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ABSTRACT

During May 1998, the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma
coordinated a multi-institution numerical forecast project known as the Storm and Mesoscale Ensemble Exper-
iment (SAMEX). SAMEX involved, for the first time, the real-time operation of four different ensembles of
mesoscale models over the same region of the United States. The main purpose of this paper is the evaluation
of the ensemble forecasts, performed at a relatively coarse resolution of 30 km. An additional SAMEX goal
not discussed here is to compare the value of the ensemble forecasts against single forecasts made over smaller
subregions of the Great Plains at both intermediate (10 km) and high (3 km) resolution.

The SAMEX ’98 ensembles consisted of a single 36-h control forecast from the ARPS (at CAPS), the Penn
State–NCAR fifth-generation Mesoscale Model (at NSSL), and the Eta Model and Regional Spectral Model (at
NCEP), all with horizontal resolutions of approximately 30 km, and perturbed runs, resulting in a grand ensemble
of 25 members. The forecasts of geopotential heights, temperatures, and moisture were verified against the Eta
operational analyses, rather than observations. Unlike global ensembles, which tend to be useful in the medium
range, the mesoscale SAMEX ensembles provided useful information in the short range. A major result is that
the performance of the ensemble of multiple forecast systems is much better than that of each individual ensemble
system, probably because it represents more realistically the current uncertainties in both models and initial
conditions. A similar advantage from the use of multimodel, multianalysis systems has been observed with
global ensembles. The SAMEX results also show that perturbations to model physics parameterizations, as well
as the use of consistent perturbations in the boundary conditions, are important for regional ensemble forecasting.
Efforts are now under way to compare the ensemble forecasts against those made using higher spatial resolution,
and follow-on SAMEX experiments are anticipated in other geographical areas and weather regimes. Although
the main results of this paper appear to be very robust, they were based on a small number of cases, and similar
experiments carried out during other periods will help to test their significance.

1. Introduction

Since Leith (1974) showed that a number of numer-
ical forecasts created from slightly different initial con-
ditions can, if appropriately averaged, yield improved
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skill relative to a single control forecast, ensemble fore-
casting has grown into a major area of research. Global
ensemble forecasting is now a cornerstone of several
major operational prediction centers in the world [Na-
tional Centers for Environmental Prediction (NCEP),
the U.S. Navy, European Centre for Medium-Range
Weather Forecasts (ECMWF), Japan Meteorological
Agency (JMA), and U.K. Met. Office (UKMO)]. The
ensemble approach is a computationally feasible method
for estimating the probability density function of the
atmospheric state as it evolves in time via the prediction
of selected individual states, each physically plausible
and distinct, and whose initial condition dispersion ide-
ally should be representative of the initial analysis er-
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rors. It thus provides a quantitative basis for probabi-
listic forecasting. The averaging process serves as a non-
linear filter to selectively smooth more the unpredictable
components of the flow, leaving behind those features
for which the ensemble forecasts tend to agree (Toth
and Kalnay 1997).

Leith (1974), Hollingsworth (1980), Mullen and
Baumhefner (1989), and others have proposed using
Monte Carlo methods for generating the initial condi-
tions of the ensemble members. Recently, considerable
attention has been given to methods for generating per-
turbations dynamically constrained by the ‘‘flow of the
day,’’ including breeding (e.g., Toth and Kalnay 1993,
1997) and singular vectors (e.g., Buizza and Palmer
1995; Buizza 1997; see also Hamill et al. 2000). Such
methods aim to introduce perturbations within the sub-
space of the growing errors. Breeding results in per-
turbations related to the leading Lyapunov vectors,
which span the attractor of the dynamical system, and
the leading singular vectors are the fastest growing per-
turbations given a choice of a norm (Ahlquist 2000,
manuscript submitted to J. Atmos. Sci.). The control
initial conditions represent the ‘‘best’’ estimate of the
state of the atmosphere, and the added perturbations
should be chosen so that they are representative of the
expected analysis errors.

Following Houtekamer et al. (1996), Hamill et al.
(2000) recently performed simulation experiments in-
dicating that the most realistic set of ensemble initial
conditions can be obtained from an ensemble of data
assimilation cycles, where the observations are per-
turbed with random errors. In the perturbed observations
(PO) method the ensembles contain dynamically con-
strained errors (contributed by the first guess) that pro-
ject onto the subspace of leading Lyapunov vectors, and
random errors (contributed by the random errors added
to the observations). The PO results are therefore similar
(but somewhat better) than breeding, and the pertur-
bation growth is much smaller than that of total-energy-
based singular vectors. More recently, perturbations to
the models that account for uncertainties due to the use
of imperfect models have also been introduced in en-
semble forecasting by varying the model parameteri-
zations of subgrid-scale physical processes (e.g., Stens-
rud et al. 1998; Houtekamer and Mitchell 1998; An-
dersson et al. 1998). Perturbations in the subgrid-scale
‘‘physics’’ may be more important for mesoscale short-
range ensemble forecasting than in global models, since
the higher resolution may allow a faster response from
growing modes driven by convective instability.

Experiments with global models have shown that en-
semble averaging applied to ‘‘control’’ forecasts from
different centers, each of which is started from their
own best initial condition (analysis), yields results sig-
nificantly better than even the best of the individual
forecasts (e.g., Kalnay and Ham 1989; Wobus and Kal-
nay 1995; Krishnamurti et al. 1999; Evans et al. 2000).
For example, Kalnay and Ham (1989) pointed out that

in the Northern Hemisphere extratropics, after only 12
h, ‘‘consensus’’ forecasts based on the average of mul-
timodel–multianalysis systems (from ECMWF, UKMO,
JMA, and NCEP) had a higher anomaly correlation than
the best individual forecast (ECWMF) started from the
same initial time. Similarly, M. Fritsch (1998, personal
communication) found that the consensus of statistical
forecasts based on several NCEP models outperformed
the results from the best model. Mylne et al. (1999) and
Evans et al. (2000) also show that ensembles including
perturbations from both ECMWF and the UKMO, using
both analyses and models from the two centers, out-
perform each individual system. Krishnamurti et al.
(1999) showed that multisystems including a regression
to correct systematic errors, which they denote ‘‘super-
ensembles,’’ result in substantial skill improvements,
including the forecast of hurricanes.

Although the multimodel, multianalysis approach
does not fit squarely within the classic ensemble frame-
work of perturbations to initial conditions, it is reason-
able to assume that control forecasts produced by com-
peting different state-of-the art data assimilation sys-
tems would represent fairly well the range of uncer-
tainties present both in the initial conditions and in the
models. Therefore it is perhaps not surprising that, when
averaged, the ensemble of control forecasts yields great-
er skill, through a nonlinear filtering process, than even
the best individual forecast.

Ensemble forecasting applied to the large-scale at-
mosphere became operational for the global forecasting
systems at NCEP and ECMWF in December 1992 (Toth
and Kalnay 1993; Molteni and Palmer 1993). The global
ensemble forecasts are now widely used by forecasters
to assess the reliability of the day-to-day forecasts (e.g.,
Toth et al. 1997). More recently, ensemble strategies
have been used in limited-area models (e.g., at 60–80-
km resolution). The potential advantages of this ap-
proach, denoted short-range ensemble forecasting
(SREF), were first discussed during a workshop held at
NCEP in 1994 (Brooks et al. 1995), where it was con-
cluded that SREF should be especially useful for pre-
cipitation forecasting. As a result of the workshop, ex-
perimental ensemble forecasting systems were devel-
oped using the Eta Model and the Regional Spectral
Model (RSM) at NCEP (Du et al. 1997; Hamill and
Colucci 1997, 1998; Tracton et al. 1998; Du and Tracton
1999) and the Pennsylvania State University–National
Center for Atmospheric Research (PSU–NCAR) fifth-
generation Mesoscale Model (MM5) at the National Se-
vere Storm Laboratory (NSSL) (Stensrud et al. 2000).

