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Objectives and Constraints for

Wind Turbine Optimization

S. Andrew Ning∗, Rick Damiani†, and Patrick J. Moriarty†

National Renewable Energy Laboratory, Golden, Colorado, 80401

Efficient extraction of wind energy is a complex multidisciplinary process. This paper
examines common objectives used in wind turbine optimization problems. The focus is
not on the specific optimized designs, but rather on understanding when certain objec-
tives and constraints are necessary, and what their limitations are. Maximizing annual
energy production, or even using sequential aero/structural optimization, is shown to be
significantly suboptimal compared to integrated aero/structural metrics. Minimizing the
ratio of turbine mass to annual energy production can be effective for fixed rotor diameter
designs, as long as the tower mass is estimated carefully. For variable diameter designs, the
predicted optimal diameter may be misleading. This is because the mass of the tower dom-
inates the total turbine mass, but the cost of the tower is a much smaller fraction of overall
turbine costs. Minimizing cost of energy is a much better metric, though high fidelity in
the cost modeling is as important as high fidelity in the physics modeling. Furthermore,
deterministic cost of energy minimization can be inadequate, given the stochastic nature of
the wind and various uncertainties associated with physical processes and model choices.
Optimization in the presence of uncertainty is necessary to create robust turbine designs.

Nomenclature

A = area
AEP = annual energy production
BOS = balance-of-station
COE = cost of energy
CT = thrust coefficient
D = rotor diameter
E = modulus of elasticity
FCR = fixed charge rate
H = height of tower
I = area moment of inertia
J = objective
Mb = bending moment
Mi = moment about axes i
N = number of cycles
Ni = axial force in direction of axes i
O&M = operations and maintenance
P = power
Sf = fatigue stress
Splan = planform area
T = rotor thrust
TCC = turbine capital costs
U1 = freestream velocity

∗Postdoctoral Researcher, National Wind Technology Center, 15013 Denver West Parkway, MS3811, andrew.ning@nrel.gov,
AIAA Member

†Senior Engineer, National Wind Technology Center, 15013 Denver West Parkway, MS3811, AIAA Member
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Ve50 = 50-year extreme wind speed
Vhub = hub speed
Vin = cut-in speed
Vout = cut-out speed
Vrated = rated speed
Vtip = tip speed
W = local inflow velocity
Ω = rotor rotation speed
� = blade tip deflection
✏ = strain
✏50 = strain at 50-year extreme wind condition
✏ult = ultimate strain
� = safety factor
� = tip-speed ratio
�r = local tip-speed ratio
! = natural frequency of structure
� = local inflow angle
⇢ = density
� = stress
✓ = airfoil twist angle
a = axial induction factor
a0 = tangential induction factor
bm = buckling margin
c = chord
cset = a repeatedly used set of constraints
g = acceleration of gravity
h = thickness of laminate
iaero = an index proportional to blade mass
m = mass
rating = machine rating
t = spar cap thickness
x = design variables

Subscripts

0 = quantity of the reference model
cr = critical
mid = evaluated at midpoint of tower
RNA = rotor/nacelle assembly

Superscripts

x = a quantity normalized relative to the reference design (e.g., x = x/x0)

I. Introduction

Increasing global energy needs and greater awareness of the benefits of renewable sources has driven
renewed interest in wind energy. Harvesting wind energy efficiently is a complex process that requires a
multidisciplinary effort in wind turbine design, site selection, and plant layout. Many trade-offs exist in
aerodynamic performance, structural efficiency, land-use footprint, operational versus manufacturing and
maintenance costs, and so on. Therefore, multidisciplinary optimization and uncertainty analysis are im-
portant tools to evaluate design choices and further improve the economics of wind energy. A number
of previous studies have examined optimization of wind turbines using a wide variety of approaches. In
these studies, design variables ranged from descriptions of only the rotor blade to descriptions of complete
turbines. Model fidelity included simple analytic models, time-domain unsteady aeroelastic calculations,
and three-dimensional computational fluid dynamics with structural finite element analyses. Objectives in-
cluded maximum annual energy production (AEP), multiobjective maximum power and minimum blade root
bending moment, and minimum cost of energy. Optimization approaches included gradient-based methods,
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direct-search methods, and multilevel methods. A select number of these studies are highlighted below to
provide examples of the variety of approaches used.

Fuglsang and Madsen optimized a rotor using time-domain aeroelastic calculations. Their study used
cost of energy as the objective and aerodynamic noise as a constraint. Airfoil optimization was treated
by modifying the lift and drag curves directly; focusing on the maximum lift coefficient.1 Diveux et al.
optimized a combined rotor/drivetrain model for minimum annual energy cost using a simplified aerodynamic
performance model that combined an analytic estimation of maximum power coefficient with a parameterized
power curve. They used a genetic algorithm and their optimization studies focused on the benefits of site-
specific optimization.2 Fuglsang et al. examined site-specific optimization across a broader range of conditions
using an aeroelastic turbine model and an objective of minimum levelized cost of energy.3,4 Kenway and
Martins optimized blade and airfoil shape for maximum annual energy production in a coupled aeroelastic
analysis using a blade element momentum method and a finite element model. A gradient-based approach
with finite differences estimated using the complex-step method was used to ensure robust convergence.5

Petrone et al. combined uncertainty analysis with optimization to examine the sensitivity of optimized
turbines to uncertainties caused by insect contamination. Their optimization approach employed a genetic
algorithm in a framework composed of existing National Renewable Energy Laboratory (NREL) tools.6 Maki
et al. used a multidisciplinary optimization approach where two discipline-specific objectives were pursued
and the system-level optimization minimized the cost of energy. Design variables focused on the rotor, and
the aerodynamic and structural disciplines used metamodels generated from analysis tools developed at
NREL.7 Bottasso et al. maximized AEP per turbine weight in a multifidelity aerodynamic and structural
optimization framework.8

This paper approaches the turbine optimization problem with a different focus than the previous studies.
The purpose of this study is not to demonstrate a specific methodology, or even to present optimized wind
turbines per se, but rather to understand how different choices in the optimization problem and model choices
impact the quality of the solutions. The primary goal is to better understand how different objectives affect
the optimal solution. To facilitate this understanding, the models used should: capture the fundamental
trade-offs in the physics, execute rapidly to allow for a wide range of design studies, and converge robustly
and with high accuracy to allow for fair comparisons in the designs. To this end, simple physics-based models
were developed that produce smooth output (C1 continuous) to allow for reliable gradient estimation. The
optimization studies of this work concentrate on the design of the rotor blades, but the impact on resizing
the rest of the turbine as well as plant-level costs was included. The work conducted was part of a larger
effort at NREL to apply systems engineering techniques to wind energy applications.9

The following section describes the methodology, which includes the rotor aerodynamic analysis, rotor
structural analysis, cost model, reference model, and optimization strategy used. Next, a number of opti-
mization studies are presented. These studies examined the important considerations in maximizing annual
energy production, minimizing the ratio of turbine mass to annual energy production, and minimizing cost
of energy.

