD SIZE (q =

√
M , WITH θ = 0.997) ON THE PERFORMANCE

OF THE PROPOSED L-PCA AND NL-MVU-PCA ALGORITHMS ON REDUNDANT TEST PROBLEMS, CORRESPONDING TO NNS AND Nǫ . THE NUMBERS IN

THE TABLE INDICATE THE FREQUENCY OF SUCCESS IN IDENTIFYING THE TRUE I AND FT , OUT OF 20 RUNS. THE DASHES (-) REPLACE 0 TO IMPLY

INCONSEQUENTIAL ENTRIES, AS THE PREREQUISITE I IS NOT MET

θ = 0.954 and q = M − 1 θ = 0.997 and q =
√
M

Test problems NL-MVU-PCA L-PCA NL-MVU-PCA L-PCA

DTLZ5(I,M) Nǫ NNS Nǫ NNS Nǫ NNS Nǫ NNS

I M Ia FT Ib FT Ic FT I FT Id FT Ie FT I f FT I FT

2 5 20 20 20 20 20 4 20 1 20 20 20 20 20 14 20 1

2 10 20 20 11 11 20 0 0 - 20 20 15 14 20 7 0 -

2 20 20 20 7 7 20 0 0 - 20 20 18 16 20 2 0 -

2 30 20 20 14 14 20 1 0 - 20 20 17 17 20 1 0 -

2 50 20 20 14 14 20 0 9 0 20 20 18 18 20 0 10 0

3 5 20 20 18 18 20 8 0 - 20 20 20 20 20 9 0 -

3 10 20 20 0 - 20 4 0 - 20 20 1 0 20 2 0 -

3 20 20 20 0 - 20 0 0 - 20 20 0 - 20 1 0 -

5 10 19 19 0 - 20 2 0 - 20 19 0 - 19 3 0 -

5 20 20 20 0 - 19 0 0 - 20 19 0 - 18 0 0 -

7 10 19 19 0 - 17 4 0 - 20 16 0 - 20 6 0 -

7 20 16 16 0 - 16 3 0 - 16 16 0 - 13 3 0 -

5 20 20 20 20 20 19 20 3 20 20 20 20 20 19 20 5

WFG3 15 15 15 20 20 9 0 19 0 16 16 20 20 10 0 19 0

25 9 9 20 20 4 1 19 0 11 11 20 20 6 0 20 0

a DTLZ5(2, 30)—1R (2I); DTLZ5(5, 10)—3R (2I); DTLZ5(5, 20)—6R (2I); DTLZ5(7, 10)—7R (2I); DTLZ5(7, 20)—8R (2I) and 1R (4I); WFG3(3, 15)—6R (2I) and 3R

(3I); WFG3(3, 25)—5R (2I), 1R (3I) and 1R (4I).
b DTLZ5(2, 10)—4R (2I), 5R (3I) and 3R (4I); DTLZ5(2, 20)—1R (2I), 2R (4I), 2R (5I), 1R (6I), 1R (7I); DTLZ5(2, 30)—3R (2I), 3R (3I), 4R (4I) and 4R (5I); DTLZ5(2, 50)—

8R (2I) and 2R (3I); DTLZ5(3, 5)—9R (2I).
c DTLZ5(7, 20)—2R (2I); WFG3(5)—11R (2I); WFG3(15)—1R (3I).
d DTLZ5(2,30)—1R (2I); DTLZ5(5,10)—3R (2I); DTLZ5(5,20)—8R (2I); DTLZ5(7,10)—4R (2I); DTLZ5(7,20)—9R (2I) and 1R (4I); WFG3(15)—7R (2I) and 2R (3I);

WFG3(25)—3R (3I) and 1R (4I).
e DTLZ5(2,10)—9R (2I), 4R (3I) and 1R (4I); DTLZ5(2,20)—2R (2I), 7R (3I) and 7R (4I); DTLZ5(2,30)—3R (2I), 5R (3I), 5R (4I), 2R (5I) and 2R (6I); DTLZ5(2,50)—11R

(2I), 5R (3I), 1R (4I) and 1R (6I).
f DTLZ5(7,10)—2R (2I); DTLZ5(7,20)—1R (2I); WFG3(5)—11R (2R).

TABLE IV
EFFECT OF THE VARIANCE THRESHOLD (θ = 0.954, WITH q = M − 1) AND NEIGHBORHOOD SIZE (q =

√
M , WITH θ = 0.997) ON THE PERFORMANCE

OF THE PROPOSED L-PCA AND NL-MVU-PCA ALGORITHMS ON NON-REDUNDANT TEST PROBLEMS, CORRESPONDING TO NNS AND Nǫ . THE

NUMBERS IN THE TABLE INDICATE THE FREQUENCY OF SUCCESS IN IDENTIFYING THE FT , OUT OF 20 RUNS. THE DASHES (-) REPLACE 0 TO IMPLY

INCONSEQUENTIAL ENTRIES, AS THE PREREQUISITE I IS NOT MET

Test Problems θ = 0.954 and q = M − 1 θ = 0.997 and q =
√
M

DTLZ(M ) NL-MVU-PCA L-PCA NL-MVU-PCA L-PCA

Name M Nǫ NNS Nǫ NNS Nǫ NNS Nǫ NNS

DTLZ1 5 20 18 20 20 20 19 20 20

15 6 20 15 20 4 18 15 20

25 0 20 4 20 0 20 4 20

DTLZ2 5 20 20 19 20 20 20 19 20

15 20 20 20 20 17 18 20 20

25 16 20 16 20 16 17 17 20

DTLZ3 5 19 20 20 20 20 20 20 20

15 11 20 18 20 9 14 18 20

25 0 20 4 20 0 18 4 20

DTLZ4 5 20 20 20 19 20 20 20 20

15 20 20 20 20 19 15 20 20

25 20 20 20 20 19 19 20 20

DTLZ7 5 20 20 20 20 20 4 20 20

15 19 17 20 20 19 17 20 20

25 20 20 20 20 20 20 20 20

Effect of Threshold Parameter (θ)

• The results presented above for both the redundant and the non-redundant problems can easily be interpreted in the wake of the arguments presented in Sections IV.G and

VII.A in the main paper. In that, a lower θ is likely to have little effect on the accuracy of the algorithms in the case of highly redundant problems, while their accuracy is

likely to fall as the degree of redundancy in the problems reduces. The same hold true for the results presented above.

Effect of Neighborhood size (q =
√
M )

• The question of how to fix the parameter q which controls neighborhood size in MVU, is an open question. Based on empirical evidence q = 4 is most often used in

literature. However, in this paper, one of the goals being control parameter reduction, q = M − 1 has been recommended and used. The rationale for this choice of q lies

in giving preference to retention of local isometry. The results presented above and those in Tables XI and XII in the main paper show that with the use of q =
√
M , the

performance in the case of redundant problems marginally improved, while it marginally deteriorated for the redundant problems. As the shift in performance is not drastic,

the choice of q = M − 1 can be justified, as it offers reasonably high accuracy, along with the advantage of a reduction in one control parameter.


