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ABSTRACT	OF	THE	THESIS	
	

Objective	Stress	Monitoring	based	on	Wearable	Sensors	in	Everyday	Settings	

	

By	

	

Hee	Jeong	Han	

	

Master	of	Science	in	Computer	Science	

	

	University	of	California,	Irvine,	2019	

	

Distinguished	Professor	Nikil	D.	Dutt,	Chair	

	

	

	

Monitoring	stress	levels	has	become	an	important	part	of	healthcare	systems	for	physical	

and	 mental	 illnesses.	 However,	 current	 stress	 monitoring	 systems	 have	 failed	 to	 gather	

personal	data	in	an	everyday	context.	The	current	state	of	sensor	technology	allows	us	to	

develop	 systems	 measuring	 the	 physiological	 signals,	 which	 reflect	 stress	 by	 wearable	

devices.	Therefore,	we	propose	a	stress	monitoring	system	that	provides	an	objective	daily	

healthcare	 based	 on	 personal	 physiological	 signals:	 electrocardiogram	 (ECG),	

photoplethysmogram	 (PPG),	 and	 galvanic	 skin	 response	 (GSR).	 We	 use	 the	 wearable	

devices,	 Shimmer3	 ECG,	 Shimmer3	 GSR+	 and	 Empatica	 E4	Wristband,	 to	monitor	 stress	

ubiquitously.	We	perform	controlled	stress	experiments	on	17	participants	and	the	system	

successfully	 detects	 stress	 with	 a	 94.55%	 accuracy	 for	 10-fold	 cross-validation	 and	 an	

85.71%	 accuracy	 for	 subject-wise	 cross-validation.	 In	 everyday	 settings,	 the	 system	

assesses	stress	with	an	81.82%	accuracy.	We	also	examine	whether	motion	artifacts	affect	

stress	assessment.	
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1.	INTRODUCTION	

Stress	 is	 defined	by	Hans	 Selye	 as	 the	body’s	 response	 to	 one	 or	more	 stimuli	 that	 have	

disrupted	its	mental	or	physical	equilibrium	[1].	People	nowadays	exhibit	more	stress	due	

to	 increased	mental	workload	from	stressful	environments	such	as	work	[2].	 In	the	2016	

Stress	Pulse	survey,	60	percent	of	employees	have	high	levels	of	stress	and	32	percent	of	

employees	keep	constant,	but	manageable	stress	levels	[3].	Prolonged	periods	of	stress	are	

associated	 with	 wear	 and	 tear	 on	 the	 system	 [4],	 resulting	 in	 higher	 rates	 of	 disease,	

including	 psychological	 illnesses.	 For	 instance,	 it	 has	 been	 shown	 that	 stress	 correlates	

with	 heart	 disease,	 asthma,	 obesity,	 and	 diabetes	 [5],	 and	 also,	 can	 lead	 to	maladaptive	

health	behaviors	such	as	smoking,	irregular	sleep,	and	poor	eating	habits	[6].	

	

There	 are	 two	kinds	 of	 stress:	 short-term/acute	 stress	 and	 long-term/chronic	 stress	 [7].	

Short-term	stress	is	caused	by	pressures	and	demands	in	the	recent	past	or	near	future.	For	

example,	test	anxiety	can	cause	short-term	stress.	However,	long-term	stress	occurs	when	

there	are	long-standing	pressures	and	demands.	An	unsatisfying	interpersonal	relationship	

or	career	can	cause	 long-term	stress.	When	people	do	not	relieve	 long-term	stress,	 it	can	

cause	 detrimental	 results.	 Since	 controlling	 stress	 levels	 is	 significant	 in	 life,	 informing	

people	about	stress	in	daily	life	has	become	important	[8].	Therefore,	monitoring	stress	has	

become	a	key	component	of	modern	healthcare	since	it	can	be	used	for	early	diagnosis	to	

prevent	both	physical	and	mental	diseases.	

	

There	 is	no	accurate	method	 for	 checking	 stress	 levels	because	 stress	 can	be	affected	by	

many	factors.	That	is	why	the	most	accurate	method	of	evaluating	stress	levels	is	currently	
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under	 development.	 One	method	 to	measure	 personal	 stress	 is	 conducting	 an	 interview	

with	 a	 psychologist	 based	 on	 a	 questionnaire	 [9].	However,	 this	method	has	 a	 reliability	

problem	 because	 participants	might	 not	 answer	 correctly	 or	might	 not	 be	 able	 to	 recall	

memories	 relating	 to	 why	 they	 are	 stressed.	 In	 order	 to	 increase	 reliability,	 objective	

measurements	are	needed.	The	current	healthcare	systems	for	managing	stress	have	been	

confined	within	clinical	usage.	One	method	consists	of	using	leukocytes	to	detect	hormone	

changes	when	people	are	stressed	[10].	Although	 it	can	precisely	monitor	stress,	 it	 is	not	

widely	used	as	people	cannot	check	their	hormone	levels	easily.	

	

However,	stress	 is	directly	related	to	the	autonomic	nervous	system	(ANS),	which	can	be	

measured	 from	physiological	 signals	 [11].	 There	 are	 numerous	 physiological	methods	 to	

measure	stress:	heart	activity,	blood	activity,	and	skin	response.	The	current	state	of	sensor	

technology	allows	us	to	develop	systems	measuring	physiological	signals	reflecting	stress	

level	 [2].	 Monitoring	 personal	 physiological	 signals	 by	 wireless	 sensors	 enables	 the	

continuous	 tracking	 of	 personal	 stress	 status.	 Stress	 monitoring	 systems	 are	 currently	

moving	from	using	traditional	physiological	sensors	such	as	electroencephalography	(EEG)	

and	ECG	to	using	optical	sensors	such	as	PPG	and	GSR	[11].	Most	stress	detection	systems	

collect	 physiological	 data	 in	 controlled	 settings.	 With	 various	 stress	 tests	 (e.g.,	 memory	

game,	 presentation),	 those	 systems	 invoke	 stress	 and	 classify	 stress	 levels.	 However,	

existing	systems	assess	stress	in	controlled	settings.	To	provide	a	proper	stress	monitoring	

system,	 everyday	 assessment	 is	 necessary	 instead	 of	 short-term	 laboratory	 based	

assessment.	
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In	this	paper,	we	propose	a	new	stress	monitoring	system	which	provides	daily	healthcare	

in	everyday	settings.	The	system	collects	various	physiological	signals	(ECG,	PPG,	and	GSR)	

obtained	by	wearable	 sensors	 and	detects	 stress	 based	on	 those	personal	 signals	 during	

daily	 activities.	The	proposed	 system	 is	 supported	by	all	 existing	wearable	devices.	With	

noninvasive	sensors,	physiological	signals	are	collected	in	controlled	and	everyday	settings.	

The	system	analyzes	physiological	signals	from	controlled	tests	to	define	stress	and	build	a	

model.	 In	 order	 for	 the	 system	 to	provide	daily	 stress	 assessments,	 the	 system	 classifies	

physiological	signals	from	daily	life	to	define	stress	with	the	model.	We	design	the	system	

to	 improve	 the	 overall	 quality	 of	 life	 for	 people	 by	 enabling	 the	monitoring	 of	 stress	 in	

everyday	settings.	

	

The	 remainder	 of	 this	 paper	 is	 organized	 as	 follows.	 Section	2	 presents	 prior	 studies	 on	

stress	monitoring.	Section	3	provides	background	information	on	physiological	parameters	

related	 to	 stress.	 Section	 4	 describes	 our	 methodology	 for	 experimental	 protocol,	 data	

collection,	processing	of	physiological	signals,	feature	selection,	and	classification.	Section	5	

presents	the	experimental	results.	Section	6	concludes	the	paper	and	states	future	work.	
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2.	RELATED	WORKS	

Assessing	 stress	 has	 been	 widely	 studied	 in	 psychology.	 The	 most	 popular	 subjective	

methods	used	 for	 this	purpose	are	questionnaires	and	 interviews.	Holmes	and	Rahe	 [12]	

established	the	Social	Readjustment	Rating	Scale	which	became	the	quantitative	standard.	