II. Methodology

Although the impact on the entire turbine was considered, the focus of this study was on optimizing the
rotor blades. Thus, the main thrust of the methodology was the development of appropriate aerodynamic
and structural analysis tools for the blades. The effect of hub, nacelle, and foundation sizing was handled
through simpler scaling relations. A modified version of the NREL cost and scaling model10 was used to
predict the cost of energy. The physics-based models were implemented in C++ and Fortran, and were linked
together in a common framework in Python. This approach retained most of the speed advantage of the
compiled languages, but allowed for high flexibility in an object-oriented environment. The computational
efficiency and flexibility was important to allow for both a large number and wide variety of studies.

II.A. Rotor Aerodynamics

II.A.1. Blade Element Momentum Method

The rotor aerodynamic analysis was based on blade element momentum (BEM) theory. Using BEM theory in
a gradient-based rotor optimization problem can be challenging because of occasional convergence difficulties
of the BEM equations. The standard approach to solving the BEM equations is to arrange the equations as
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functions of the axial and tangential induction factors and solve the fixed-point problem:

(a, a0) = ffp(a, a
0) (1)

using either fixed-point iteration, Newton’s method, or a related fixed-point algorithm. An alternative
approach is to use nonlinear optimization to minimize the sum of the squares of the residuals of the induction
factors (or normal and tangential loads). Although these approaches are generally successful, they do suffer
from instabilities and failure to converge in some regions of the design space,11 and thus require increased
complexity12 and/or heuristics (and may still not always converge).

Ning13 recently developed a new solution methodology to the BEM equations that offers guaranteed
convergence properties. When used with a smooth (C1 continuous) description of the airfoil force coeffi-
cients, this method is particularly advantageous for use in gradient-based optimization applications. Only a
summary of the method is presented here; further details are discussed in Ref. 13.

The new BEM methodology transforms the two-variable, fixed-point problem into an equivalent one-
dimensional root-finding problem. This is enormously beneficial as methods exist for one-dimensional root-
finding problems that are guaranteed to converge as long as an appropriate bracket can be found. The key
insight to this reduction is to use the local inflow angle (�) and the magnitude of the inflow velocity (W ) as
the two unknowns in specifying the inflow conditions, rather than the traditionally used axial and tangential
induction factors (see Figure 1).

plane of rotation

Ωr(1 + a
0)

W

φ

U∞(1− a)

Figure 1. Parameters specifying inflow conditions of a rotating blade section.

This approach allows the BEM equations to be reduced to a one-dimensional residual function as a
function of �:

f(�) =
sin�

1− a(�)
−

cos�

�r(1 + a0(�))
= 0 (2)

Figure 2 shows the typical behavior of f(�) over the range � ∈ (0,⇡/2]. Almost all solutions for wind
turbines fall within this range (for the provable convergence properties to be true, solutions outside of this
range must also be considered; see Ref. 13 for details). Ref. 13 demonstrates through mathematical proof
that the methodology will always find a bracket to a zero of f(�), without any singularities in the interior.
This proof, along with existing proofs for root-finding methods like Brent’s method,14 implies that a solution
is guaranteed to be found. Furthermore, not only is the solution guaranteed to be found, but it can be found
efficiently and in a continuous manner. This behavior allows gradient-based algorithms to be used to solve
the rotor optimization problem much more effectively than with traditional BEM solution approaches.

Any corrections to the BEM method can be used with this methodology (e.g., finite number of blades
and skewed wake) as long as the axial induction factor can be expressed as a function of � (either explicitly
or through a numerical solution). This particular implementation chooses to include both hub and tip
losses using Prandtl’s method,15 and a high-induction factor correction by Buhl.16 Drag is included in the
computation of the induction factors. For a given wind speed, a spline is fit to the normal and tangential
forces along the radial discretization of the blade before integrating for thrust and torque. This allows for
smoother variation in thrust and torque for improved gradient estimation. For computational efficiency,
portions of the methodology that are used heavily are implemented in Fortran and called as a module in
Python using f2py. The resultant BEM code is called CCBlade (C - continuity, C - convergence).
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Figure 2. Residual function of BEM equations using Ning’s methodology.13 Solution point is where f(φ) = 0.

II.A.2. Airfoil Section Analysis

For the airfoil sectional analysis, airfoil force coefficients may be directly supplied covering the full angle
of attack range from −180� to 180�, or 2-dimensional airfoil data can be supplied which is subsequently
corrected for rotational effects and extrapolated to the full angle of attack range. For the latter case, the
corrections were not applied a priori for a given section, but rather re-computed each time the rotor geometry
was modified. Three-dimensional rotational corrections were applied using the Du-Selig method17 for lift
and the Eggers method18 for drag. Next, airfoil data was extrapolated to ±180�, using Viterna’s method.19

Finally, for each section, a two-dimensional cubic B-spline (the function “bisplrep” from FITPACK, also
known as DIERCKX) was fitted to the lift and drag curves separately as functions of Reynolds number
and angle of attack. A small amount of smoothing was used on each spline to reduce any high-frequency
noise that could cause artificial multiple solutions (0.1 for lift, 0.001 for drag). Many BEM implementations
use linear interpolation to estimate lift and drag coefficients; however, such an approach is unsuitable for
gradient-based optimization as it introduces discontinuities in the derivatives.

II.A.3. Rotor Aerodynamic Analysis

The aerodynamic power predicted from the BEM method was modified to account for losses in the drivetrain.
The drivetrain efficiency was assumed to vary with the aerodynamic power normalized by the rated power
(P = Paero/Prated) as

⌘dt = 1.0− (a/P + b) (3)

where a = 0.0129, and b = 0.0851. This drivetrain efficiency curve is for a three-stage geared design and
comes from an NREL study20 using WindPACT data.21 The net power produced is P = ⌘dtPaero. Note
that the maximum drivetrain efficiency is 91.5%. Including this loss had a significant effect on total annual
energy production and the estimated rated speed. Although this is less important in comparing relative
aerodynamic performance between designs, it does have a significant effect on overall cost of energy.

The simulation methodology allows for any machine type combination of fixed/variable speed and
fixed/variable pitch. However, all studies in this paper focus on variable-speed, variable-pitch machines.
A typical power curve for a variable-speed, variable-pitch turbine is shown in Figure 3. Region 1 has no
power generation as it occurs below the cut-in speed. In Region 2, variable-speed turbines operate at the
optimal tip-speed ratio until either rated power or the maximum rotation speed is reached. Region 2.5 was
added to handle the transition from Region 2 to Region 3. Rotor speed was fixed going into Region 2.5 and
continuing into Region 3. Blade pitch was varied (pitch toward feather) in Region 2.5 and Region 3, so that
torque varied smoothly in Region 2.5, and rated power was maintained in Region 3. The optimal tip-speed
ratio for operation in Region 2 was determined externally as part of the optimization problem.
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Figure 3. A typical power curve for a variable-speed, variable-pitch machine. Different regions of operation
are shown.