As numerical forecast systems and observational plat-
forms (e.g., the Weather Surveillance Radar-1988 Dopp-
ler) continue to focus on smaller scales of the atmo-
sphere, and as our understanding of physical processes
continues to improve, greater emphasis will to be placed
on the prediction of intense local weather using non-
hydrostatic models at resolutions of 1 to 10 km. Indeed,
the Weather Research and Forecasting model, being de-
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veloped as a dual-purpose research and operational sys-
tem by the national community (e.g., Dudhia et al.
1998), is targeted specifically at such resolutions. At
this point in time, however, the specific data require-
ments, analysis and assimilation strategies, and spatial
resolution and physics parameterizations needed to ac-
curately predict the initiation, evolution, and decay of
intense mesobeta and mesogamma weather systems are
not well established. A fundamental question that re-
mains to be answered is the relative value of an ensem-
ble of mesoscale resolution forecasts (20–30 km), sim-
ilar to the national models resolution, compared to a
much smaller number of forecasts run at considerably
higher resolution (1–3 km), and similar computational
cost. The higher-resolution models would be run at
much shorter-duration and smaller domains not only
because of higher computational costs but also due to
the lack of evidence for individual storm or mesoscale
convective complex predictability at longer ranges. The
answer to this and related questions has far-reaching
implications for the manner in which the United States
invests in future scientific research and technology ac-
quisition, and efforts must be directed toward providing
an answer so as to maximize available resources (e.g.,
Toth et al. 2000).

During the past decade, a number of groups in the
United States and abroad have begun to experiment with
mesoscale forecast models that seek to resolve explic-
itly, using high spatial resolution grids and observa-
tional data, the most important processes associated with
intense convective and winter precipitation systems. Op-
erationally, the Eta Model (e.g., Black 1994; Mesinger
1996) and the Rapid Update Cycle (Benjamin et al.
1996) have recently been implemented at mesoscale res-
olution (about 30 km) at NCEP for short-range predic-
tions over North America. Several state-of-the-art non-
hydrostatic models appropriate for storm-scale predic-
tion have been developed as well, and some are also
used for regional forecasting. For example, the Ad-
vanced Research and Prediction System (ARPS), de-
veloped by the Center for Analysis and Prediction of
Storms (CAPS) at the University of Oklahoma, has been
run on a daily basis for over two years with an emphasis
on assimilating Doppler radar, satellite, and commercial
aircraft observations to predict warm and cold season
storms at spatial resolutions down to 3 km (Xue et al.
1995; Droegemeier 1997b; Carpenter et al. 1997, 1998,
1999). The MM5 (Dudhia 1993; Grell et al. 1994) also
has been used for routine regional short-range predic-
tions (e.g., Stensrud et al. 2000). The NCEP RSM is
closely related to the NCEP global model and has been
used for short-range forecast and climate applications
(Juang et al. 1997).

In an attempt to build upon these many modeling
activities, several groups joined forces in a regional nu-
merical weather prediction experiment during the con-
vective season of the spring of 1998. The Storm and
Mesoscale Ensemble Experiment of May 1998 (Droe-

gemeier 1997a) involved a real-time comparison of 25
ensemble forecasts, run at approximately 30-km reso-
lution using four different models, against a much small-
er number of forecasts run at both intermediate (10 km)
and high (1–3 km) resolution over subsets of the en-
semble domain.

Coordinated by CAPS, SAMEX involved the NSSL,
the Air Force Weather Agency (AFWA), NCAR, and
NCEP. Additionally, a number of other groups partici-
pated in the real-time forecast evaluation process, in-
cluding several National Weather Service forecast of-
fices, the Storm Prediction Center, Tinker Air Force
Base, and the Aviation Weather Center.

SAMEX was novel in several ways. First, it provided
for a direct comparison of several techniques for gen-
erating mesoscale ensemble initial conditions (bred per-
turbations, scaled-lagged average forecasting, Monte
Carlo), and multiple model physics options. Second, the
ensembles from each forecast system were themselves
combined to create a multimodel/multianalysis ‘‘grand
ensemble.’’ Third, it provided a framework for quan-
tifying the quality and computational expense of low-
resolution probabilistic and higher-resolution determin-
istic forecasts and developing techniques for verification
and comparison (a process still under way). Fourth, it
was conducted as a multiinstitution effort that included
NCEP and leveraged several ongoing activities in ex-
perimental real-time NWP. And finally, it exposed op-
erational forecasters, in real time, to technologies that
are scheduled to become operational within the next
several years.

Despite its rapid organization and relatively short du-
ration, SAMEX ’98 resulted in an unprecedented dataset
that provides the opportunity for a large number of mod-
el and ensemble intercomparisons. Plans now under way
to complete higher-resolution runs for smaller areas em-
bedded within the larger domain of SAMEX ’98 should
further enhance the utility of this dataset and allow an
assessment of the relative value of high-resolution ver-
sus coarser ensemble forecasting in mesoscale model-
ing. Future coordinated SAMEX experiments in other
regions and seasons are planned as part of the U.S.
Weather Research Program, and should further contrib-
ute to our understanding of the characteristics of dif-
ferent models and their application.

The purpose of this paper is to present verifications
of the ensemble forecasting systems utilized during SA-
MEX ’98, and to explore the advantages and disadvan-
tages of different perturbation methods as well as the
use of different model and data assimilation systems.
Operational Eta analyses were used for the verification
of forecasts of geopotential heights, temperatures, wind,
and dewpoint temperatures. Although in principle it is
preferable to verify against observations, the software
to do so is only now being planned for development at
CAPS. The verification of precipitation forecasts, done
against observations, has been performed in a separate
study (Miller 2000) and is not included here. There is
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TABLE 1. Summary of the SAMEX998 mesoscale ensemble forecast system.

Name Institution Model
No. of

members Method of member generation

NCP1
NCP2
NSSL
CAPS
Full
Cntl

NCEP
NCEP
NSSL
CAPS

Eta
RSM
MM5
ARPS
Multimodel
Multimodel

5
5

10
5

25
4

Bred perturbations from global system
Bred perturbations from global system
Perturbations in IC and change in physics
Scaled lagged average forecasting
Perturbations in IC, BC, and physics
The four models’ control runs

FIG. 1. The common ensemble domain used for forecast display
and verification.

no intent to rank a given model’s performance: all mod-
els used during SAMEX ’98 are state of the art and
demonstrated similar capability, each excelling in one
or more measures. On the other hand, the identification
of specific model problems should provide a basis for
improvement.

The logistics of SAMEX ’98 and the method by which
the ensemble initial conditions were created are de-
scribed in Section 2. An analysis of ensemble spread is
presented in section 3, and in section 4 we verify the
bias and standard deviation of the individual and en-
semble mean forecasts. Rank histograms are presented
in section 5, and section 6 includes extensive proba-
bilistic verifications. A summary and discussion are giv-
en in section 7.

2. SAMEX ’98 ensemble forecast system and
dataset

As indicated in the introduction, SAMEX ’98 was
conducted during May 1998 over the continental United
States and central-southern Great Plains. Performed
without any additional funding, SAMEX ’98 was a
proof-of-concept effort to provide an initial quantitative
assessment of the value of coarse- (30 km) resolution
ensemble forecasts relative to a few intermediate- (10

km) and high- (1–3 km) resolution forecasts performed
at shorter ranges and in smaller domains. It also exposed
operational forecasters to mesoscale ensemble and ex-
plicit cloud-resolving numerical predictions.