Since	 then,	 several	 questionnaire	 or	 interview	 based	 methods	 have	 been	 proposed	 for	

measuring	 stress	 through	 self-assessment.	 For	 instance,	 in	 [13],	 the	 Stress	 Assessment	

Questionnaire	 (SAQ)	 is	 proposed	 as	 an	 on-line	 self-reporting	 assessment	 tool.	 The	 SAQ	

contains	16	areas	where	 each	area	has	8	 items	 for	understanding	 symptoms	of	 stress	 in	

different	contexts	such	as	relationships,	parenting,	and	work.	Each	participant	self-assesses	

and	reports	her/his	stress	level	on	a	scale	from	1	to	5.	

	

Even	 though	questionnaires	and	 interviews	are	practical	and	allow	researchers	 to	gather	

subjective	 information	 from	a	 large	number	of	participants,	 these	methods	 suffer	 from	a	

number	of	disadvantages.	First,	it	is	possible	that	respondents	may	not	answer	truthfully	or	

may	 ignore	 some	questions.	 Some	 respondents	 answer	based	on	what	 they	may	 think	 is	

socially	acceptable	or	desirable	[14].	Furthermore,	it	is	hard	to	design	questionnaires	and	

interviews	 clearly	 [15].	 As	 a	 result,	 respondents	 may	 understand	 questions	 differently.	

Even	 though	 psychological	 experts	 may	 interpret	 and	 analyze	 personal	 answers	 well,	

questionnaires	 and	 interviews	 are	 hard	modalities	 for	 capturing	 emotional	 responses	 or	

mental	imbalances.	

	

To	 overcome	 these	 challenges,	 researchers	 have	 proposed	 laboratory-based	 objective	

stress	 assessment	 methods	 through	 analyzing	 stress-related	 hormone	 levels.	 Using	
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psychological	 stress	 tests	 for	 inducing	 stress	 such	 as	 the	Trier	 Social	 Stress	Test	 (TSST),	

changes	 in	 hormones	 are	 used	 to	 investigate	 stress	 responses	 [16].	 In	 these	 methods,	

salivary	cortisol	was	 found	 to	correlate	with	stress,	and	since	 then,	 it	has	been	used	as	a	

stress	factor	in	clinical	usage	[17].	Beside	salivary	cortisol,	leukocyte	is	used	for	assessing	

stress	[10].	White	blood	cells	 from	blood	respond	to	stress	hormones.	Even	though	these	

methods	can	provide	a	valid	stress	assessment,	they	are	not	feasible	to	be	used	in	real-time	

continuous	 remote	stress	monitoring	 in	everyday	settings	due	 to	 their	 issues	 in	 terms	of	

cost,	delay,	and	need	for	physical	samples.	

	

To	 provide	 a	 real-time	 stress	 assessment,	 researchers	 focus	 on	 the	 ANS,	 which	 adjusts	

physiological	 activities.	 The	 parasympathetic	 nervous	 system	 (PNS)	 and	 the	 sympathetic	

nervous	system	(SNS)	are	two	parts	of	the	ANS	[18].	The	PNS	is	responsible	for	moving	the	

body	during	rest.	On	the	other	hand,	the	SNS	is	responsible	for	“fight	or	flight”	responses	to	

protect	the	body.	Under	stress,	the	SNS	forces	the	body’s	systems	to	action	[19].	Due	to	the	

development	 of	 sensor	 technology,	 many	 studies	 use	 heart	 rate,	 health	 behaviors,	 and	

other	vital	 signals	 to	detect	 individual	 stress.	Table	1	 shows	a	 comparison	between	ours	

and	 related	 works.	 It	 summarizes	 deployed	 sensors,	 test	 setting,	 test	 period,	 and	 test	

activities.		

	

In	[25],	an	automatic	stress	detection	and	an	alleviation	system	is	proposed	based	on	five	

physiological	 signs:	 ECG,	 GSR,	 respiration	 rate,	 blood	 pressure,	 and	 peripheral	 capillary	

oxygen	saturation	(SpO2).	The	data	is	collected	from	32	participants	through	a	laboratory-		
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based	 experiment,	 which	 takes	 94	 minutes.	 Their	 machine	 learning	 based	 approach	 is	

trained	and	validated	in	a	controlled	setting	where	the	participants	are	asked	to	carry	out	

certain	stress	 tests	 (e.g.,	 fly	 sound	or	 ice	 tests).	However,	 this	approach	suffers	 from	two	

limitations	in	terms	of	its	use	in	everyday	settings:	1)	it	is	not	feasible	to	deploy	some	of	the	

sensors	used	in	this	study	(e.g.,	blood	pressure,	SpO2)	in	continuous	monitoring	and	2)	the	

approach	does	not	consider	disturbances	and	challenges	existing	in	daily	life	(e.g.,	motion	

artifacts).	

	

In	[22],	an	activity-aware	mental	stress	detection	system	is	proposed	which	also	considers	

physical	 activity.	 The	 system	 gathers	 ECG,	 GSR	 and	 accelerometer	 data	 for	 30	 minutes	

across	 three	 activities:	 sitting,	 standing,	 and	 walking.	 Its	 experimental	 procedure	 also	

consists	of	 laboratory-based	stress	tasks	such	as	the	Stroop	Color	and	Word	Test	(SCWT)	

and	 mental	 arithmetic.	 This	 study	 detects	 mental	 stress	 affected	 by	 physical	 activities.	

However,	even	though	it	provides	a	relationship	between	stress	and	physical	activities,	 it	

does	 not	 consider	 the	 daily	 context	 when	 determining	 stress,	 i.e.,	 the	 system	 is	 not	

deployed	in	everyday	settings.	

	

In	 [2],	 a	 GSR-based	 pattern	 recognition	 system	 is	 proposed	 for	 stress	 assessment.	 Even	

though	this	work	utilizes	non-laboratory	data	to	find	stress	levels,	it	only	uses	a	GSR	sensor	

which	 is	not	 as	 sensitive	 compared	 to	other	mechanisms.	The	data	 is	 collected	 from	 five	

persons	during	working	hours	for	four	weeks.	However,	the	paper	concludes	that	GSR	data	

is	 not	 sufficient	 for	 determining	 levels	 of	 stress	 with	 high	 accuracy.	 It	 also	 states	 that	

contextual	data	 is	needed	when	detecting	stress	 in	daily	activities.	Even	though	the	users	
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are	 suggested	 to	 record	 their	 feelings,	 the	 paper	 does	 not	 use	 this	 information.	 In	 our	

approach,	 we	 use	 a	 combination	 of	 sensors,	 GSR,	 PPG	 and	 ECG	 to	 improve	 accuracy	 for	

stress	identification.	Furthermore,	we	collect	daily	context	data	from	users	and	use	it	when	

determining	stress.	

	

Another	major	difference	 is	 that	 these	previous	studies	have	been	confined	to	 laboratory	

environments,	making	it	impractical	to	build	a	stress	monitoring	system	for	daily	life	usage.	

In	 contrast,	 our	 study	 collects	 various	 physiological	 data	 (ECG,	 PPG	 and	 GSR)	 in	 both	

laboratory-based	 tests	 and	 everyday	 data	 collection	 and	 thus,	 defines	 stress	 levels	 in	

everyday	life.	
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3.	BACKGROUND	

Stress	 can	 be	measured	 by	 several	 physiological	 indicators	 such	 as	 heart	 activity,	 blood	

activity	and	skin	response.	We	use	three	physiological	parameters,	ECG,	PPG,	and	GSR,	and	

extract	various	features	from	those	signals	to	classify	stress.	In	this	section,	we	describe	the	

concept	of	physiological	parameters	and	features.	