AEP was computed using a Rayleigh distribution with a mean speed of 10 m/s, as specified in the
International Electrotechnical Commission (IEC) standard for Class I turbines.22 Losses caused by wake
interference from other turbines in the wind farm and losses caused by electrical grid unavailability were
estimated simply using an array loss factor and an availability factor. These studies assumed that the grid
was available 95% of the year, and that 10% of the potential wind farm AEP was lost because of wake
interference effects.

II.B. Rotor Structure

II.B.1. Beam Finite Element Analysis

A beam finite element code, called pBEAM (polynomial beam element analysis module), was developed for
the structural analysis. The methodology uses Euler-Bernoulli beam elements with 12 degrees of freedom
(three translational and three rotational at each end of the element); the basic theory is described in any
standard finite element textbook (see Yang23). A unique feature of the code is that section properties can
be described as polynomials of any order between nodes. This means that, rather than using precomputed
structural matrices for an assumed distribution and fixed shape-functions, the matrix coefficients are re-
computed for each geometry. However, because the distribution is a polynomial, this can be done analytically
using polynomial integration. For example, the bending stiffness can be described as varying quadratically
across an element as [EI](⌘) = [EI]2⌘

2 + [EI]1⌘ + [EI]0, where normalized coordinates ⌘ are used across a
given element. The bending stiffness matrix is then computed as

Kij =
1

L3

Z 1

0

[EI](⌘)f 00

i (⌘)f
00

j (⌘)d⌘ (4)

where f(⌘) are appropriate shape functions and L is the length of the element. Other matrices (e.g., bending
inertia matrix, incremental stiffness matrix, axial stiffness matrix, and axial inertia matrix) are computed
similarly.

This approach allows for higher fidelity in describing variation in structural properties, which means that
higher accuracy can be achieved with fewer elements (this is not particularly relevant for the rotor problem
that typically must use a linear variation between section properties, but for other shapes like a cylindrical
shell tower, where the moment of inertia varies quarticly, this variation is captured much more efficiently
using this approach). The use of polynomials also allows for higher accuracy because integrals and derivatives
are evaluated analytically rather than numerically. pBEAM can estimate structural mass, deflections in all
degrees of freedom, coupled natural frequencies, critical global axial buckling loads, and axial stress. The
code is written in C++ and linked to the framework using Boost.Python.
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II.B.2. Sectional Composite Analysis

An existing National Wind Technology Center code, PreComp, was used to estimate equivalent sectional
inertial and stiffness properties of composite blades.24 PreComp uses modified classic laminate theory
combined with a shear-flow approach. In addition to inertial and stiffness properties, its computation
of the elastic center was used in this analysis. PreComp requires the geometric description of the blade
(e.g., chord, twist, section profile shapes, and web locations), along with the internal structural layup (e.g.,
laminate schedule, orientation of fibers, and laminate material properties). It allows for high flexibility in
the specification of the composite layup both spanwise and chordwise. An object-oriented description of the
blade geometry and section composite layup in Python was linked to the Fortran code PreComp using f2py.

The finite element code pBEAM performs all computations about the elastic center of a structure and in
principal axes to remove cross-coupling terms. Thus, the flapwise, edgewise, and coupled stiffness properties
in the local blade coordinate system from PreComp are translated to the elastic center and rotated to
principal axes, as described by Hansen.25 Similarly, input flapwise and edgewise loads are rotated to the
principal axes, and output deflections are rotated back to the flapwise and edgewise axes.

Distributed aerodynamic blade loads were computed, as described previously. Weight loads were rotated
from the inertial frame to the airfoil frame (through several intermediate frames). Because the analysis was
done at the elastic center and in the principal axes, the strain was computed simply as

✏zz(x, y) =
Mx

[EI]x
y −

My

[EI]y
x+

Nz

[EA]
(5)

For each airfoil section, the maximum strain location was assumed to occur in the outer skin layer of the
chordwise location of maximum thickness.

For most of the analysis the strain was used directly, but for the fatigue analysis the stress was needed. To
estimate the stress, a smeared effective modulus of elasticity was computed using classical laminate theory.
For a given laminate stack, the constitutive equations are

"

N

M

#

=

"

A B

B D

#"

✏0

k

#

(6)

where N and M are the average forces and moments of the laminate per unit length, and ✏0 and k are the
mid-plane strains and curvature (see Halpin).26 If we denote the above matrix as S and its inverse as S⇤,
then

✏zz ≈ S⇤

11Nz (7)

This expression ignores laminate shear and bending moment effects (the latter would be zero for a symmetric
laminate), which is a good approximation for slender turbine blades. At the same time, an effective smeared
modulus of elasticity can be computed by integrating across the laminate stack

Ezz =
1

✏zzh

Z h/2

�h/2

�zzdh =
Nz

✏zzh
(8)

where Nz is the average force per unit length of the laminate. Combining equations (7) and (8) yields an
estimate for the effective axial modulus of elasticity

Ezz =
1

S⇤

11h
(9)

Finally, the average stress in a laminate at a given section is given as

�zz = Ezz✏zz (10)

II.B.3. Additional Structural Considerations

In addition to the capabilities of the finite element analysis, two additional structural considerations specific
to the rotor problem were added. The first was a panel buckling calculation and the second was a fatigue
cycle estimation. Both considerations can be particularly important for very large blades.27 This analysis
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considered only spar-cap buckling; however, detailed design should also consider trailing-edge panel buckling.
The panel buckling calculation uses a relatively simple method described by Bir.28 The calculation results
from an eigenanalysis of a flat panel that is loaded edgewise. The derivation assumes that the width of the
panel is much smaller than the length of the panel, which is true for the rotor blades (except near the tip). It
is also assumed conservatively that the longitudinal edges are simply supported, while the chordwise edges
are free. Under these assumptions, the critical edge load per unit length is given by

Ncr = 3.6(⇡/b)2D11 (11)

where the D matrix is the same as in Eq. (6) and corresponds to that for the laminate stack of the spar cap
on the surface in compression. The length scale b is the width of the spar cap. The critical buckling strain
for the section is then given by

✏cr =
−Ncr

hEzz
(12)

where h is the thickness of the spar cap, Ezz is computed from Eq. (9), and the negative sign is due to the
fact that the buckling loads are compressive.

Finally, a fatigue calculation for the blade root was included. A full lifetime fatigue analysis can be
quite complex; however, a simplistic assessment can be done using the edgewise gravity loads, as these
loads fully reverse every blade rotation. Although edgewise gravity loads are not always the dominant load
condition, they can be more significant than flapwise aerodynamic loads in determining the fatigue strength
of very large blades.27 This constraint is not a replacement for a full fatigue analysis, but was used to
prevent unrealistically small chord sizes at the blade root. The blade root uses thick laminates to stiffen the
connection to the pitch bearing, and without a proper constraint provides a large incentive for the optimizer
to decrease the chord at the blade root.