Three centers participated in this project by running
four different numerical models: the CAPS ARPS, the
NCEP Eta Model and RSM, and the MM5 used by
NSSL. (Note that NCAR and the Air Force Weather
Agency also participated by running the MM5 system,
though not in an ensemble mode.) Each model was used
to create a control run, along with a number of runs for
which the initial conditions (and, in some cases, bound-
ary conditions) were perturbed. The methods used to
generate the perturbations in each system are given be-
low and summarized in Table 1.

R NCP1: This five-member ensemble, created with the
NCEP Eta Model, involved one control and four per-
turbed runs. The latter included initial condition (IC)
and boundary condition (BC) perturbations generated
by ‘‘breeding’’ fast growing modes (similar to Lya-
punov vectors) in the global NCEP system (Toth and
Kalnay 1993, 1997). Two different regional breeding
perturbations were added (P1 and P2) and subtracted
(N1 and N2) from the control (Tracton et al. 1998;
Du and Tracton 1999). The boundary conditions were
obtained from the NCEP global ensemble forecasting
system.

R NCP2: This five-member ensemble, created with the
NCEP RSM, involved one control and four perturbed
runs. The same regionally bred IC and BC pertur-
bations as in NCP1 were added and subtracted.

R NSSL: NSSL performed 10 forecasts with MM5 using
both random perturbations in the IC (Mullen and
Baumhefner 1989) and several combinations of
changes in the model physical parameterizations [cu-
mulus convection, moisture availability, and boundary
layer, as described in Stensrud et al. (1998, 1999)].
The model was run on a North American domain at
96-km resolution, where the perturbations are intro-
duced, and at 32 km in the domain of Fig. 1. The
boundary conditions for the outer domain (from the
Eta Model operational forecasts) were not perturbed
and therefore were the same for all of the 10-member
forecasts.

R CAPS: The perturbation members of the ARPS runs
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TABLE 2. Dates in May 1998 for which the ensemble forecasts are available. The eight dates with complete ensembles are indicated in bold.
The numbers on the top are the ensemble members and those in bold represent the control for each system (CT). For the CAPS system,
112, 124, 212, 224 are the SLAF ensembles based on 12- and 24-h perturbations added to or subtracted from the control. In the NCP1
and NCP2 systems, P1 and P2 are the first- and second-bred perturbations added to the control, and N1 and N2 the same perturbations
subtracted from the control. In the NSSL system, P1–P9 represent different combinations of perturbed physical parameterization. See text
for further discussion.

Day

CAPS

1
CT

2
112

3
124

4
212

5
224

NCP1

6
CT

7
P1

8
P2

9
N1

10
N2

NCP2

11
CT

12
P1

13
P2

14
N1

15
N2

NSSL

16
CT

17
P1

18
P2

19
P3

20
P4

21
P5

22
P6

23
P7

24
P8

25
P9

14
15
16
17
18
19

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
N
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
N
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

N
Y
Y
Y
N
N

N
Y
Y
Y
N
N

N
Y
Y
Y
N
N

N
Y
Y
Y
N
N

N
Y
Y
Y
N
N

N
Y
N
Y
N
N

N
Y
N
Y
N
N

N
Y
N
Y
N
N

N
Y
N
Y
N
N

N
Y
N
Y
N
N

20
21
22
23
24
25

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
N
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
N
N
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
N
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

Y
Y
N
Y
Y
Y

26
27
28
29
30
31

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
N
Y

Y
Y
Y
Y
Y
Y

Y
N
Y
Y
Y
Y

Y
N
Y
Y
Y
Y

Y
N
Y
Y
Y
Y

Y
N
Y
Y
Y
Y

Y
N
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
N
Y
Y
Y

were generated by perturbing the IC and BC using
the simple ‘‘scaled lagged average forecasting’’
(SLAF) method (Ebisuzaki and Kalnay 1991). Since
SLAF was used for the first time in a mesoscale model,
we discuss it here in more detail. SLAF is an extension
of the lagged average forecasting (LAF) method
(Hoffman and Kalnay 1983) in which the LAF initial
perturbation, defined by the difference between a pre-
vious forecast and the verifying analysis, is scaled by
its ‘‘age’’ (assuming approximately linear growth in
time) and added to and subtracted from the initial
analysis. Like LAF, breeding, and singular vectors,
SLAF seeks to create dynamically growing pertur-
bations. It includes consistent perturbed boundary
conditions (constructed in the same fashion) and only
requires the transfer of the control operational fore-
casts, a major advantage for centers not collocated
with NCEP. By construction, the perturbations include
‘‘errors of the day,’’ presumably related to Lyapunov
vectors. The use of positive and negative perturbations
(which is done with breeding and singular vectors, but
not with LAF) increases the chances of encompassing
the truth, since in principle, positive and negative er-
rors have an equal chance of occurrence. The Eta
analysis was used as initial conditions for the control
forecast, and the perturbations were generated from
the 12- and 24-h-old Eta forecasts [the latter divided
by two to account for the ‘‘older’’ (larger) initial er-
rors]. These perturbations were added to and subtract-
ed from the control, and the boundary conditions were
obtained in a consistent way (scaling the older per-

turbations) from the Eta forecasts, resulting in one
control and four perturbed forecasts.

R Full (or grand) ensemble: Included are all 25 forecasts
(5 NCP1, 5 NCP2, 10 NSSL, and 5 CAPS) generated
with different models and perturbation methods.

R Cntl ensemble: For some comparisons we also present
the ensemble composed of the four control runs of
the four forecast systems.

Note that at NCEP the Eta and RSM ensembles al-
ready comprise the multisystem NCEP regional ensem-
ble (Tracton et al. 1998; Du and Tracton 1999). In this
paper, however, we did not evaluate them together.

All forecasts in the ensembles were started at 0000
UTC and integrated for 36 h. The output from the fore-
casts, including the initial conditions, were interpolated
to a common grid with horizontal spacing of 30 km for
the purposes of display and verification. The common
ensemble product domain is shown in Fig. 1 and in-
cludes the central and eastern parts of the United States.
Numerous forecast products including mean and spread
charts, ‘‘spaghetti’’ (single contour) diagrams, and con-
ditional probability plots were available in real time on
the World Wide Web. Also available were all of the
individual forecasts composing the ensemble.

Despite the technical difficulties associated with an
experiment of this magnitude, SAMEX ’98 generated a
major dataset for the period 14–31 May 1998, with only
some members missing on particular days (Table 2). A
complete ensemble dataset is available for 8 days, and
for most of 18 days the majority of the forecasts were
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FIG. 2. Time series of the ensemble spread for MSLP, 850-
(HGT850), 500- (HGT500), and 250-hPa heights (HGT250), aver-
aged over the eight cases with complete datasets.

completed. In all the comparisons that we made, we
found that that the average of the complete eight cases
is very similar to the averages obtained with 18 days,
so that the eight complete cases were used for the com-
parisons presented here. As the verifying analysis we
used the initial conditions from the Eta operational mod-
el interpolated to the SAMEX ’98 common domain.
This did not favor the NCEP forecasts, since NCP1 and
NCP2 were initialized from the NCEP global system.
The time evolution of ensemble spread is shown at 3-h
intervals, while for other verification parameters only
the 12-, 24-, and 36-h forecasts are presented.