	

3.1.	ECG	and	PPG	

The	ECG	is	a	measure	of	the	electrical	activity	of	the	heart	during	each	cardiac	cycle	[30].	

The	 ECG	 uses	 electrodes	 to	 measure	 electrical	 signals	 produced	 by	 depolarization	 and	

repolarization	of	 the	heart	[31].	A	typical	heart	rate	consists	of	a	P	wave,	a	QRS	complex,	

and	a	T	wave.	The	R-R	 interval	 is	 the	 time	 interval	between	adjacent	R	peaks	 in	 the	ECG	

[22].	Heart	rate	(HR)	and	heart	rate	variability	(HRV)	are	calculated	from	the	R-R	interval.	

	

The	PPG	is	a	measure	of	the	electrical	activity	of	the	blood	during	each	cardiac	cycle	[11].	

The	PPG	uses	an	optical	pulse	 to	measure	a	change	 in	blood	volume	and	blood	pressure.	

Since	 the	 changes	 of	 HR	 and	 HRV	 can	 be	 observed	 the	 changes	 in	 blood	 volume	 pulse	

measured	from	the	skin,	we	intend	to	extract	HR	and	HRV.	

	

In	a	stressful	situation,	HR	increases.	HRV	is	the	fluctuation	in	the	time	intervals	between	

adjacent	heartbeats	 [32].	HRV	variables	 change	 in	 response	 to	 stress.	A	decrease	 in	HRV	

variables	 has	 been	 found	 to	 be	 associated	 with	 stress	 [33].	 We	 focus	 on	 time-domain,	

frequency-domain,	and	non-linear	HRV	variables.	
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3.1.1.	Time	Domain	HRV	

Time-domain	 variables	 of	 HRV	 show	 the	 amount	 of	 variability	 in	 measurements	 of	 the	

interbeat	interval	(IBI),	which	is	the	time	period	between	successive	heartbeats	[34].	In	the	

time-domain	 analysis,	 Table.	 2	 shows	 several	 time-domain	parameters	 that	we	 focus	 on.	

	

	

3.1.2.	Frequency	Domain	HRV	

Frequency-domain	 variables	 estimate	 the	 distribution	 of	 absolute	 or	 relative	 power	 into	

certain	frequency	bands	[34].	Table	3	shows	several	frequency-domain	parameters	that	we	

focus	 on.	 The	LF	band	 is	 related	 to	 short-term	blood	pressure	 variation.	 The	HF	band	 is	

related	 to	 breathing	 rate.	 In	 addition,	 the	 LF	 and	 HF	 components	 are	 respectively	

associated	 with	 the	 sympathetic	 nervous	 system	 (SNS)	 and	 parasympathetic	 nervous	

system	(PNS)	activities	in	the	nervous	system	[35][36].	The	analysis	involved	in	assessing	

frequency-domain	 HRV	 analysis	 lies	 in	 the	 energy	 ratio	 of	 LF	 to	 HF	 content.	 The	 most	

frequently	 reported	 stress	 factor	 associated	 with	 variation	 in	 HRV	 variables	 was	 low	

parasympathetic	activity,	which	is	characterized	by	a	decrease	in	the	HF	and	an	increase	in	

the	LF	[33].	
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3.1.3.	Nonlinear	Domain	HRV	

Non-linear	 indices	 quantify	 the	 unpredictability	 of	 a	 time	 series	 [37].	 Non-linear	 indices	

have	a	correlation	with	time-domain	indices	and	frequency-domain	indices.	Table	4	shows	

several	non-linear	parameters	that	we	focus	on.	A	Poincar	plot	is	a	graph	plotting	every	RR	

interval	 against	 the	 prior	 interval	 [34].	 Poincar	 plot	 analysis	 shows	 patterns	 within	 a	

sequence	 of	 values	 from	 successive	 R-R	 intervals.	 It	 does	 not	 affect	 changes	 of	 the	 R-R	

intervals	rapidly	[38].	SD1	describes	the	width	of	the	ellipse	and	has	a	correlation	with	HF.	

SD2	describes	 the	 length	 of	 the	 ellipse	 and	 has	 a	 correlation	with	 LF.	 SD1/SD2	which	 is	

related	to	LF/HF,	is	used	to	measure	stress	in	sympathetic	activity.	

	

	

3.2	GSR	

GSR	is	a	measure	of	skin	conductance	during	activity	changes.	Skin	conductance	based	on	

sweat	 gland	 activity	 that	 activates	 in	 response	 to	 high	 stress	 is	 indicative	 of	 the	 skin	 to	

conduct	electricity	to	detect	increased	stress	[11].	Since	the	sweat	gland	reacts	to	the	SNS,	
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an	 increase	 in	 sweating	 causes	 an	 increase	 of	 skin	 conductance	 in	 a	 stressful	 situation.	

Therefore,	 it	 can	be	used	as	an	 indicator	of	 stress.	We	 focus	on	a	parameter	of	GSR,	 skin	

conductance.	
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4.	METHODOLOGY	

The	 stress	 monitoring	 system	 provides	 an	 assessment	 of	 stress	 levels	 to	 the	 user.	 We	

collect	 physiological	 signals:	 ECG,	 PPG,	 GSR.	 We	 have	 two	 kinds	 of	 settings:	 controlled	

setting	and	everyday	setting.	To	find	a	correlation	between	stress	and	physiological	signals,	

we	do	offline	laboratory-based	stress	tests	when	collecting	personal	signals	from	wearable	

devices.	With	the	collected	physiological	signals,	we	process	raw	signals	to	extract	features.	

We	make	a	model	using	features	and	find	the	relationship	between	each	feature	and	stress.	

We	 assume	 that	 stress	 is	 labelled	 in	 binary	whether	 each	 participant	 is	 stressed	 or	 not.	

Figure	1	shows	the	project	overview	in	a	controlled	setting.	

	

	

We	also	collect	physiological	signals	in	a	everyday	setting	through	wearable	devices	to	find	

daily	stress	levels.	With	everyday	data,	we	do	feature	extraction	and	prediction	through	the	

model	 from	 the	 controlled	 setting	 to	 get	 personal	 stress	 levels.	 The	 proposed	 system	

overcomes	 the	 problem	 of	 current	 stress	 monitoring	 methods,	 which	 cannot	 analyze	

personal	stress	obtained	in	everyday	activities.	Figure	2	shows	the	project	overview	in	the	

everyday	setting.		



14	

	

	

	

4.1	Device	

We	use	Shimmer3	ECG,	Shimmer3	GSR+,	and	Empatica	E4	Wristband	devices.	We	collected	

the	ECG	data	 from	Shimmer3	ECG,	and	 the	PPG,	and	 the	GSR	data	 from	Shimmer3	GSR+.	

Empatica	E4	Wristband	is	used	for	gathering	the	PPG,	and	the	GSR	data.	

	

4.2	Data	collection	in	controlled	setting	

In	a	controlled	setting,	we	do	laboratory-based	stress	tests.	Laboratory-based	stress	tests	

consist	 of	 several	 stress	 tasks	 for	 inducing	 short-term	 stress.	 During	 stress	 tests,	 the	

expected	 result	 is	 1	 for	 stress	 tasks,	 and	 0	 otherwise.	 We	 implement	 two	 kinds	 of	

laboratory-based	 tests.	 Figure	 3	 is	 our	 experimental	 procedure.	 The	ECG	has	 a	 sampling	

rate	of	512	Hz,	however,	the	PPG	and	the	GSR	have	a	sampling	rate	of	128	Hz.		