To aid the fatigue estimation, it is assumed that the S-N curve for the root section can be parameterized
as

Sf = aN b (13)

where b is assumed to be −10 (a typical value for glass-reinforced composite materials).29 The maximum
stress at the root of the blade caused by only the gravity loads was computed as described above. Because
this loading is fully reversed, the stress value at the 3 o’clock azimuth can be used directly as the damage
equivalent load for the S-N curve. An average rotation speed was estimated by computing the expected
value of the rotor speed using the wind speed distribution

Ω =

Z Vout

Vin

Ω(V )f(V )dV (14)

where f(V ) is a probability distribution function of the wind speeds (a Rayleigh distribution with a mean
wind speed of U = 10.0 m/s was used, as discussed previously). A 20–year lifetime of continuous rotation
was assumed. The value for a in Eq. (13) was calibrated using the loading conditions for the baseline rotor
so that, at 20 years, the root stress had a 10% margin relative to the fatigue stress (i.e., �root/Sf = 0.9).
The margin was added to avoid overly constraining the problem because it was only defined relative to the
baseline. For a new design, the maximum fatigue stress for the number of cycles was required to be less than
the fully reversed stress at the blade root

|�root-gravity| < Sf (15)

where the stress was due only to gravity loads and was computed at the blade root.

II.C. Cost Model

The cost model was based primarily on the NREL cost and scaling model,10 with a few modifications that
were found to be important for this study. First, the rotor mass was computed from the structural model
instead of the scaling law. Blade cost was a linear function of blade mass, with coefficients derived from an
internal NREL study.30

Next, the tower mass estimation was replaced. The current cost and scaling relationship scales linearly
with the square of the rotor diameter (for a fixed hub height). Although this is reasonable under the
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assumption that the entire turbine scales proportionally, it was not reasonable for many of the studies in this
paper. For example, some studies examined varying the rotor diameter at a fixed power rating. At a fixed
rating, the thrust loads and rotor mass change relatively slowly with increased rotor diameter. The scaling
law, however, predicts a quadratic variation with diameter, which greatly overestimates the impact on the
tower mass. Even worse, other studies in this paper varied the rated power at fixed rotor diameter. In this
case, the cost and scaling relationship would predict no change in tower mass, because the diameter is fixed,
but in reality the thrust loads would increase significantly. Because tower mass is such a large fraction of the
total turbine mass, it is important to capture changes in tower mass in a more realistic manner. Although
capturing these changes does not affect the conclusions of this paper (as we only compared the relative
value of different objectives), obtaining a more realistic tower mass estimate is desirable to produce a more
accurate estimate of the various metrics.

A full tower model was developed for this study. However, as stated previously, the scope of this paper
was intentionally limited to only include rotor design variables. Thus, a simpler scaling relationship for tower
sizing was desired, and derived in the following calculations. For a tapered tower, the critical stress location
is somewhere in the middle (the bending moment is largest at the base, but so is the moment of inertia). For
simplicity, we assumed that the critical location was halfway up the tower. Then, the stress at that location,
which reaches some critical value for either ultimate stress or buckling, is

�cr =
(mRNA +mtower/2)g

Amid
+

THrmid

2Imid
(16)

where r is the radius of tower (for simplicity we assume half of the tower mass is above that location). For
a cylindrical shell section, the moment of inertia is proportional to the area

I =
Ar2

2
(17)

Substituting this in for Imid and solving in terms of cross section area gives

Amid =
1

�cr



(mRNA +mtower/2)g +
TH

rmid

�

(18)

The mass of the tower can then be estimated as

mtower = ⇢

Z H

0

A(z)dz (19)

If we assume that the tower resizes in such a way that the diameter-to-thickness ratio is constant, and the
taper ratio of the tower is constant, then the mass of the tower can be directly related to its area at the
midpoint

mtower = ⇢↵Amid (20)

where ↵ is purely a function of the tower taper ratio (a constant). Because Amid is a function of the tower
mass, we can now solve directly for the tower mass. The resulting equation is

mtower = k



mRNAg +
TH

rmid

�

(21)

where k is a constant that is a function of the acceleration of gravity, the tower taper ratio, the tower effective
material density, and the critical stress at the tower midpoint. Finally, if we assume that resized towers will
have a similar stress utilization at the midpoint, then the mass of the tower should scale as

mtower

mtower0

=
[mRNAg + TH/rmid]

[mRNAg + TH/rmid] 0
(22)

Although this is not a universal scaling law, it should work well for cylindrical shell designs that are scaled
relative to a baseline design at a constant taper ratio and constant diameter-to-thickness ratio. Strictly
speaking, rmid is a function of the tower mass given the sizing assumptions listed above. However, including
that variation creates much more complexity in the mathematical expression and has little effect as the
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change in radius is relatively small. For simplicity we kept it fixed at the radius of the reference design
(rmid = 2.4675).

This sizing works well for increasing tower mass; however, it cannot be expected to continue indefinitely
for shrinking tower masses. Other constraints, such as buckling, natural frequency, and deflection will become
critical and constrain the tower from shrinking further. Without implementing a full tower model, we can
estimate how these constraints will affect the tower sizing. For a fixed top mass and tower height, and by
neglecting the smaller effect of the distributed tower mass, the natural frequency of the tower is proportional
to I0.5. Typically, the tower is constrained by the 1P frequency of the rotor, as is the case with the 5-MW
reference model, so the moment of inertia can not shrink too far before this becomes a critical constraint.
Similarly, for a given thrust and tower height, the deflection of the tower top scales with I�1. Again, smaller
moments of inertia increase the tower top deflection, which will cause this constraint to become critical. If
we use the formula for column buckling and consider only the stress from the thrust for simplicity, then the
buckling criteria �/�cr is proportional to I�1.25. Clearly, shrinking the moment of inertia also decreases the
buckling margin. In all of these constraints, the moment of inertia is a crucial driver. As a surrogate for
these constraints, we assumed that the moment of inertia of the tower cannot shrink more than 10% relative
to the reference design

I

I0
> 0.9 (23)

For a cylindrical shell tower with a fixed diameter-to-thickness ratio, the moment of inertia is proportional
to d4. Also, as shown previously, the tower mass is proportional to d2 (for a fixed diameter-to-thickness ratio
and fixed taper ratio). Thus, for these assumptions, the tower mass is proportional to I0.5, and the constraint
on the moment of inertia becomes

mtower

mtower0

>
√
0.9 (24)

Therefore, the tower mass is estimated as

mtower

mtower0

= max

✓√
0.9,

[mRNAg + TH/rmid]

[mRNAg + TH/rmid] 0

◆

(25)

This function max introduces a discontinuity in its derivative, and so it cannot be directly used with gradient-
based optimization. Instead, a small cubic spline is added to provide a smooth transition between the two
tower mass regions.