3. Ensemble spread and its time evolution

In an ideal forecast ensemble, the verification should
appear as a plausible member of the ensemble (Toth and
Kalnay 1993). In order to satisfy this condition, a de-
sirable feature of an ensemble system is that the per-
turbations introduced either in the IC or during the
course of the forecast (as in the case of changes in the
model physics) should grow at a rate comparable to the
observed growth of forecast errors. It is easy to show
that the average squared distance between two ensemble
members is approximately twice the average squared
distance between an ensemble member and the ensemble
mean. Therefore, a convenient measure of the amplitude
of the perturbations is the standard deviation or spread
(SP) of the ensemble forecast members about the en-
semble mean, defined as the rms difference from the
ensemble mean of all of the ensemble members, aver-
aged over the entire common domain; that is,

i, j
N1

n 2SP( f ) 5 ( f 2 f̃ ) , (1)O i, j i, j!N n51

where f is a model-predicted variable, with subscripts
i and j denoting the grid indices and the superscript n
the ensemble member index, and N is the number of
members in the ensemble. The tilde represents the en-
semble mean and the overbar is the domain average:

N1
nf̃ 5 f , and (2)Oi, j i, jN n51

I J
i, j 1

f 5 f . (3)O Oi, j i, jI · J i51 j51

We found (not shown) that, for all forecast quantities,
the spread results corresponding to the eight complete
cases are extremely similar to those obtained for the
entire 18-day dataset (Table 2). In light of this fact, and
because some verification measures require complete
datasets, only the results for the complete eight-case
average will be discussed in the remainder of the paper.
Because of the similarities, though, the results may be
considered representative of the 18-day experiment.

Figure 2 shows the averaged spread for the geopo-
tential heights at 250 (HGT250), 500 (HGT500), and

850 hPa (HGT850), as well as mean sea level pressure
(MSLP), for the eight complete cases. These ‘‘pressure’’
or ‘‘height’’ variables show similar features, of which
the most distinctive is a large peak in the full system
at 3 h, which does not appear in the temperature, thick-
ness, or moisture variables (cf. Fig. 3). This suggests
that the large spread at 3 h is associated with an early
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FIG. 3. Same as in Fig. 2 but for temperature at 850 hPa
(TEMP850), the 2-m surface air and dewpoint temperature (TEMP2M
and DEWP2M), and 3-h accumulated precipitation (ACCPPT). As
with other products, the accumulated 3-h precipitation for each model
was interpolated to the common grid. Dewpoint data for NCP2 were
not available.

imbalance affecting the MSLP and, through hydrostatic
balance, the geopotential heights at upper levels. This
imbalance must be generating fast external inertia–grav-
ity waves, since most of the geostrophic adjustment

takes place within 6 h and the spread subsides. Since
the imbalance does not appear in individual ensembles
spread, it must be related to an initial imbalance shared
by all the members of at least one ensemble system. In
order to determine the system originating the imbalance,
we computed the spread of three of the four systems,
and found that the spread computed without the NSSL
forecasts (not shown) does not have a peak at 3 h, in-
dicating that the initial imbalance is associated with the
NSSL ensemble.

Figure 2 also shows that the ensemble spread of the
mass variables grows at different rates at different
levels. NSSL and CAPS have some initial decay, sug-
gesting that the initial perturbations are not as well
balanced as in the NCP1 and NCP2 systems. At lower
levels (MSLP and HGT850) NSSL has the largest
spread and some growth (defined as absolute, not rel-
ative growth, i.e., the slope of the spread), but at the
upper levels (HGT500 and HGT250), after the first 6
h, NSSL shows less growth than the other models.
NCP1, NCP2, and CAPS have similar slopes in the
spread at the upper levels, indicating dynamical
growth of the initial perturbations. The lower slope
of the NSSL ensemble at the upper levels may be due
to the fact that the boundary conditions in the outer
domain are the same for all of its members and be-
cause of the use of initial random perturbations. The
lower levels may be more influenced by the spread in
the precipitation due to the perturbations in the phys-
ics.

The most notable characteristic in Fig. 2, however, is
that the full ensemble spread is much larger than those
of the individual ensembles throughout the integration.
Furthermore, it tends to show a larger slope (absolute
growth) after the initial oscillations during the first 12
h. This suggests that the use of different analyses and
different models leads to an ensemble with larger spread
growth than attained by individual systems, which may
help to make the ensemble more effective. A quanti-
tative comparison of the forecast spread with the fore-
cast error (presented in the next section, cf. Fig. 6) sup-
ports this conjecture. The spread of the ensemble of four
control runs (cntl) is a close second, also supporting the
conjecture.

The spread of several variables associated with tem-
perature and moisture, that is, temperatures at 850 hPa
(TMP850), 2-m temperature (TEMP2M), dewpoint
(DEWP2M), and 3-h accumulated precipitation
(ACCPPT), is shown in Fig. 3. The spread of these
variables evolves quite differently from the height fields
spread of Fig. 2. The NSSL ensemble, which includes
different combinations of physical parameterizations for
the boundary layer and for the cumulus convection, has
much larger spread than the other models. In the surface
temperature and dewpoint spread (but not in the pre-
cipitation), the NSSL ensemble has a very strong diurnal
signal, with the maximum spread in the dewpoint at
2100 UTC (about 1500 local time), and in the temper-
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ature at 2400 UTC (about 1800 local time). The CAPS
ensemble, on the other hand, has a large initial spread,
but no further growth except in precipitation, where it
also has a large diurnal cycle. The ARPS model (CAPS)
used a Kuo parameterization in this experiment, which
when triggered changes only minimally the soundings
at low levels.

As with most other variables, the spread of the 3-h
ACCPPT for the full ensemble is significantly greater
than for the individual ensembles. The Eta ensemble
(NCP1) precipitation spread is surprisingly small and
devoid of growth. This is an undesirable characteristic
for this ensemble, suggesting that the Eta precipitation
parameterization may be less sensitive to dynamical per-
turbations than the other models. For the thermal var-
iables, the spread of the full ensemble is also much
larger than those of individual ensembles (Fig. 3) and
shows a steady increase with time for 850-hPa temper-
ature and 500–1000-hPa thickness (not shown), but not
in the 2-m temperature.

We can define the growth of the spread either in rel-
ative terms (percentage growth) or in absolute terms
(slope of the spread). The results in this section indicate
that the full ensemble has overall a larger absolute
growth, whereas, for many of the variables, the two
NCEP ensembles have a larger relative growth. It will
be shown in the next section that the full system is the
only ensemble for which the spread is similar in mag-
nitude to the ensemble mean error, a desirable feature
for an ensemble. As a result, the full system may be
superior to the individual ensembles in that it provides
overall a better chance to encompass the truth. It is
important to recall that the models’ domain-averaged
bias was not included in the calculation of the spread.
The larger spread and growth of the multisystem is due
to both the use of different models and of different initial
conditions, which may reflect better the current uncer-
tainties in initial conditions and model formulation than
a ‘‘synthetic’’ ensemble created using a single system,
no matter how carefully it is designed. This efficiency
of a multimodel ensemble, already noted for global
models (e.g., Kalnay and Ham 1989), provides a bench-
mark that improvements in the perturbation generation
schemes for single models may be able to achieve in
the future.