15	

	

	

	

The	 first	 laboratory-based	 test	 takes	 approximately	 50	 minutes	 for	 each	 participant.	 It	

consists	 of	 five	 stress	 tasks:	Memory	 game,	Mosquito	 sound,	 Images	Test,	 Plank,	 and	 Ice	

Test	[25].	Each	stress	task	lasts	for	2	minutes,	followed	by	a	6	minute	rest	period	between	

each	stress	task.	Baseline	is	the	first	stage	of	the	test	to	collect	basic	personal	physiological	

signals.	We	asked	participants	to	meditate	while	listening	to	classical	music.	Rest	is	a	rest	

period	for	the	participants	after	each	stress	task	where	they	would	listen	to	classical	music.	

This	 period	 is	 needed	 to	 reduce	 stress,	which	 is	 incurred	 from	 the	 previous	 stress	 task.	

Memory	Game	is	a	card	game	in	which	all	of	the	cards	are	laid	face	down	and	two	cards	are	

flipped	face	up	over	each	turn.	The	goal	of	the	game	is	to	turn	pairs	of	matching	cards	[39].	

Mosquito	sound	is	a	period	where	the	participants	would	listen	to	a	mosquito	sound	with	a	

black	screen	to	prevent	distraction	[40].	Images	Test	is	a	period	for	the	participants	to	see	

selected	pictures	from	the	International	Affective	Picture	System	(IAPS)	[41].	IAPS	provides	

affect	 ratings	 of	 pictures.	 Plank	 is	 a	 period	 for	 the	 participants	 to	 do	 a	 plank	 for	 two	

minutes	while	putting	their	palms	up	to	prevent	sensor	distortion.	Ice	Test	is	a	period	for	

the	participants	to	put	their	right	hand	inside	an	ice	cup	[25].	

	

The	second	laboratory-based	test	also	takes	approximately	50	minutes	for	each	participant.	

It	 consists	 of	 three	 stress	 tasks:	 TSST,	 Images	 Test,	 and	 SCWT.	 TSST	 is	 a	 laboratory	
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procedure	used	to	reliably	induce	stress	in	human	research	participants	[16].	TSST	consists	

of	two	stress	tasks:	speech	and	math.	In	the	speech	portion,	there	is	a	preparation	step	and	

a	 presentation	 step	 for	 a	 given	 topic,	 which	 are	 each	 5	 minute	 period.	 After	 the	

presentation,	 we	 ask	 participants	 to	 count	 backwards	 from	 1022	 subtracting	 13	 for	 5	

minutes.	 SCWT	 which	 is	 based	 on	 the	 Stroop	 Effect,	 provides	 colored	 word	 lists	 [42].	

Participants	read	those	word	lists	while	following	the	instructions.	

	

A	 total	 of	 17	 participants	 (13	 male,	 4	 female),	 with	 ages	 between	 20	 and	 27	 years,	

participated	 in	 the	 laboratory-based	 experiment.	 All	 of	 them	 are	 undergraduate	 or	

graduate	students.	

	

4.3	Data	collection	in	everyday	setting	

In	a	everyday	setting,	we	collect	physiological	signals	 in	daily	 life.	We	ask	participants	 to	

wear	 a	 smart	 wrist	 band,	 Empatica	 E4	Wristband,	 and	 a	 Shimmer	 ECG	 device.	We	 also	

collect	daily	context	data	with	a	stress	 label.	Participants	 label	whether	they	are	stressed	

out	or	not	every	30	minutes.	The	ECG	has	a	sampling	rate	of	512	Hz,	however,	the	PPG	has	

a	sampling	rate	of	64	Hz	and	the	GSR	has	a	sampling	rate	of	4	Hz.	We	have	3	subjects	(1	

female)	in	the	non-laboratory-based	experiment.	

	

4.4	Preprocessing	and	Feature	extraction	

Before	 extracting	 features,	 the	 data	 needs	 to	 be	 preprocessed.	 We	 implement	

preprocessing	and	feature	extraction.	Each	raw	data	has	two	steps	for	preprocessing	due	to	
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noise:	 filtering	 and	 smoothing.	 Figure	 4	 shows	 the	 procedure	 of	 preprocessing	 feature	

extraction.		

	

In	order	to	extract	HR	and	HRV,	ECG	and	PPG	signals	need	to	be	preprocessed	using	proper	

digital	 signal	 processing	 techniques	 [43].	 For	 the	 ECG	 data,	 we	 use	 band-pass	 filters	 to	

remove	noise	and	use	moving	average	filter	to	smooth	the	data.	From	the	filtered	ECG	data,	

we	extract	the	mean	of	HR.	We	also	extract	the	mean	of	time-	domain	and	non-linear	HRV	

variables.	However,	 for	 frequency-domain	HRV	variables,	we	use	Fast	Fourier	Transform	

and	 Power	 Spectral	 Density	 analysis	 to	 study	 how	 power	 is	 distributed	 as	 a	 function	 of	

frequency,	 which	 allows	 an	 autonomic	 balance	 to	 be	 quantified	 at	 any	 given	 time.	 After	

preprocessing,	we	extract	the	mean	of	frequency-domain	HRV	variables.	

	

For	 the	 PPG	 data,	 we	 use	 band-pass	 and	 moving	 average	 filters	 to	 remove	 noise	 and	

smooth	 the	data.	From	the	 filtered	PPG	data,	we	 then	extract	 the	mean	values	of	HR.	We	

also	 extract	 the	 mean	 of	 time-domain,	 frequency-domain,	 and	 non-linear	 HRV	 variables	

using	the	same	feature	extraction	function	that	is	used	for	the	ECG.	

	

In	 order	 to	 extract	 skin	 conductance,	 the	 GSR	 signal	 needs	 to	 be	 preprocessed	with	 the	

median	filter	and	moving	average	filter.	The	median	filter	is	used	for	removing	noise,	and	
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moving	average	filter	is	used	for	smooth	the	data.	After	preprocessing,	we	extract	the	mean	

values	of	 skin	conductance.	We	also	extract	 the	gradient	of	 skin	conductance	 to	calculate	

the	variation.	

	

4.5	Feature	Selection	

Using	all	features	is	not	necessarily	helpful	as	they	may	not	help	in	increasing	accuracy.	If	a	

feature	 is	not	 related	 to	 stress,	having	 it	 among	 related	 features	will	 increase	noise	 [44].	

Computing	 some	 loosely	 correlated	 features	 may	 also	 not	 be	 useful	 because	 of	 their	

complexity.	 For	 instance,	 frequency	 domain	 and	 independent	 features	 have	 non-linear	

computational	complexity	and	calculating	them	has	computational	overhead.	Especially	in	

local	implementations	in	IoT	systems,	these	overheads	are	considerable.	Thus,	we	decide	to	

select	features	which	are	more	related	to	stress.	

	

In	order	to	find	the	best	subset	of	features,	we	use	a	greedy	stepwise	method	[45].	In	this	

method,	it	starts	from	an	empty	set.	It	adds	features	which	increase	accuracy	and	removes	

features	that	decrease	it.	We	continue	doing	these	two	steps	until	we	reach	a	set	of	features	

in	which	adding	no	new	feature	or	removing	any	selected	feature	can	increase	accuracy.	To	

evaluate	 the	 accuracy	 of	 each	 subset,	 we	 use	 5-nearest-neighbor	 classifier,	 correlation-

based	feature	selection	method,	and	 information	gain.	By	using	the	method,	we	decide	to	

use	the	features	shown	in	Table	5.	
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4.6	Classification	

The	bias	of	physiological	data	can	vary	by	using	personal	data	sets	or	general	data	sets	[46].	

Personal	 data	 sets	 contain	 data	 collected	 from	 the	 same	 person	 and	 general	 data	 sets	

contain	data	from	other	subjects.	In	order	to	test	the	efficiency	of	our	classifier,	we	need	to	

test	it	in	both	cases.	