The tower cost estimate was unmodified from the simple linear scaling of the NREL cost and scaling
model. Hub mass and cost and nacelle mass and cost were also unmodified. The nacelle calculation already
scales with relevant variables for this study, such as the hub thrust, torque, and maximum rotor rotation
speed. Improved drivetrain/nacelle models were developed, but for the scope of this paper, the simpler
scaling relationships used in the cost and scaling model were sufficient.

Finally, a modified balance-of-station (BOS) cost model was used. NREL recently developed a new BOS
model for land-based wind turbines.31 The previous BOS model scales simply based on machine rating, and
does not accurately scale up to the large machine ratings of today. The new version uses a substantially
different bottom-up approach by estimating component quantities and sizes. Operations and maintenance
costs remain unchanged from the NREL cost and scaling model.

II.D. Reference Geometry

The reference geometry used in this study was based on the NREL 5-MW reference wind turbine.32 The
airfoils and chord schedule used in the development of the blade model were adopted from the Dutch Offshore
Wind Energy Convertor project.33,34 Aerodynamic properties were specified in terms of airfoil polar curves
which spanned the full angle of attack range. Structural stiffness was given in terms of axial, flapwise, and
edgewise stiffness. Inertia characteristics were expressed in terms of mass per unit length, and flapwise
and edgewise area moments of inertia. To arrive at a description of the structural stress/strain field under
different loading conditions, a composite-material lay-up was also defined at 38 span sections. A preliminary
version of the initial layup was provided by Sandia National Laboratories,35 as a NuMAD36 property file.
The layup was constructed so as to reproduce the prescribed stiffness/inertia properties along the blade
span as close as possible while still satisfying structural constraints. Material properties were largely taken
from the U.S. Department of Energy (DOE)/Montana State University (MSU) Composite Material Fatigue
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Database29 and a Sandia large rotor study,27 but were modified somewhat to represent generic prestacked
laminates. The various materials included: GelCoat, glass fabrics (Unidirectional (E-LT-5500, [0]2), SNL
TRIAX ([±45]2[0]2), SaerTex Double-Dias (DB, [±45]4), carbon fabrics (generic unidirectional with an
effective thickness of 0.47 mm), generic foam, and epoxy resins. The structural layup was not intended to be
a fully assessed blade design, but a good starting point for comparative studies (such as the study described
in this paper). Unidirectional carbon was chosen to both reduce the tip deflection and potential tower strike,
and to match the stiffness distribution of the original NREL 5-MW model.

Starting from the NREL 5-MW reference design, a parameterization was needed for subsequent optimiza-
tion. Ideally, the rotor geometry should be parameterized with a small number of terms for optimization
efficiency, yet still allow for significant flexibility in describing the geometry. The chord was parameterized
with five variables, shown in Figure 4a. The first and last chord positions were fixed at the root and tip,
respectively. The third chord variable was fixed at 62.6% of the blade length. The radial location of the
second chord variable (typically the location of the maximum chord) was itself a variable (r2). An Akima
spline37 was fit to the four radial/chord pairs to compute the chord at any other radial stationa. The airfoil
shapes were fixed, therefore, changes in chord were directly proportional to changes in airfoil thickness (fixed
t/c for a given section).

(a) Chord distribution parameterization. (b) Twist distribution parameterization.

Figure 4. Parameterization of rotor blade chord and twist distribution.

The twist distribution was parameterized in a similar manner. The inboard portion of the blades has
cylindrical sections, which are invariant to twist. Thus, a constant value was used—up to 16.7% of the blade
length where the first airfoil was defined. Twist was defined at four linearly spaced radial points from this
point to the blade tip, and was fitted with an Akima spline.

This parameterization led to a baseline model that was not exactly the same as the NREL 5-MW reference
model. For both the chord and twist distribution, parameters were chosen to best fit the reference model’s
chord and twist (the interpolation was done along the radial stations defined for the structure, as opposed
to the aerodynamics, simply because more chord/twist points were defined for the structure). The fit was
found by solving the optimization problem

minimize ||chordNREL − chordAkima(x))||
2
2

with respect to x = {r2, c1, c2, c3, c4}
(26)

with a corresponding minimization problem for the twist. The chord and twist distributions for the NREL
5-MW reference model are compared to the best fit designs in Figure 5. The chord distribution is very
similar except near the tip. The twist distribution matches almost exactly.

aAn Akima spline was chosen because of its robustness to outliers. If one of the chord variables differs significantly in
magnitude from the others (which can happen during the course of an optimization), then oscillations are produced for many
spline types. This may cause some sections to have negative chord values, which is nonphysical and will prevent the analysis
from running properly. An Akima spline prevents these types of oscillations. A simple bound constraint on chord is sufficient
to prevent intermediate designs with negative chord, as opposed to a nonlinear constraint on chord that would be required if
using a cubic spline or Bezier curve.
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(a) Comparison of chord distribution. (b) Comparison of twist distribution.

Figure 5. Comparison between the NREL 5-MW reference model and the parameterized baseline model
derived as a best fit to the NREL model.

For the reference model, the spar cap was significantly thicker over the first half-meter. Because of the
abrupt change, rather than attempting to fit a spline over the entire span, the spar cap thickness over the
first half-meter of the blade length was assumed fixed. For simplicity, the spar cap thickness over the rest
of the cylindrical section was assumed constant but not fixed (from r = 2 to r = 11.75 – note that these
locations were normalized by the blade length to accommodate resizing of rotor diameter). Over the outer
portion, spar cap thickness was parameterized in the exact same way as the twist distribution (defined at four
linearly spaced stations and fitted with an Akima spline), except for the spar cap thickness at the blade tip,
which was fixed to prevent unrealistically small thicknesses. The parameterization of the spar cap thickness
is shown in Figure 6.

Figure 6. Parameterization of spar cap thickness distribution.

The baseline spar cap thickness was not resized using a best fit to the reference model. Because a
preliminary version of the 5-MW reference structural layup was used, the structure was found to buckle
at the extreme load case. Though the buckling model used in this analysis was simplistic, the results
were consistent with a linear-buckling analysis conducted in ANSYS, which also predicted buckling in the
spar cap and trailing-edge panels. Using an infeasible design as the baseline would lead to rather unfair
comparisons. Instead, the spar cap was resized to satisfy the buckling constraint everywhere along the span.
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The optimization problem was defined as

minimize mrotor(x)

with respect to x = {t1, t2, t3}

subject to bm(x)j > 0, j = 1, . . . , n

(27)

where bm is the buckling margin computed at every section in the structure at the extreme load condition
(see Section II.E for a description of the buckling margin calculation – note that a slightly larger safety factor
�f = 1.36 was used to ensure that the baseline design was strictly feasible).