4. Ensemble forecast errors

In this section we perform forecast verifications and
investigate the improvement in the forecast due to the
use of ensemble average compared with individual
members, and the impact of using full ensembles com-
pared with individual ensembles. Because our verifi-
cation involves 2D atmospheric fields, we start with a
widely used measure of horizontal average error, name-
ly, mean-square error (mse). If f is a single forecast
variable and y the corresponding verifying analysis, mse
is defined (Wilks 1995) as

ij
2mse 5 ( f 2 y ) , (4)i, j i, j

where the overbar indicates, as before, domain average.
The mean-squared error can be separated into the square
of the domain bias and the error variance var [square
of the standard deviation of the error (sde)]. The vari-
ance, in turn, can be separated into systematic and ran-
dom components, following Takacs (1985) and Murphy
(1988):

mse 5 bias2 1 sde2 5 mnbias2 1 sdbias2 1 disp2,

(5)

where
I J

ij 1ijmnbias 5 f 2 y 5 ( f 2 y ),O Oi, j i, j i, j i, jI · J i51 j51

I J1
2sde 5 ( f 9 2 y9 ) ,O O i, j i, j!I · J i51 j51

I J1
f 9y9O O ij ij!I · J i51 j51

f ( f , y) 5 ,
sd( f )sd(y)

sdbias 5 [sd( f ) 2 sd(y)], and
2disp 5 2[1 2 r( f , y)]sd( f )sd(y). (6)

Here, 5 f i,j 2 , 5 y i,j 2 , sd is the
ij ijf 9 f y9 yi,j i,j i,j i,j

standard deviation about the domain average of the fore-
cast or the verification, and r( f, y) is the pattern cor-
relation (corr) between the forecast and verification
fields. The bias of the mean (mnbias) and the bias of
the standard deviation (sdbias) in Eq. (6) measure the
systematic components of the domain-averaged forecast
error and, for Gaussian variables, can be corrected a
posteriori by subtracting the bias and by inflating or
deflating the standard deviation of the forecast. The last
term in (5) is the dispersion error (disp), proportional
to 1-corr. Because it cannot be ‘‘calibrated out’’ it can
be considered the most important measure of the fore-
cast skill. As pointed out by Takacs (1985) the disper-
sion errors are due to phase errors, rather than amplitude
errors.

As indicated before, the Eta Model initial conditions
(0-h forecast) were used as verifying analysis. The
mnbias, sdbias, disp, and corr were calculated for each
case and averaged for the eight complete cases. As with
the spread, these results were representative of the av-
erage obtained when using all 18 almost-complete cases.
The time series of the mnbias, sdbias, disp, and corr of
the individual ensemble averages as well as the full and
cntl ensemble averages for HGT500 and TMP850 are
shown in Fig. 4 and Fig. 5, respectively. The plot also
includes the 0-h forecast, that is, the initial conditions,
although at that time they are not representative of fore-
cast errors but of the choice of initial conditions and
verification. The CAPS and NSSL have much smaller
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FIG. 4. Time series of average error statistics for 500 hPa for
individual ensembles and the full and cntl ensembles: (a) Mean bias
error, mnbias; (b) bias of the standard deviation, sdbias; (c) dis-
persion (disp) error ; and (d) forecast–analysis correlations. The
average score of the individual ensemble members are also indicated
with different symbols.

FIG. 5. Same as in Fig. 4 except for TMP850.

initial SDE compared with the NCEP ensembles. This
is because the former systems used the operational Eta
Model output as the basis of initial conditions, the same
as the verifying analysis, whereas the control NCEP

forecasts were obtained from the global system. The
control CAPS system has larger initial apparent ‘‘er-
rors’’ than its corresponding ensemble (see Fig. 7) be-
cause (unlike the other CAPS ensemble members) it
underwent an additional regional analysis.

Clear differences between the mass variables and the
thermal variables are noticed in the mnbias. Figure 4a
shows that MNBIAS of HGT500 has a strong diurnal
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FIG. 6. Scatter diagram of the ensemble spread (sp), and the error
standard deviation of the ensemble average (emsd) for the eight com-
plete forecasts at 12-, 24-, and 36-h forecasts. The average for each
forecast lead is indicated with larger symbols. The correlation be-
tween sp and emsd for each ensemble is shown in the inset.

cycle in all the ensembles. Because the minima are at
0 and 24 h (about 1800 local time), and maxima at 12
and 36 h (about 6000 local time), respectively, the di-
urnal cycle indicates not enough elevation of the 500-
hPa surface during the daytime. In contrast, the mnbias
in TEMP850 (Fig. 5a) displayed a clear tendency of
cooling with time. The two NCEP ensemble averages
show less of a tendency to cool in the mnbias (0.5 K
or less up to 36 h). The CAPS ensemble has a stronger
cooling tendency (about 0.8 K over 36 h) and NSSL
cools the most (about 1.4 K in 36 h). The cntl ensemble
shows some cancellation of errors in the bias, being
smaller than all the individual bias except for NCP1.

The sdbias in Figs. 4b and 5b is a relatively small
error term compared to the overall mnbias or to the
dispersion component of the standard deviation of the
error. It indicates that all the models are fairly good in
representing the atmospheric variability during this pe-
riod, although the NSSL slightly overestimates the var-
iability in height, and NCP1 tends to underestimate it.

As indicated above, the most useful measure of the
actual forecast skill is the dispersion component of the
error (Figs. 4c and 5c). First we note that among the
individual systems, both NCEP models have smaller
standard deviation of height errors, and the Eta Model
has the best temperature errors, compared to the non-
operational CAPS and NSSL forecasts. The eight-case
average for each of the individual ensemble members
is also indicated in Figs. 4 and 5 with symbols. It can
be observed that (with the exception of the heights in
the NSSL ensemble), the dispersion error for each en-
semble average is lower than the individual members
dispersion error (including the control forecast). This is
an important result indicating that nonlinear ensemble
filtering of errors occurs very early in these short-range
ensemble forecasts (see also discussion about Fig. 7 later
in this section).

The most remarkable result in Figs. 4c and 5c, how-
ever, is that the full ensemble average has disp errors
substantially smaller than all of the individual ensemble
averages, and the cntl ensemble with only four members
is a very close second. This is true for HGT500 (except
for the 36-h forecast for which the NCEP forecasts are
similar to the full) and for all other variables (not
shown). It is especially clear with the temperature fore-
cast errors at 850 hPa. Figure 5c shows that the disp
error of the full ensemble is less than the NCP1 (Eta
Model), the smallest among the individual ensembles,
by about 0.38C. The time correlation plots (Figs. 4d and
5d) also show that the multiple-model ensembles are far
superior to any individual ensemble, having an advan-
tage of 12–24 h in forecast skill using this measure, at
least for the TEMP850. The cntl ensemble does also
quite well, at a level essentially comparable to the full
ensemble. Note that the differences in the apparent ini-
tial error in Figs. 4 and 5 are due to the choice of
verification analysis (the Eta analysis) but this does not

seem to affect the verifications at later times, when the
errors are larger than the uncertainty in the analysis.

We now compare the ensemble forecast error with
the forecast spread of the different ensemble systems as
discussed in the previous section. In a perfect ensemble
the verifying field is an indistinguishable member of the
ensemble. For a perfect ensemble we can assume that
the pattern correlation between any two members of the
ensemble, or between one member of the ensemble and
the verification, is approximately the same. We can also
assume that the variance of the field is the same for
both ensemble members and the verification:

i, j i, j
n m nf f 5 Vr f y 5 Vri,j i, j i, j i, j

i, j i, jn nf f 5 y y (7)5 V.i,j i, j i, j i, j

Under these assumptions the square of the spread of
the ensemble members, and the ensemble mean error
variance for a perfect ensemble, should be given by

N i,j1 N 2 1
2 n 2sp ( f ) 5 ( f 2 f̃ ) 5 V(1 2 r) andO i, j i, jN Nn51

i, j N 1 1
2 2emsd 5 ( f̃ 2 y ) 5 V(1 2 r).i, j i, j N

(8)

Therefore, for a perfect ensemble, the spread of the
ensemble should be similar to the forecast error of the
ensemble mean:
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FIG. 7. Time evolution of sd of errors (sde) of (top) HGT500 and
(bottom) TMP850, for CAPS ensemble, averaged over the eight cases
of complete datasets.

sp N 2 1
ø , (9)!emsd N 1 1

where N is the number of ensemble members.
Comparing Fig. 2c with Fig. 4c, it can be seen that

the full ensemble spread at 500 hPa after the first 12 h,
with the transient errors, is similar in magnitude to the
dispersion errors that dominate the forecast errors. The
spread of the individual ensembles, on the other hand,
is much smaller than their corresponding errors. The
same is true comparing the 850-hPa temperature spread
and dispersion error (Figs. 3a and 5c). This relationship
is shown very clearly in Fig. 6, which compares the
spread and the standard deviation of the errors for the
individual and full ensemble forecasts of HGT500, with
the averages of the eight forecasts for 12, 24, and 36 h
indicated with large symbols. The individual ensembles
have spreads that are much smaller than the standard
deviation of the error (even accounting for their smaller
number of members). As noted in the previous section,
the individual ensemble systems grow slower than the
error in an absolute sense. The full ensemble lies closer
to the ideal diagonal that would be expected for a perfect
ensemble from (9). Moreover, the correlation between
the spread sp and emsd shown in the inset in Fig. 6
shows again a very clear advantage for the full ensem-
ble.