	

We	 use	 several	 classifiers,	 which	 are	 K-nearest-neighbor	 (kNN)	 with	 k	 ∈	 {1,3,5,7,9},	

support	 vector	machine	 (SVM),	 and	 Naive	 Bayes	 classifier.	 kNN	 is	 a	method	 that	 uses	 k	

nearest	data-points	and	does	a	majority	vote	 to	predict	 the	result	 [47].	SVM	finds	hyper-

planes	to	divide	data-points	into	different	classes	[48].	We	used	the	Weka	implementation	

of	LIBSVM	[49].	Naive	Bayes	classifiers	predict	the	result	based	on	the	probabilities	of	each	

feature’s	probabilistic	knowledge	[50].	Naive	Bayes	classifiers	act	differently	based	on	the	

distribution	of	data-points	[51].		 	
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5.	EXPERIMENTAL	RESULTS	

In	this	section,	we	present	our	experimental	results	in	the	controlled	and	everyday	settings.	

First,	 we	 validate	 our	 developed	 stress	 models	 using	 three	 different	 classification	

algorithms	 (i.e.,	 kNN,	 SVM,	 and	 Naive	 Bayes).	We	 test	 whether	 the	 classifiers	 generalize	

across	data-points	as	well	as	across	subjects.	We	then	apply	the	classifier	on	everyday	data	

to	predict	stress,	observe	and	study	the	contextual	factors	affecting	the	results,	and	analyze	

techniques	to	mitigate	them.	We	use	everyday	self-report	stress	label	as	ground	truth.	We	

also	collect	context	data	(e.g.,	running,	walking,	eating,	etc.)	to	evaluate	the	effect	of	noise	

such	 as	 motion	 artifacts	 on	 the	 decisions	 in	 everyday	 settings.	 To	 examine	 how	 a	

combination	 of	 features	 affect	 stress	 detection	 accuracy,	 we	 create	 four	 groups	 of	 bio-

signals:	GSR+PPG+ECG,	GSR+PPG,	GSR+ECG,	and	only	PPG.	The	rationale	to	study	the	PPG	

only	case	is	the	fact	that	this	is	the	most	dominant,	cost-effective,	and	convenient	method	

used	 in	wearables	 such	 as	 smart	 bands,	watches,	 and	 rings,	making	 it	 the	most	 feasible	

monitoring	method	for	everyday	settings.	

	

We	use	the	Weka	software	package	[52]	for	classification	and	prediction.	We	collect	stress	

data	 from	17	participants	 in	our	 controlled	 setting.	Our	participants	are	 college	 students	

between	the	age	of	20	to	27.	The	25	features	mentioned	in	Section	4.5	are	extracted	from	

the	 multi-modal	 signals	 for	 each	 subject	 during	 the	 tests.	 Out	 of	 these	 features,	 12	 are	

extracted	 from	ECG,	12	 from	PPG,	and	1	 feature	 from	GSR.	We	collect	 features	 from	each	

signal	 for	 a	window	 size	 of	 a	minute	 resulting	 in	 367	minutes	 of	 data	 for	 the	 controlled	

experiment	as	training	data.	Out	of	these,	234	minutes	are	during	stressful	tasks	and	133	

are	during	the	baseline	(i.e.,	labeled	as	no-stress).	
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In	 the	 everyday	 setting,	 we	 collect	 stress	 data	 from	 one	 participant	 excluded	 in	 the	

controlled	setting.	We	extract	the	same	25	features	for	every	minute.	340	minutes	data	are	

provided	with	self-reported	stress	labels.	Labels	are	associated	with	the	stress	reported	for	

each	30	minutes.	

	

5.1	Stress	Assessment	in	a	Controlled	Setting	

To	 objectively	 assess	 the	 stress	 in	 a	 controlled	 setting,	 we	 build	 a	 stress	 model	 using	

different	 classifiers	 (kNN,	 SVM,	 and	 Naive	 Bayes).	 We	 conducted	 two	 different	 set	 of	

experiments:	1)	with	all	features,	and	2)	with	selected	features	(presented	in	Section	4.5).	

In	addition,	we	analyze	the	data	from	two	different	perspectives:	data-points	vs.	subjects.	

In	the	data-points	view,	we	treat	the	data	points	similarly	regardless	of	the	participant	they	

were	collected	from	whereas	in	the	subjectwise	analysis,	we	group	each	individual’s	data.	

	

5.1.1	Leave	data	points	out	cross-validation	accuracy	

We	evaluate	 the	accuracy	when	 the	 classifiers	generalize	across	data-points	with	10-fold	

cross-validation	[53].	Figure	5	shows	the	accuracy	of	 three	different	classifier,	kNN,	SVM,	

and	Naive	Bayes.	The	best	accuracy	when	all	features	are	used	belongs	to	kNN1,	which	is	

equal	to	94.55%.	Similarly,	kNN1	performs	best	when	selected	features	are	used	with	the	

accuracy	of	93.73%.	As	the	test	data	is	chosen	randomly	from	all	participants,	we	expect	to	

find	data-points	from	the	same	subject	in	both	testing	and	training	sets.	This	makes	kNN1	a	

better	 classifier	 as	 it	 eliminates	 the	 effect	 of	 other	 subjects	 in	 the	 result	 more	 than	 the	

others.	
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Table	 6	 shows	 a	 comparison	 between	 our	 work	 and	 the	 related	 work	 in	 terms	 of	 the	

deployed	sensors	and	the	obtained	accuracy.	As	can	be	seen	from	the	table,	our	obtained	

accuracy	(94.55%)	is	the	highest	compared	to	the	related	work.	Note	that	all	these	works	

also	report	their	accuracy	in	control	settings.	
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5.1.2.	Leave	subjects	out	cross-validation	accuracy	

Since	 the	 population	 is	 rather	 small	 (only	 17	 subjects)	 it	 can	 result	 in	 a	 high	 bias	 on	

individual	subjects.	To	 isolate	 the	effect	of	such	bias	 in	 the	accuracy	of	 the	classifiers,	we	

also	 evaluate	 the	 accuracy	 when	 the	 classifiers	 generalize	 across	 subjects	 with	 10-fold	

cross-validation.	 Figure	 6	 shows	 leave	 subjects	 out	 cross-validation	 accuracy	 among	 the	

kNN,	SVM,	and	Naive	Bayesian	classifiers.	As	can	be	seen	from	the	figure,	the	best	accuracy	

for	the	all	 features	case	belongs	to	the	SVM,	which	 is	equal	to	79.84%.	Similarly,	 the	best	

accuracy	 for	 the	 selected	 features	 also	 belongs	 to	 SVM,	 which	 is	 84.71%.	 Classifiers	

corresponds	 too	 closely	 to	 a	 particular	 set	 of	 data	 in	 a	 high	 bias.	 Overfitted	 classifiers	

perform	worse	on	validation	[54].	Since	SVM	can	avoid	overfitting	appropriate,	it	shows	the	

best	accuracy	rather	than	other	classifiers.	
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Table	 7	 shows	 a	 comparison	 between	 our	 work	 and	 the	 related	 work	 in	 terms	 of	 the	

deployed	sensors	and	the	obtained	accuracy.	As	can	be	seen	from	the	table,	our	obtained	

accuracy	(84.71%)	is	the	highest	compared	to	the	related	work.	Note	that	to	the	best	of	our	

knowledge	 there	 is	 only	 one	 work	 in	 the	 literature	 which	 has	 used	 subjectwise	 cross-

validation	in	this	context.	

	

	

5.2.	Stress	assessment	in	the	everyday	setting	

We	 predict	 the	 stress	 level	 in	 the	 everyday	 setting	 through	 the	 stress	 model.	 We	 split	

everyday	data	 into	minutes,	extract	 the	 features,	and	run	them	through	the	stress	model.	