The new spar cap thickness distribution was compared with the original structural layup for the NREL
5-MW reference model in Figure 7a. The thickness was larger toward the root and tip to satisfy the buckling
constraints. The strain on the blade’s upper and lower surface at the extreme load and the corresponding
buckling limit is shown in Figure 7b. Compared to the original, the modifications caused the mass to
increase by 5%. For the remainder of the paper, all reference quantities refer to the modified baseline model,
as opposed to the original NREL 5-MW reference model. Some of the relevant reference quantities for the
baseline model are defined in Table 1. Comparisons of the mass distribution, flapwise stiffness, and edgewise
stiffness with the original NREL 5-MW model are shown in Figure 8.

(a) Comparison between NREL reference design and the
resized baseline model.

(b) Strain on upper and lower surface (“sfc” in figure) of
the baseline design and the buckling limit.

Figure 7. Spar cap thickness distribution was sized to minimize mass and satisfy the buckling constraint at
the extreme load condition.

Table 1. Various normalization and reference quantities for the baseline design.

AEP 20.6× 106 kWh

blade mass 18,246 kg

turbine mass 657,180 kg

tip deflection (at rated speed) 2.44 m

cost of energy 0.0498 $/kWh

13 of 31

American Institute of Aeronautics and Astronautics



(a) Mass density distribution.

(b) Flapwise stiffness distribution. (c) Edgewise stiffness distribution.

Figure 8. Comparison between some of the structural properties of the NREL 5-MW reference design and
the baseline design. The baseline design was derived from Sandia’s layup schedule, but was modified slightly
to fit the geometry parameterization and prevent buckling.

II.E. Optimization Strategy and Constraints

Several optimizers, both commercial and open source, were tested on the optimization problems described
in this paper. The active-set algorithm of MATLAB’s function “fmincon”, which uses a sequential quadratic
programming method, was found to be the most robust for these particular problems and was used for all
reported results. Because none of the analysis code was implemented in MATLAB, there was a performance
penalty due to having to reinstantiate all objects at every iteration. However, the robustness of the algorithm
was more important for this study than the small loss in computational speed.

Gradients were estimated using central differencing, and a multistart approach was used to increase the
likelihood of finding the global optimum. Early on, forward differencing was used to estimate the gradients,
and the multistart approach was found to be necessary, as some starting points terminated prematurely.
However, the better gradient estimates provided by central differencing resulted in improved convergence
behavior, and even with multiple starting points, the same optimal solution was always found. This suggests
that the best solution was found for each study. On the other hand, use of alternative optimizers may require
more accurate gradients that are produced by other means, such as the complex-step method38 or hyper-dual
numbers.39

All objectives and constraints were normalized, so that they were of order one for improved scaling. For
example, an objective minimizing the ratio of turbine mass to AEP is implemented as

min
m/m0

AEP/AEP0

(28)

In the following optimization problems, these normalization constants are not explicitly written to reduce
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clutter; the objective is simply denoted as minimum m/AEP . All solutions were converged to a function
tolerance of 1 × 10�6 and a constraint tolerance of 1 × 10�5. Bound constraints were set large enough to
never be active, unless otherwise noted.

A real turbine must be designed to meet a very large number of structural constraints.22 Only a handful
of representative cases were used for this purpose. First, an ultimate strength analysis was performed at
an extreme load condition. The 50-year extreme wind condition is defined as Ve50 = 1.4Vref (Vref = 50
m/s for class I turbines).22 The distributed weight loads were added to the aerodynamic loads at 0 degrees
pitch and the 3 o’clock azimuthal position, which is the worst case for the edgewise loads. Flapwise and
edgewise aerodynamic and structural loads at Ve50 are shown in Figure 9. The flapwise loads are primarily
aerodynamic and the edgewise loads are primarily due to the weight, but not entirely. The corresponding
strain distribution is shown in Figure 7b.

Figure 9. Flapwise and edgewise loading along the blade at the 50-year extreme load condition.

A maximum strain condition was used

✏50 ≤
1

�f�m
✏ult (29)

where the partial safety factor for loads (�f ) was set at 1.35, and the partial safety factor for materials (�m)
was set at 1.1 per the IEC requirements.22 (For actual designs the material and loading partial safety factors
are more involved than using a simple number, and should include additional knockdowns for uncertainty in
material properties, expected environmental conditions, etc. For the purposes of this paper, this additional
complexity is unnecessary.) Because the spar cap is primarily carbon, representative numbers of ultimate
strain in tension and compression are about 2% and 1%, respectively. Conservatively, the smaller value of
1% was used as the ultimate strain (✏ult). Only the strain from a few representative sections was used to
reduce the number of constraints. The sections were biased inboard as those were the critical locations.
The sections were at 0%, 11.1%, 30%, and 63.3% of the blade length on both the upper and lower surface.
Although using a large number of constraints is not problematic, it is also not necessary because the chord
and thickness must vary smoothly due to the parameterization, which leads to relatively smooth variations
in the strain.

Panel buckling was estimated using the simplified method described in section II.B.3. The buckling
margin was computed as

bm = ✏50�f − ✏cr (30)

where both values are negative because the structure is in compression for a buckling condition. The
corresponding constraint was

bm

✏ult
> 0 (31)
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where the ultimate strain was only used so that the resulting constraint was better scaled. Similar to the
strain case, only a few representative stations were used. These stations were at 16.7%, 36.7%, 63.3%, and
83.3% of the blade length on the upper surface only.

Although the constraints on extreme loading are useful when sizing the structure, without additional
constraints the optimum structures would be far too flexible to be practical. As a result, constraints on
the maximum tip deflection and natural frequency of the blade were added to ensure adequate stiffness.
The deflection of the structure was computed at rated speed in the 3 o’clock azimuth position (worst case).
Because conceptual rotor design does not often have a defined substructure model, we could not use blade-
strike as the constraint criteria. Instead, we assumed that the baseline rotor was designed with adequate
stiffness and therefore constrained the deflection to be within 10% of the baseline tip deflection.

� < 1.1�0 (32)

The other constraint related to blade stiffness was on the natural frequencies of the blades. To avoid
structural resonance issues, the first natural frequency (and thus all natural frequencies) of the blade should
be above the maximum rotor blade passing frequency

!1 > �freq(3Ωrated) (33)

where the safety factor �freq was set to be 1.1. The maximum rotation speed occurs at rated speed, and the
factor of 3 came from the number of blades.

The fatigue strength at the root was computed for a 20-year lifetime, as discussed in Section II.B.3. The
fatigue constraint was imposed as

−Sf < �root-gravity < Sf (34)

Finally, a constraint on the maximum tip speed was imposed as a surrogate for a noise constraint. This
constraint was not imposed by the optimizer, but was implemented directly into the analysis, as described
in Section II.A.3.