We now focus on the error characteristics of individ-
ual ensemble members, the control forecast, and the

ensemble mean, for the CAPS system. The ensemble
average errors for the five-member CAPS ensemble are
smaller than the control error, despite the fact that the
control forecast has smaller errors than the four CAPS
individual perturbed forecasts. Figure 7 shows the sde
errors associated with the control run, the error averaged
over the four perturbation members, and the error of the
ensemble average. Since the control is the best estimate
of the initial conditions, it is not surprising that the four
perturbed runs have individually larger rms errors than
the control run. Nevertheless, the ensemble average in-
cluding these perturbations provides a better forecast
than the control. This is especially clear with the tem-
perature (Fig. 7, lower panel), indicating that even at
this short range, there is a beneficial effect from non-
linear ensemble filtering of the errors. We also note
again that in the CAPS ensemble, the control was sub-
jected to a mesoscale analysis using the ARPS Data
Assimilation System (Brewster 1996), which increases
its initial difference with the operational Eta initial con-
ditions, used for verification.

We also looked at histograms of the number of fore-
casts for which an individual ensemble member is the
best, defined as the forecast that has the smallest bias
or sde (not shown). The most interesting result was that
the control runs had the smallest sde; nevertheless, they
were not the most frequent best ensemble member. This
may be because in breeding and SLAF there is a rela-
tionship between perturbed forecasts over succeeding
days. Therefore, if for example the second negative per-
turbation yields the best forecast on a given day, it is
likely that the same will remain true for several suc-
cessive days (Z. Toth and E. Kalnay 1992, personal
communication). Obviously this would not hold true for
a series of forecasts much longer than the ones we have
available in SAMEX (Z. Toth 2000, personal commu-
nication).

5. Rank histograms

Rank histograms, also known as Talagrand diagrams,
provide a necessary but not sufficient test for evaluating
whether the forecast and verification are sampled from
the same probability distribution (O. Talagrand 1996,
personal communication; Anderson 1996; Zhu et al.
1996; Hamill and Colucci 1997), and therefore it is a
useful measure of the realism of an ensemble (but not
of its skill; see next section). The rank histograms are
generated by ordering at each grid point the forecast
values from each of the ensemble members from small-
est to largest. For our full ensemble, with 25 members,
this creates 26 intervals or bins. The value of the ver-
ifying analysis at this point then falls into one of the
26 categories or bins. If the analysis is less than the
smallest value of the member forecasts, it falls in cat-
egory 1, and if greater than the largest of the forecast
values it falls into category 26. The same is done for
all the grid points and all of the eight complete cases,
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FIG. 8. Rank histogram or Talagrand diagram showing the relative
frequencies at which the verifying analysis falls in each of the 26
categories, defined by the 25 ordered ensemble members at each grid
points, for the full ensemble HGT500 forecast: (a) 12-, (b) 24-, and
(c) 36-h forecasts.

FIG. 9. Same as in Fig 7 except for TEMP850.

and the average frequencies at which the verifying anal-
ysis falls into each of the 26 categories are determined.

In an ideal ensemble all the perturbations in initial
conditions, boundary conditions, and changes in model
physics should represent equally likely scenarios, and
if the verifying analysis is a plausible ensemble member,
the rank histogram should be flat. A biased ensemble
is indicated by a sloping rank histogram; insufficient
spread among the ensemble members is indicated by a
U-shaped histogram; an inverted U shape indicates ex-
cessive spread.

Figures 8 and 9 show the rank histograms for
HGT500 and TMP850, respectively, that is, the histo-
grams of the frequencies as a function of the category
index. For the 500-hPa heights, the distribution is indeed

quite flat, although the two extreme categories are some-
what higher than their adjacent categories. The 36-h
forecast is particularly good in this respect, even though
the accuracy of the forecast decreases with time. There
is a shift of frequencies of the verifying analysis from
the lower categories to higher categories between 12
and 24 h, consistent with the positive mnbias of the full
ensemble average at 12 h, and the negative mnbias at
24 h, as shown in Fig. 4.

The rank histogram of TEMP850 shows a systematic
bias toward the higher categories, increasing with fore-
cast lead time. This could be expected from the system-
atic cold bias of the temperature forecasts from the full
ensemble shown in Fig. 5. If the mnbias had been cor-
rected (Hamill and Colucci 1997), this plot would have
been also fairly flat (not shown).

The rank histograms of HGT500 and TEMP850 from
individual ensemble systems (not shown) are much less
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FIG. 10. Frequencies at which the ensemble does not encompass
the verifying analysis, adjusted according to the size of the ensembles
(see the text for detail).

flat than the full ensemble distributions, and they show
larger proportions of the verifications falling outside the
ensemble (in the extreme categories). The sum of the
frequencies of the two extreme categories represents the
relative frequency of cases in which the ensemble failed
to encompass the truth and is therefore referred to as
missing rate. However, with different numbers of mem-
bers in each ensemble, the missing rate cannot be di-
rectly compared because an ensemble with a larger num-
ber of members would have a better chance to encom-
pass the truth. Following Zhu et al. (1996) the missing
rate is adjusted for ensemble size by subtracting the
expected missing rate if the verification is evenly dis-
tributed among all of the categories. The expected miss-
ing rate for a perfect ensemble of 25 members, is 2/(25
1 1) or about 7.7%. For the individual ensembles, this
correction is 33% (NCP1, NCP2, CAPS) or 18%
(NSSL). The cntl ensemble has only four members, so
its adjustment is 40%. The ‘‘adjusted missing rates’’ for
all six ensembles are shown in Fig. 10. It is clear that
for all of the variables and all forecast leads, the full
ensemble has an adjusted missing rate smaller than any
of the individual ensembles and much smaller than their
average. In fact, the adjusted missing rate is less than
10% in most cases. This indicates that the members of
the full ensemble are more representative of all the pos-
sible scenarios, compared with the individual ensem-
bles. The adjusted missing rate associated with the cntl
ensemble is even lower, and mostly negative for the sea
level pressure. Negative adjusted missing rates indicate
that the members of the ensemble have an excessive
spread. Except for this, the cntl ensemble has very good
scores for adjusted missing rates, suggesting that the
improvement of the forecast by using the full ensemble
average is due, to a large extent, to the use of multiple
models. Further improvements can be expected with
better methods of generation of perturbation members.
Comparing the individual ensembles, it is apparent that
the two operational models do fairly well in the MSLP
and 500-hPa heights, but as we saw before, they do not
have enough spread in the temperature. This is also true
for the CAPS ensemble and is also suggested by the
fact that their temperature spread is considerably smaller
than the dispersion error. The NSSL system, the only
one with perturbations in the physics, does the best for
the temperatures, but the worst for 500 hPa heights. The
CAPS system does the worst in MSLP.

6. Probability verification measures

One of the most important applications of the ensem-
ble forecasts is their use for generation of probabilistic
forecasts. The rank histograms (Talagrand diagrams) of
the previous section show the extent to which the en-
sembles encompass the truth in the probability distri-
butions, as well as indicating their bias. However, they
cannot measure the usefulness of the forecast: an en-
semble created from a random climatological distri-

bution of states of the atmosphere would result in a
perfectly flat Talagrand diagram for a sufficient number
of forecasts, but would have no useful information be-
yond that contained in climatology. In this section, we
evaluate the performance of a simple probabilistic fore-
cast of HGT500 and TEMP850 based on the full en-
semble. For brevity the individual ensembles and cntl
ensemble are not included in this evaluation.