To	get	an	accuracy	of	everyday	stress	prediction,	we	use	a	binary	self-described	stress	level	

as	ground	truth.	Participants	report	their	self-assessment	of	stress	level	every	30	minutes.	

Since	 we	 have	 the	 stress	 model	 from	 the	 controlled	 setting,	 we	 use	 a	 majority	 vote	 to	

prevent	 an	 unstable	 prediction	 for	 data-points	 due	 to	 its	 inherent	 noise	 cancellation	

property	[55].	We	use	two	third	majority	to	consider	a	prediction	reliable.	

	

5.2.1.	Cross-validation	accuracy	without	activity	recognition	

We	evaluate	340	minutes	everyday	data,	which	have	self-assessed	stress	labels.	It	includes	

various	 kinds	 of	 activities	 such	 as	 sitting,	 walking	 and	 eating.	 Figure	 7	 shows	 cross-

validation	 accuracy	 of	 everyday	 data	 among	 three	 different	 classifiers:	 kNN,	 SVM,	 and	
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Naive	Bayes.	The	best	accuracy	from	all	features	belongs	to	kNN1,	kNN7,	and	kNN9,	which	

is	63.64%.	The	best	accuracy	from	selected	features	belongs	to	kNN5,	which	is	81.82%.	We	

observe	that	the	result	from	selected	features	shows	higher	accuracy	than	the	result	from	

all	features.	This	is	because	loosely	correlated	features	are	removed.	

	

	

We	make	subsets	of	features	to	examine	how	a	combination	of	physiological	signals	affect	

stress	 assessment	 accuracy:	 GSR+PPG+ECG,	 GSR+PPG,	 GSR+ECG,	 and	 only	 PPG.	 The	 first	

group,	GSR+PPG+ECG,	is	all	signals	collected	in	this	study.	The	second	group,	GSR+PPG,	is	

chosen	because	 sensors	 of	 GSR	 and	PPG	 are	 easy	 to	wear	 on	 the	 body.	 The	 third	 group,	

GSR+ECG,	is	chosen	in	order	to	compare	with	the	second	group.	The	last	group	consists	of	

only	PPG,	which	is	the	most	available	physiological	sensor.	Figure	8	shows	a	comparison	of	

each	group’s	stress	accuracy.	We	present	the	results	in	the	controlled	settings	(leave	data-

points	 out	 cross-validation	 and	 leave	 subjects	 out	 cross-validation)	 and	 the	 everyday	

setting	with	selected	features	mentioned	in	Section	4.5.	All	groups	show	a	similar	result	in	
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the	controlled	settings.	However,	in	the	everyday	setting,	GSR	+	ECG	group	shows	the	best	

accuracy,	which	is	90.91%.	It	is	the	highest	accuracy	in	the	everyday	settings.	Compared	to	

GSR	+	ECG,	GSR	+	PPG	group	shows	a	worse	result,	and	a	result	is	getting	worse	when	we	

consider	only	PPG	to	assess	stress.	

	

	

ECG	signal	 is	 required	 to	detect	heart	activities	reliably,	but	 the	acquisition	of	ECG	 is	not	

easy	 in	 daily	 life.	 PPG	 signal,	 which	 is	 more	 convenient	 when	 collecting	 data,	 is	 an	

alternative	 method	 to	 track	 heart	 activities	 [56].	 Even	 though	 PPG	 is	 rising	 to	 use	 in	 a	

personal	 healthcare	 system,	 PPG	 is	 sensitive	 to	 a	 movement	 [57].	 In	 this	 paper,	 since	

participants	 are	 sitting	 during	 stress	 tests,	 the	 accuracy	 among	 combinations	 of	 signals	

shows	 similarity	 in	 the	 controlled	 settings.	 However,	 participants	 have	 no	 choice	 but	 to	

move	in	everyday	settings,	which	affect	PPG	signal	increasing	noise.	

	

5.2.2.	Cross-validation	accuracy	with	activity	recognition	
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Since	noise	is	increased	in	PPG	signal	in	everyday	settings,	we	examine	how	much	motion	

artifacts	affect	PPG	signal.	We	extract	activities	based	on	personal	daily	context	report.	We	

contain	data-points	during	low	intensive	activities	such	as	sitting,	but	exclude	data-points	

during	 high	 intensive	 activity	 such	 as	 walking.	 Figure	 9	 shows	 comparison	 of	 everyday	

stress	 assessment	 between	 cross-validation	 accuracy	 without	 activity	 recognition	 and	

cross-validation	 accuracy	with	 activity	 recognition.	 The	 best	 accuracy	 is	 85.71%	without	

activity	 recognition,	 on	 the	 other	 hand,	 the	 best	 accuracy	 is	 100.00%	 with	 activity	

recognition.	When	we	exclude	 rapid	motion	artifacts,	 the	 result	presents	better	 accuracy	

because	we	exclude	unreliable	data.	In	fact,	high	intensive	activities	can	lead	to	inaccurate	

signal	processing.	Therefore,	we	need	to	exclude	those	activities	for	decrease	false	positive	

rate.	
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6.	DISCUSSION	

Our	 new	 objective	 stress	monitoring	 system	provides	 stress	 assessment	within	 both	 the	

controlled	and	the	everyday	settings.	The	overall	system	is	shown	to	have	94.55%	accuracy	

in	the	controlled	setting	and	85.71%	accuracy	in	the	everyday	setting.	Although	the	system	

provides	the	best	accuracy	in	the	controlled	setting,	daily	stress	monitoring	can	improve	its	

accuracy.	Examining	everyday	data	is	more	problematic	than	controlled	data.	Physiological	

data	 is	sensitive	 to	movement.	 In	experimental	 tests,	participants	are	sitting;	however,	 in	

everyday	settings,	many	activities	such	as	walking,	running,	and	eating	involve	movement.	

These	 activities	 can	 cause	 noise	 in	 the	 physiological	 data	 and	 affect	 the	 accuracy	 of	 the	

features	extracted	from	them.	In	Section	5,	we	showed	that	detecting	reliable	PPG	data	is	

important	 for	objective	stress	monitoring.	We	suggest	an	engine,	which	provides	the	PPG	

confidence	rate	automatically	[58].	The	system	compares	PPG	to	ECG	and	finds	a	reliable	

period	 of	 PPG.	 It	 uses	 raw	 signals	 and	 labels	 to	 give	 confidence	 rate	 every	 minute.	 For	

labels,	we	set	5	beats	per	minute	as	the	threshold	[59].	When	the	difference	between	heart	

rate	from	PPG	and	heart	rate	from	ECG	is	within	the	threshold,	a	label	is	marked	reliable.	

Otherwise,	it	is	marked	as	unreliable	data.	The	system	uses	a	convolutional	neural	network.	

In	everyday	data,	the	PPG	confidence	engine	reports	244	minutes	over	340	minutes,	so	that	

the	PPG	data	for	96	minutes	is	unstable	because	of	motion	artifacts.	Through	the	engine,	we	

can	prevent	the	false	reporting	of	the	PPG.	
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7.	CONCLUSION	AND	FUTURE	WORK	

We	propose	a	new	stress	monitoring	system	that	supports	everyday	stress	assessment.	We	

designed,	 implemented,	 and	 analyzed	 the	 system	 giving	 not	 only	 high	 accuracy	 stress	

detection	in	the	controlled	setting	but	also	a	good	prediction	in	the	everyday	setting.	This	

system	 is	 shown	 to	 have	 94.55%	 percent	 accuracy	 in	 the	 generalized	 model	 for	 stress	

detection	 and	 shown	 to	 have	 85.71%	 percent	 accuracy	 when	 the	 classifier	 generalizes	

across	 subjects.	 In	 the	 everyday	 setting,	 this	 system	 is	 shown	 to	 have	 81.82%	 percent	

accuracy.	Our	system	is	compared	with	previous	related	studies	shown	in	Table.	1,	which	

compares	sensors	used,	accuracy	 in	 the	generalized	model,	 test	sets,	 test	period,	and	test	

activities.	