The nominal optimization problem is outlined below:

minimize
x

J(x)

subject to (�f�m✏50i)/✏ult < 1, i = 1, . . . , N ultimate tensile strain

(�f�m✏50i)/✏ult > −1, i = 1, . . . , N ultimate compressive strain

(✏50j�f − ✏cr)/✏ult > 0, j = 1, . . . ,M spar cap buckling

�/�0 < 1.1 tip deflection at rated speed

!1/(3Ωrated) > 1.1 blade natural frequency

�root-gravity/Sf < 1 fatigue at blade root due to gravity loads

�root-gravity/Sf > −1 fatigue at blade root due to gravity loads

Vtip < Vtipmax maximum tip speed (imposed directly in the analysis)

Because this set of constraints is repeatedly in subsequent optimization problems, it will be referred to as
cset(x), where the constraints are reorganized as needed so that feasibility occurs when cset(x) < 0. Design
variables are summarized in Table 2. Not all design variables were used in every problem. As stated earlier,
airfoil thickness was changed through the chord distribution, as the nondimensional airfoil shapes were fixed.
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Table 2. Design variables used in the optimization problems.

description variable name number of parameters

Chord distribution (Fig. 4a) {c} 5

Twist distribution (Fig. 4b) {✓} 4

Spar cap thickness distribution (Fig. 6) {t} 3

Tip-speed ratio in Region 2 (Fig. 3) � 1

Rotor diameter D 1

Machine rating rating 1

III. Results

These studies examine the impact of using the following different objectives to optimize a wind turbine
rotor: maximizing annual energy production (AEP), minimizing the ratio of turbine mass to AEP, and
minimizing cost of energy. Below, fundamental differences and important considerations of each case are
highlighted and values are reported as normalized by the reference design, where applicable (e.g., AEP ≡
AEP/AEP0).

III.A. Maximum Annual Energy Production

Although typically the most appropriate metric for wind turbine optimization is minimizing the cost of energy
(COE), many studies focus on optimizing the aerodynamic performance of a wind turbine rotor either by
maximizing power at a fixed speed, or maximizing AEP for a given wind distribution. Pure aerodynamic
optimization may be done for a variety of reasons, such as: an appropriate structural model is not available
to the designer, an appropriate cost model is not available, the organization separates aerodynamic and
structural design, or high-fidelity tools are used and, for computational efficiency, the aerodynamic and
structural optimizations are decoupled. This section examines when pure aerodynamic optimization might
be a suitable practice. In other words, under what circumstances does maximizing AEP, or sequentially
maximizing AEP and then minimizing mass, yield a good design? A “good design” in this study means that
it achieves a similar cost of energy as the minimum COE design.

Unfortunately, maximizing AEP without at least some consideration of the rotor mass is not a particularly
well-defined problem. Part of the difficulty with using maximum AEP as an objective is that a multitude of
solutions exist that produce essentially the same AEP (in other words, many local optima exist). To help
clarify, consider a related optimization problem

maximize AEP (x)

with respect to x = {{c}, {✓},�}

subject to cset < 0

mblade = mc

(35)

where mc is a constant mass value. The result of repeating this optimization problem at several discrete
constraints on the blade mass mc is shown in Figure 10. Essentially the same AEP can be achieved across
a wide range of designs with very different masses. Point M1 is noted on the figure as the design with fixed
blade mass relative to the baseline design. Clearly, point M1 is superior to all points to the right of it, as it
achieves essentially the same AEP, but with significantly reduced mass.

The chord and twist distributions of design M1 are compared with those of the baseline design and the
Betz solution including tip losses40 (Figure 11). As expected, the tip-speed ratio increased, causing the
solidity of the outer sections—where most of the power is produced—to decrease. At the same time, the
chord distribution inboard increased, thus structural constraints like deflection and stress did not become
critical. The outer portion of the optimized design is essentially a best fit to the Betz design, given the
limited degrees of freedom. Note that the Betz distribution should not be directly compared to the baseline
design, as design M1 operates at a higher tip-speed ratio (7.68 versus 7.55).

Although design M1 is superior to other designs in Figure 10 with the same AEP, we presume that
structural calculations are not available to a designer attempting to maximize AEP (otherwise a different
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Figure 10. Maximum annual energy production for different designs. Each design was constrained to have a
different blade mass. Point M1 is highlighted and corresponds to the maximum AEP solution, with the mass
constrained so that mblade = 1.

(a) Chord distribution along blade. (b) Twist distribution along blade.

Figure 11. Chord and twist distribution for the maximum AEP design with fixed mass (design M1). Com-
parison is made to the baseline design and the Betz distribution for the tip-speed ratio of design M1.
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objective would be used). Clearly, a more reasonable strategy is to maximize the AEP while constraining
the mass using a surrogate of some kind. Unfortunately, choosing an appropriate surrogate constraint is not
straightforward. One possibility is to constrain the root bending moment to be the same as the reference
design. However, this is often not a helpful constraint. For example, if we define the problem as

maximize AEP (x)

with respect to x = {{c}, {✓},�}

subject to Vtip < Vtipmax

Mbroot < Mbroot0

(36)

then the solution is exactly the same as if the root bending moment constraint was not included. This
is because maximum AEP designs tend to decrease in root bending moment even without the constraint.
Every point in Figure 10 actually has a lower root bending moment than the reference design. For example,
Figure 12 compares the flapwise loads on the baseline design and design M1. The optimized design has larger
loading inboard but decreased loading outboard; the net effect is that the root bending moment decreases
slightly. Thus, including a root bending moment constraint would have no effect on the optimal solution.

Figure 12. Flapwise loading for the baseline design and the maximum AEP solution with fixed mass (design
M1). The root bending moment for the optimized design decreased, even without a root bending moment
constraint.

A number of other potential surrogate constraints were evaluated. One of the more useful ones is sum-
marized below. In conceptual aircraft design, it is common to consider wing weight as consisting of a portion
that scales with the planform area and a portion that scales with the required loading. For the loading
portion, we can approximate the bending moment at a section as a function of the local stress as

Mb =
�At

2
(37)

where A is the cross-sectional area of the structure required to resist the loads, and t is the airfoil thickness.
The mass of the material required to resist the bending loads is

m =

Z

⇢Adr = 2

Z

⇢Mb

�t
dr (38)

If we make the approximation that density is uniform throughout the blade and the design is fully stressed,
then the mass is proportional to the index

m ∝ iaero ≡
Z

Mb

t
dr (39)
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Although this approximation works well in aircraft design problems,41 the assumptions are more of a stretch
for wind turbine blades. Blades typically use a composite structure that can vary significantly in effective
density. Also, because of other constraints, the blade structure is generally not fully stressed. Even with
these limitations, this metric is still likely to be more useful than root bending moment, as it captures the
penalty of a shrinking structural box. Note that, while a uniform t/c is often assumed for aircraft design, an
estimate for the airfoil t/c distribution is needed to evaluate this metric for wind turbines, as the variation
is typically very significant.