The probabilistic forecasts were created by determin-
ing the percentage of the ensemble members that fall
into any of 10 climatologically equally likely bins.
These bins were determined by Zhu et al. (1996) using
the climatological database from the NCEP–NCAR re-
analysis (Kalnay et al. 1996), and were kindly made
available to us for this study. The original climatological
bins were computed on the 2.58 lat 3 2.58 long global
grid of the reanalysis, and a distance-weighed interpo-
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TABLE 3. Comparison of the Brier score and its components [reliability (rel.) and resolution (res.)] calculated from the eight complete
cases. The third component of the Brier score (uncertainty, not shown) is equal to 0.090 and is the same for all forecasts.

HGT500

BS Rel. Res.

TEMP850

BS. Rel. Res.

CAPS

NCP1

t 5 12 h
t 5 24 h
t 5 36 h
t 5 12 h
t 5 24 h
t 5 36 h

0.061
0.053
0.075
0.046
0.063
0.068

0.009
0.005
0.011
0.003
0.007
0.008

20.038
20.042
20.026
20.047
20.035
20.030

0.059
0.065
0.094
0.078
0.068
0.086

0.005
0.009
0.018
0.015
0.010
0.015

20.036
20.034
20.014
20.027
20.033
20.019

NCP2

NSSL

t 5 12 h
t 5 24 h
t 5 36 h
t 5 12 h
t 5 24 h
t 5 36 h

0.053
0.071
0.080
0.071
0.065
0.074

0.004
0.009
0.011
0.014
0.011
0.012

20.042
20.028
20.021
20.033
20.035
20.028

0.076
0.071
0.089
0.059
0.051
0.076

0.012
0.011
0.015
0.004
0.002
0.005

20.026
20.030
20.016
20.035
20.041
20.019

Cntl

Full

t 5 12 h
t 5 24 h
t 5 36 h
t 5 12 h
t 5 24 h
t 5 36 h

0.043
0.049
0.058
0.045
0.048
0.056

0.001
0.002
0.003
0.001
0.000
0.001

20.048
20.043
20.035
20.045
20.042
20.035

0.055
0.051
0.073
0.052
0.048
0.069

0.003
0.003
0.006
0.001
0.001
0.001

20.038
20.042
20.023
20.039
20.042
20.024

lation scheme was used to generate the same bins for
the SAMEX ’98 grid.

A forecast probability yi for each of the 10 bins is
given by the relative number of forecast members falling
within that bin, and since there are 25 independent fore-
casts it can only take one of the following 26 values:
0/25, 1/25, . . . , 24/25, 25/25, or 0%, 4%, . . . , 96%,
100%. On the other hand, the observed probability of
the event, o, can only be o1 5 1 (when the observation
does falls within the bin) or o2 5 0 otherwise. Similar
to the mean-square error in Eq. (4), the Brier score (BS)
is essentially the mean-squared error of the probability
forecasts:

n1
2BS 5 (y 2 o ) , (10)O k kn k51

where the summation takes place over all n forecast–
observation pairs available for all grid points and all
eight cases. Murphy (1973) showed that the Brier score
can be separated into three components:

26 261 1
2 2BS 5 n (y 2 o ) 2 n (y 2 o )O Oi i i i in ni51 i51

1 o(1 2 o ), (11)

where ni is the number of times a forecast yi is used in
the collection of forecast–verification pairs, o 5 0.1 is
the observed average frequency of the verification fall-
ing into each bin, and o i 5 p(o1 | yi) 5 (1/ni) ok isSk∈ni

the conditional frequency of the verification falling into
a bin when a forecast yi has been issued.

The three terms on the right-hand side of (11) are
known as reliability, resolution, and uncertainty, re-
spectively. The uncertainty o (1 2 o) 5 0.09 is inde-
pendent of the forecast method. Because the reliability
can be increased by calibration (e.g., Zhu et al. 1996;

Toth et al. 1998), the resolution is the most important
term. Table 3 shows the reliability, resolution, and total
Brier score for each of the ensemble systems for the
eight complete days. It shows that the full and the cntl
ensembles had very good reliability for both the heights
and the temperatures. Since the full ensemble has 25
members, and the cntl ensemble only 4 members, this
suggests that the cntl ensemble itself would be consid-
erably better than 4 randomly chosen subensemble
members of the full ensemble (Du et al. 2000). NSSL
had relatively poor reliability for the heights, but it was
the best individual system for the temperatures. In gen-
eral, the individual systems had comparable resolution,
which decayed with forecast length. CAPS was the best
individual system for the heights at 24 h.

The terms in (9) can also be interpreted geometrically
with a reliability diagram (Wilks 1995) in which the
observed frequency (subsample relative frequency) o i

is plotted as a function of yi, the forecast probability.
Reliability diagrams for HGT500 and TEMP850 are
shown in Figs. 11a and 11b. The insert in each diagram
shows the size of the corresponding subsample (histo-
gram), ni, as a function of yi. Because the ni values are
calculated from all the 10 bins and the eight complete
cases, the histogram shows that most of the forecast
probabilities are zero or close to zero. However, there
is also a noticeable maximum in the histogram for fore-
cast probability 1, indicating that the forecasts show
significant resolution. Since the reliability in (11) is the
sum of the squared difference between yi and o i, the
diagonal line in Fig. 11 represents perfect reliability.
For both variables and all lead times, the curves showing
o i as a function of yi are quite close to the diagonal,
indicating that the forecasts are quite reliable. The
TEMP850 24-h forecasts, show overforecasting of me-
dium probability and underforecasting of higher prob-
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FIG. 11. The 24-h forecast reliability–attributes diagrams for (a) HGT500 and (b) T850.

FIG. 12. Relative operating characteristic plots for the control fore-
casts (symbols) and the full Ensemble forecast (curves) of (a)
HGT500 and (b) TEMP850. ROC using Swets’ (1973) definition. The
thin diagonal line is the critical line indicating positive skill with
respect to chance under the classical definition of Swets (1973) and
Stanski et al. (1989).

ability (and similarly for the 36-h forecast, not shown).
However, most of the forecasts are very good for low
probability (30% or less) and highest probability (92%
or over). Considering the fact that the results have not
been calibrated, and that the sample is concentrated in
these two ranges, the full ensemble is very successful.
Note also that we have plotted the ‘‘no skill’’ line for
which the resolution is equal to the reliability (Wilks
1995, p. 265). Since all the points in Fig. 11 are above

the no skill line, all the subsamples of forecasts con-
tribute positively to the overall skill.