	

In	order	to	use	the	stress	monitoring	system,	there	are	more	features	to	implement.	First:	

taking	activity	and	movement	into	account	can	help	detect	stress	even	during	movements.	

Second:	collecting	data	 in	an	everyday	setting	by	a	high-frequency	device	 is	not	practical	

due	to	battery	life,	cost,	and	convenience.	We	need	to	extract	the	same	features	from	less	

accurate	devices	but	provide	equal	accuracy.	Third:	all	acute	stress	 is	not	always	bad.	 In	

order	to	detect	bad	acute	stress,	we	need	to	find	the	correlation	between	bad	acute	stress	

and	people’s	 lifestyle.	 Finding	 acute	 stress	 is	 the	 first	 step	 toward	 finding	 episodic	 acute	

stress,	and	chronic	stress	which	is	more	harmful	and	more	difficult	to	find.	

	

	 	



30	

	

REFERENCES	

[1]	Selye	H.	The	stress	of	life.;	1956.	

	

[2]	 Bakker	 J,	 Pechenizkiy	 M,	 Sidorova	 N.	 What’s	 your	 current	 stress	 level?	 detection	 of	

stress	patterns	from	gsr	sensor	data.	In:	Data	Mining	Workshops	(ICDMW),	2011	IEEE	11th	

International	Conference	on;	IEEE;	2011.	p.	573–580.	

	

[3]	2016	compsych	stresspulse	survey	;	2016.	

	

[4]	 Sterling	 P.	 Allostasis:	 a	 new	paradigm	 to	 explain	 arousal	 pathology.	Handbook	 of	 life	

stress,	cognition	and	health.	1988;.	

	

[5]	Selye	H.	Stress	in	health	and	disease.	Butterworth-Heinemann;	2013.	

	

[6]	Glanz	K,	Schwartz	MD.	Stress,	coping,	and	health	behavior.	Health	behavior	and	health	

education:	Theory,	research,	and	practice.	2008;4:211–236.	

	

[7]	Miller	 LH,	 Smith	 AD,	 Rothstein	 L.	 The	 stress	 solution:	 An	 action	 plan	 to	manage	 the	

stress	in	your	life.	Pocket;	1994.	

	

[8]	 Choi	 JB,	 Dimsdale	 J,	 Bardwell	 W,	 et	 al.	 Effects	 of	 stress	 on	 heart	 rate	 complexitya	

comparison	 between	 short-term	 and	 chronic	 stress.	 Biological	 Psychology.	

2008;80(3):325–	332.	

	

[9]	Andreou	E,	Alexopoulos	EC,	Lionis	C,	et	al.	Perceived	stress	scale:	reliability	and	validity	

study	 in	greece.	 International	 journal	of	environmental	research	and	public	health.	2011;	

8(8):3287–3298.	

	

[10]	 Davis	 A,	 Maney	 D,	 Maerz	 J.	 The	 use	 of	 leukocyte	 profiles	 to	 measure	 stress	 in	

vertebrates:	a	review	for	ecologists.	Functional	Ecology.	2008;22(5):760–772.	

	

[11]	 Greene	 S,	 Thapliyal	 H,	 Caban-Holt	 A.	 A	 survey	 of	 affective	 computing	 for	 stress	

detection:	 Evaluating	 technologies	 in	 stress	 detection	 for	 better	 health.	 IEEE	 Consumer	

Electronics	Magazine.	2016;5(4):44–56.	

	

[12]	Holmes	TH,	Rahe	RH.	The	social	readjustment	rating	scale.	 Journal	of	psychosomatic	

research.	1967;.	

	

[13]	 Stress	 assessment	 questionnaire	 [https://ptc.bps.org.uk/test-review/stress-

assessment-	questionnaire];	2012.	

	

[14]	Patten	ML.	Questionnaire	research:	A	practical	guide.	Routledge;	2016.	

	



31	

	

[15]	 Phellas	 CN,	 Bloch	 A,	 Seale	 C.	 Structured	 methods:	 interviews,	 questionnaires	 and	

obser-vation.	Researching	society	and	culture.	2011;3.	

	

[16]	 Kirschbaum	 C,	 Pirke	 KM,	 Hellhammer	 DH.	 The	 trier	 social	 stress	 test–a	 tool	 for	

investigating	 psychobiological	 stress	 responses	 in	 a	 laboratory	 setting.	

Neuropsychobiology.		1993;28(1-2):76–81.	

	

[17]	 Hellhammer	 DH,	 Wu	̈st	 S,	 Kudielka	 BM.	 Salivary	 cortisol	 as	 a	 biomarker	 in	 stress	

research.	Psychoneuroendocrinology.	2009;34(2):163–171.	

	

[18]	Langley	JN.	The	autonomic	nervous	system	(pt.	i)..	1921;.	

	

[19]	Schubert	C,	Lambertz	M,	Nelesen	R,	et	al.	Effects	of	stress	on	heart	rate	complexity	a	

comparison	 between	 short-term	 and	 chronic	 stress.	 Biological	 psychology.	

2009;80(3):325–332.	

	

[20]	Wagner	J,	Kim	J,	Andr	́e	E.	From	physiological	signals	to	emotions:	Implementing	and	

comparing	 selected	 methods	 for	 feature	 extraction	 and	 classification.	 In:	 2005	 IEEE	

international	conference	on	multimedia	and	expo;	IEEE;	2005.	p.	940–943.	

	

[21]	Taelman	J,	Vandeput	S,	Spaepen	A,	et	al.	Influence	of	mental	stress	on	heart	rate	and	

heart	 rate	 variability.	 In:	 4th	 European	 conference	 of	 the	 international	 federation	 for	

medical	and	biological	engineering;	Springer;	2009.	p.	1366–1369.	

	

[22]	 Sun	 FT,	 Kuo	 C,	 Cheng	 HT,	 et	 al.	 Activity-aware	 mental	 stress	 detection	 using	

physiological	sensors.	In:	International	Conference	on	Mobile	Computing,	Applications,	and	

Services;	Springer;	2010.	p.	282–301.	

	

[23]	 Das	 D,	 Bhattacharjee	 T,	 Datta	 S,	 et	 al.	 Classification	 and	 quantitative	 estimation	 of	

cognitive	 stress	 from	 in-game	 keystroke	 analysis	 using	 eeg	 and	 gsr.	 In:	 Life	 Sciences	

Conference	(LSC),	2017	IEEE;	IEEE;	2017.	p.	286–291.	

	

[24]	Ciabattoni	L,	Ferracuti	F,	Longhi	S,	 et	al.	Real-time	mental	 stress	detection	based	on	

smartwatch.	In:	2017	IEEE	International	Conference	on	Consumer	Electronics	(ICCE);	IEEE;	

2017.	p.	110–111.	

	

[25]	Akmandor	AO,	Jha	NK.	Keep	the	stress	away	with	soda:	Stress	detection	and	alleviation	

system.	IEEE	Transactions	on	Multi-Scale	Computing	Systems.	2017;3(4):269–282.	

	

[26]	 Fern	ández	 JRM,	 Anishchenko	 L.	Mental	 stress	 detection	 using	 bioradar	 respiratory	

signals.	Biomedical	Signal	Processing	and	Control.	2018;43:244–249.	

	

[27]	Liao	CY,	Chen	RC,	Tai	SK.	Emotion	stress	detection	using	eeg	signal	and	deep	learning	

technologies.	In:	2018	IEEE	International	Conference	on	Applied	System	Invention	(ICASI);	

IEEE;	2018.	p.	90–93.	