The relative operating characteristic (ROC) is another
verification measure based on signal detection theory.
The ROC diagram shows the false alarm rate (F) as the
abscissa and the hit rate (H) as the ordinate. ROC is
especially useful in ensemble verification because it of-
fers another way of comparing the performance of the
control forecasts with that of the ensemble. For each of
the four control forecasts, we check whether a forecast
falls into a bin, and a hit rate and a false alarm rate are
determined. For the ensemble forecast, the forecast
probability of each bin is determined as before and a
critical probability y* can be used to interpret the prob-
abilistic forecast to ‘‘occur’’ (the probability is greater
than y*) or ‘‘not occur’’ (the probability is less than y*).
Clearly, a different hit rate and false alarm rate can be
found for each value of y*. To plot the ensemble ROC,
25 values of y* were used, ranging from 4% to 100%
with even intervals of 4%.1

In the classic definition used by Swets (1973) and
Stanski et al. (1989), the hit rate is defined as the prob-
ability that an event was forecasted given that it was

1 Surprisingly, different definitions of hit rate and false alarm rate
are used in the meteorological literature, so that the interpretation of
the ROC diagram also varies with the definition. Mason (1982), Zhu
et al. (1996), and Hamill et al. (2000) followed the classical definition
used by Swets (1973) and Stanski et al. (1989). Wilks (1995) gives
different definitions of hit rate and false alarm rate, which satisfies
the principle of equivalence of events (a successful ‘‘yes’’ forecast
is given as much value as a successful ‘‘no’’ forecast). The difference
between these two sets of definitions and their interpretation are dis-
cussed in Hou et al. (2001, manuscript submitted to Wea. Fore-
casting), who demonstrate the following. 1) Under the principle of
equivalence of events, the above-mentioned critical line H 5 F should
be replaced by the line H 5 9F 2 4. 2) Using H 5 0.5 as the critical
line, the ROC following Wilks’ definition is equivalent to the Swets
ROC in (1).
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FIG. 13. Pattern correlation between ensemble spread and forecast
error averaged for all complete eight cases. See text for details.

observed [p( f 5 yes | o 5 yes)], and the false alarm
rate is defined as the probability that an event was fore-
cast given that it did not happen [p( f 5 yes | o 5 no)].
In this definition all forecast sets with some positive
skill over chance will have ROCs in the upper-left tri-
angle (the diagonal is referred to as the critical line
hereafter) and a forecast is better if it corresponds to a
point closer to the top-left corner (Mason 1982; Zhu et
al. 1996; Hamill et al. 2000).

We present the ROC diagrams for 36-h forecasts in
Fig. 12a for the 500-hPa heights and Fig. 12b for the
850-hPa temperatures. Each of the control forecasts is
shown as a single point and the ensemble forecast is
represented by a series of points associated with dif-
ferent y*. It can be seen that as y* increases, the false
alarm rate and the hit rate both approach 0. As expected
from previous results, the four control forecasts are close
to each other, indicating that these forecasting systems
have comparable performance in both ROC measures.
However, the NCP1 is, by a small amount, the best
(slightly closer to the upper-left corner), and NCEP2 is,
also by a small amount, the worst in this measure.

The traditional ROC definition using H 5 F as the
critical line would indicate that the best forecast is the
ensemble with y* ; 20% and that the ensemble is better
than the controls if y* , 40%. This interpretation would
seem to be biased against the ensemble forecast with
higher y*. This is because, in the classical ROC defi-
nition, false alarms of rare events are considered to be
less important than hits.

Note that the height forecast shows a higher hit rate
for all of the control forecasts and all y* values of en-
semble forecast, when compared with the temperature
forecast. The difference is greater with low y* values.
This supports the conclusion that the ensemble forecast
for height is more successful than that of temperature.

Finally, we present in Fig. 13 the pointwise corre-
lation between spread and SDE (standard deviation of
the error) as a function of the forecast length. This is
computed by first creating for each grid point (not un-
derground) a pair of values corresponding to the ab-
solute error and to the ensemble spread. For each fore-
cast length the spread and errors of all eight complete

cases are lumped together, and the two sets of data are
then correlated. This measure can be used to assess the
ability of the ensemble to predict the forecast skill a
priori (Kalnay and Dalcher 1987; Palmer and Tibaldi
1988), but it is not necessarily an accurate measure since
a large spread indicates potential for large errors, but
actual errors may be small. For the full ensemble, the
correlation is higher, about 0.4. Although this explains
only 16% of the variance, it compares well with other
systems, which tend to reach a similar maximum value
only after several days into the forecast (Barker 1991;
Wobus and Kalnay 1995; Whitaker and Laughe 1998).
It is very noticeable that among the subsystems the
NSSL subsystem starts with very low correlation (con-
sistent with the use of random initial perturbations) but
reaches the highest correlation at 24 h (presumably due
to the use of multiple physical parameterizations).2

7. Summary and discussion

We summarize here the main results of this paper,
with the caveat that since the SAMEX ’98 experiments
took place within a period of less than a month, addi-
tional experiments for other periods, verifying against
observations, should be carried out before our results
can be considered definitive.

R Some problems with individual systems have been
clearly identified, and could be corrected in the future.
For example, the NSSL system had a strong early
imbalance; the Eta ensemble at NCEP showed a dis-
turbingly small spread in the precipitation; the CAPS
system had little growth in the spread of the temper-
ature and a strong bias probably associated with prob-
lems in the soil model initialization that have since
been identified and corrected.

R The height spread for the NSSL ensemble was smaller
than for other three systems, possibly due to the lack
of perturbed BC in its outer domain. However, the
presence of perturbations in the physics was clearly
beneficial, resulting in a larger spread of temperature
and moisture in the NSSL system.

R The full ensemble including multiple systems had by
far the largest spread after correcting for the models
bias. The ensemble of four cntl forecasts also had
larger spread than any individual ensemble system. A
perfect ensemble would have an average ensemble
spread similar to the error of the ensemble mean. The
spread of the full ensemble system was much closer
to fulfilling this condition than the individual ensem-
bles. Considering its smaller size, the multisystem cntl
ensemble was very competitive with the full ensem-
ble.

2 The correlation of the spread and the errors could be spuriously
augmented by a latitudinal dependence. The fact that the NSSL system,
with realistic but random initial perturbations, has zero initial correlation
between spread and errors indicates that this effect is small.
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R The full ensemble resulted in the best average fore-
cast. This is perhaps not surprising, because a forecast
ensemble system should reflect our present uncertain-
ty in the initial conditions and in the model deficien-
cies. A multiple-system apparently does this more re-
alistically than any present method used to create a
synthetic ensemble.

R The correlation between spread and error is about 0.4
for the full system, comparable to the maximum value
other larger-scale systems attain much later in the fore-
cast. NSSL starts with a very low correlation, pre-
sumably because of the use of random initial pertur-
bations but reaches the highest correlation of any sys-
tem after 24 h because of the use of multiple physical
parameterizations.

R Although for each system the control is, on the av-
erage, the forecast with smallest errors, it was not the
most frequent best forecast, presumably because in
the breeding and SLAF methods there is memory be-
tween successive runs.

R Rank histograms show rather ‘‘flat’’ distributions for
the full ensemble for heights. The full ensemble has
the lowest number of misses (not encompassing the
verification). The cntl is also good in this measure,
although it tends to overestimate the spread. The rank
histogram for temperature reflects the cooling ten-
dency of all models.

R Probabilistic forecasts were generated by using 10
bins with equal climatological probability derived
from the NCEP–NCAR reanalysis (Zhu et al. 1996)
and they were evaluated using the Brier score. As with
other measures, the full and cntl were the best systems
overall.

R The hit rate versus false alarm (relative operating char-
acteristic) allows a comparison between deterministic
and probabilistic forecasts. It shows that all the control
forecasts have comparable skill, with the Eta control
having a slightly better ROC. However, the full en-
semble beats the control forecasts if the threshold
probability is chosen to be 40% or less.

In summary, the first major conclusion of this study
is that an ensemble of multiple models, multiple anal-
yses has a much better performance than individual sys-
tem ensembles, probably because it represents most re-
alistically the current uncertainties in both the models
and in the initial conditions. This result supports pre-
vious similar results obtained for the global systems
[e.g., Kalnay and Ham (1989) found that after 12 h the
average of a small ensemble of four operational global
models was a better forecast than the best global op-
erational system]. The second major conclusion is that
perturbations in the physics, and BC consistent with
perturbations in IC, are both important for regional en-
semble forecasting. Since our sample of forecasts cov-
ered less than a month, it is important that more SAMEX
experiments over other regions and seasons be carried

out in the future in order to confirm whether our results
are robust.
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