	



32	

	

[28]	 Xia	 L,	Malik	 AS,	 Subhani	 AR.	 A	 physiological	 signal-based	method	 for	 early	mental-

stress	detection.	Biomedical	Signal	Processing	and	Control.	2018;46:18–32.	

	

[29]	 Koussaifi	 M,	 Habib	 C,	 Makhoul	 A.	 Real-time	 stress	 evaluation	 using	 wireless	 body	

sensor	networks.	In:	2018	Wireless	Days	(WD);	IEEE;	2018.	p.	37–39.	

	

[30]	 Dupre	 A,	 Vincent	 S,	 Iaizzo	 PA.	 Basic	 ecg	 theory,	 recordings,	 and	 interpretation.	 In:	

Handbook	of	cardiac	anatomy,	physiology,	and	devices.	Springer;	2005.	p.	191–201.	

	

[31]	Klabunde	R.	Cardiovascular	physiology	concepts.	Lippincott	Williams	&	Wilkins;	2011.	

	

[32]	 McCraty	 R,	 Shaffer	 F.	 Heart	 rate	 variability:	 new	 perspectives	 on	 physiological	

mechanisms,	 assessment	 of	 self-regulatory	 capacity,	 and	 health	 risk.	 Global	 Advances	 in	

Health	and	Medicine.	2015;4(1):46–61.	

	

[33]	Kim	HG,	Cheon	EJ,	Bai	DS,	et	al.	Stress	and	heart	rate	variability:	A	meta-analysis	and	

review	of	the	literature.	Psychiatry	investigation.	2018;15(3):235.	

	

[34]	 Shaffer	 F,	 Ginsberg	 J.	 An	 overview	 of	 heart	 rate	 variability	 metrics	 and	 norms.	

Frontiers	in	public	health.	2017;5:258.	

	

[35]	 Healey	 J,	 Picard	 RW,	 et	 al.	 Detecting	 stress	 during	 real-world	 driving	 tasks	 using	

physiological	 sensors.	 IEEE	 Transactions	 on	 intelligent	 transportation	 systems.	

2005;6(2):156–166.	

	

[36]	 Acharya	 UR,	 Joseph	 KP,	 Kannathal	 N,	 et	 al.	 Heart	 rate	 variability.	 In:	 Advances	 in	

cardiac	signal	processing.	Springer;	2007.	p.	121–165.	

	

[37]	 Stein	 PK,	 Reddy	 A.	 Non-linear	 heart	 rate	 variability	 and	 risk	 stratification	 in	

cardiovascular	disease.	Indian	Pacing	and	Electrophysiology	Journal.	2005;5(3):210.	

	

[38]	Behbahani	S,	Dabanloo	NJ,	Nasrabadi	AM.	Ictal	heart	rate	variability	assessment	with	

focus	 on	 secondary	 generalized	 and	 complex	 partial	 epileptic	 seizures.	 Advances	 in	

Bioresearch.	2013;4(1).	

	

[39]	 Memory	 game	 [https://www.mathworks.com/matlabcentral/fileexchange/14059-

memory-a-k-a-concentration];	2007.	

	

[40]	Mosquito	fly	sound	[https://www.youtube.com/watch?v=PYnVlOoxZWw];	2014.	

	

[41]	Lang	PJ.	International	affective	picture	system	(iaps):	Affective	ratings	of	pictures	and	

instruction	manual.	Technical	report.	2005;.	

	

[42]	 Stroop	 JR.	 Studies	 of	 interference	 in	 serial	 verbal	 reactions.	 Journal	 of	 experimental	

psychology.	1935;18(6):643.	

	



33	

	

[43]	 Gupta	 A,	 Bhandari	 S.	 ECG	 Noise	 Reduction	 By	 Different	 Filters	 -	 A	 Comparative	

Analysis.	 International	 Journal	of	Research	 in	Computer	and	Communication	Technology.	

2015;	4(7):424–431.	

	

[44]	Deng	Y,	Wu	Z,	Chu	CH,	et	al.	Evaluating	 feature	selection	 for	stress	 identification.	 In:	

2012	IEEE	13th	International	Conference	on	Information	Reuse	&	Integration	(IRI);	IEEE;	

2012.	p.	584–591.	

	

[45]	Hall	MA.	Correlation-based	feature	selection	for	machine	learning;	1999.	

	

[46]	 Das	D,	 Datta	 S,	 Bhattacharjee	 T,	 et	 al.	 Eliminating	 individual	 bias	 to	 improve	 stress	

detection	 from	 multimodal	 physiological	 data.	 In:	 2018	 40th	 Annual	 International	

Conference	of	the	IEEE	Engineering	in	Medicine	and	Biology	Society	(EMBC);	IEEE;	2018.	p.	

5753–5758.	

	

[47]	Altman	NS.	An	introduction	to	kernel	and	nearest-neighbor	nonparametric	regression.	

The	American	Statistician.	1992;46(3):175–185.	

	

[48]	Cortes	C,	Vapnik	V.	Support-vector	networks.	Machine	learning.	1995;20(3):273–297.	

	

[49]	Chang	CC,	Lin	CJ.	LIBSVM:	A	library	for	support	vector	machines.	ACM	Transactions	on	

Intelligent	 Systems	 and	 Technology.	 2011;2:27:1–27:27.	 Software	 available	 at	 http://	

www.csie.ntu.edu.tw/	cjlin/libsvm.	

	

[50]	 Hand	 DJ,	 Yu	 K.	 Idiot’s	 bayesnot	 so	 stupid	 after	 all?	 International	 statistical	 review.	

2001;	69(3):385–398.	

	

[51]	 Blum	 A,	 Mitchell	 T.	 Combining	 labeled	 and	 unlabeled	 data	 with	 co-training.	 In:	

Proceedings	 of	 the	 eleventh	 annual	 conference	 on	 Computational	 learning	 theory;	 ACM;	

1998.	p.92–100.	

	

[52]	 Hall	 M,	 Frank	 E,	 Holmes	 G,	 et	 al.	 The	 weka	 data	mining	 software:	 an	 update.	 ACM	

SIGKDD	explorations	newsletter.	2009;11(1):10–18.	

	

[53]	Kohavi	R,	et	al.	A	study	of	cross-validation	and	bootstrap	for	accuracy	estimation	and	

model	selection.	In:	Ijcai;	Vol.	14;	Montreal,	Canada;	1995.	p.	1137–1145.	

	

[54]	 Hawkins	 DM.	 The	 problem	 of	 overfitting.	 Journal	 of	 chemical	 information	 and	

computer	sciences.	2004;44(1):1–12.	

	

[55]	James	G.	Majority	vote	classifiers:	theory	and	applications	[dissertation].	Stanford	Uni-

versity;	1998.	

	

[56]	 Pinheiro	 N,	 Couceiro	 R,	 Henriques	 J,	 et	 al.	 Can	 ppg	 be	 used	 for	 hrv	 analysis?	 In:	

201638th	 Annual	 International	 Conference	 of	 the	 IEEE	 Engineering	 in	 Medicine	 and	

BiologySociety	(EMBC);	IEEE;	2016.	p.	2945–2949.	



34	

	

	

[57]	Pietil	̈a		J,		Mehrang		S,		Tolonen		J,		et		al.		Evaluation		of		the		accuracy		and		reliability		

for	 photoplethysmography	 based	 heart	 rate	 and	 beat-to-beat	 detection	 during	 daily	

activities.	In:	Embec	&	nbc	2017.	Springer;	2017.	p.	145–148.	

	

[58]	Naeinia	EK,	Azimib	I,	Rahmania	AM,	et	al.	A	real-time	ppg	quality	assessment	approach	

for	healthcare	internet-of-things.	2018;.	

	

[59]	 Kobayashi	 H.	 Effect	 of	 measurement	 duration	 on	 accuracy	 of	 pulse-counting.	

Ergonomics.2013;56(12):1940–1944	