Constraining the planform area Splan and the mass index iaero should help constrain the mass of the
optimized design. If manufacturing or transportation limitations are known, a constraint on the maximum
chord may be used instead of, or in addition to, a constraint on the area. However, with the root fatigue
constraint in mind, these constraints alone often produce poor solutions. Typically, the optimal solution is to
decrease the root chord in exchange for a larger chord at the point of maximum chord. This is slightly better
aerodynamically, but is a considerable penalty structurally. To prevent this penalty, we added a constraint
on the stress at the root of the blade. For a thin shell circular section at the blade root, the stress is equal
to

�root =
Mbr

⇡r3t
(40)

where r is the radius of the circular section and t is the shell thickness. In this optimization problem, the
internal structure was fixed so

�root ∝
Mb

r2
(41)

The “AEP 1st” optimization problem was done sequentially as follows

maximize AEP (x)

with respect to x = {{c}, {✓},�}

subject to Vtip < Vtipmax

iaero < iaero0

Splan < Splan0

(Mb/r
2)root < (Mb/r

2)root0

minimize m(x)

with respect to x = {t}

subject to cset(x) < 0

(42)

Although this design achieved a relatively high AEP, it was not quite as high as the maximum (0.39% increase
compared to 0.56%); however, it achieved this AEP with a slight decrease in blade mass (0.5%). The net
result was a 0.3% reduction in the cost of energy. Even though this is a much better solution than simply
maximizing AEP, it is still far from a minimum cost of energy design. One of the main reasons for this is
that, rather than simply avoiding a mass increase, the minimum cost of energy solution achieves a significant
mass decrease. Because the blade shape is already dictated by the aerodynamic optimization, there is only
so much that can be done to minimize mass by changing the internal structure. So when the aerodynamic
and structural disciplines are coupled in shaping the blade, much greater net benefits are possible.

If the disciplines must be decoupled, an alternative approach is to allow the structural analysis to dictate
the blade shape and the aerodynamic analysis to dictate the airfoil shape (only the twist distribution for
this problem). Then the structural analysis must be repeated one final time to ensure that the constraints

20 of 31

American Institute of Aeronautics and Astronautics



have been satisfied. This approach was used in the “mass 1st” problem, which was defined as

minimize m(x)

with respect to x = {{c}, {t}}

subject to cset(x) < 0

maximize AEP (x)

with respect to x = {{✓},�}

subject to Vtip < Vtipmax

minimize m(x)

with respect to x = {{c}, {t}}

subject to cset(x) < 0

(43)

Minimizing mass, even when subject to the constraints, is not a particularly well-defined problem. The
solution depends on the choice of variable bounds. In the “mass 1st” problem, the tip chord shrunk to the
lower bound (0.5 m) and the position of the maximum chord (r2 in Figure 4a) moved to its right bound
(40% blade fraction). Moving to the extreme bounds allowed the optimizer to minimize mass near the root
where the structure was heavy, while still keeping a large enough chord at the root to satisfy the fatigue
constraint. For the “mass 1st” problem, the mass of the blades decreased significantly (6.6%), but the AEP
also decreased (0.9%). There was a net decrease of 0.35% in cost of energy, but this is not a particularly
useful design technique because the results are sensitive to the choice of bounds on the chord distribution.

We compared these designs to the real objective—the minimum cost of energy (“min COE”) design

minimize COE(x)

with respect to x = {{c}, {✓}, {t},�}

subject to cset(x) < 0
(44)

The AEP, turbine mass, and cost of energy of the three optimized designs discussed in this section are
compared in Figure 13. The “AEP 1st” design maximizes AEP first and then minimizes mass (Eq. (42)).
The AEP optimization has constraints on the planform area and bending moment distribution. The “mass
1st” design minimizes mass first and then maximizes AEP (Eq. (43)). Changes in the chord distribution are
dictated by the structural optimization. The real objective is to minimize the cost of energy and is shown
in the final design “min COE” (Eq. (44)). Although only the rotor mass is optimized, the percent change in
total turbine mass is shown in this figure (assuming constant mass values for the rest of the turbine). The
mass of the rest of the turbine is added because the rotor mass changes by a relatively large percentage and
would overwhelm the scale of the figure. The masses for the rest of the turbine come from those defined for
the NREL 5-MW reference model32 (mhub = 56,780 kg, mnacelle = 240,000 kg and mtower = 347,460 kg).
Finally, the chord and twist distributions of the optimized designs are compared in Figure 14.

With the inclusion of reasonable constraints that help limit mass change, maximizing annual energy
production by shaping the blade and subsequently minimizing mass by changing the internal structure can
lead to designs that decrease the cost of energy. However, the impact is much smaller than it could be,
because optimal designs tend to decrease mass until structural constraints become active. This is very
difficult to approximate without including a structural model and corresponding integrated metric into the
optimization.

On the other hand, with reasonable bounds on the design variables, minimizing the mass by changing the
blade’s external and internal structure and subsequently maximizing aerodynamic performance by changing
the airfoils and tip-speed ratio can also lead to designs that decrease the cost of energy. However, aerodynamic
performance suffers and the result is significantly suboptimal than designs that integrate the aerodynamic
and structural analyses and use a relevant combined metric.
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Figure 13. Comparison between sequential aerodynamic and structural optimizations and an integrated aero-
dynamic and structural optimization. The percent change in mass is relative to the total turbine mass.

(a) Chord distribution along blade. (b) Twist distribution along blade.

Figure 14. Chord and twist distribution for the three designs that were examined.
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III.B. Minimum Turbine Mass/AEP

Clearly, it is beneficial to directly integrate the aerodynamic and structural analyses in the optimization
problem. Although maximizing AEP and minimizing mass sequentially is not particularly effective, an
appropriate combined aero/structural metric can be useful. For designs with fixed materials, a reasonable
choice is to minimize the ratio of the turbine mass to the annual energy production mturbine/AEP . This
objective can be motivated by the cost of energy equation, which includes capital costs and operating expenses
in the numerator and AEP in the denominator

COE =
FCR · (TCC + BOS) + O&M

AEP
(45)

In the absence of a detailed cost model, the assumption can be made that the capital costs and operating
expenses will scale proportionally with the overall turbine mass.

For the remainder of this section, the mass of the turbine is simply denoted asm, rather thanmturbine. To
compare the effectiveness of minimizing m/AEP with minimizing COE, a number of studies were examined.
The first study compared optimal turbines using both objectives at a fixed rotor diameter and a fixed
machine rating (5-MW). The rotor diameter was varied at several different values to observe the trends in
performance. The optimization problem was given by

minimize COE(x;D) or m(x;D)/AEP (x;D)

with respect to x = {{c}, {✓}, {t},�}

subject to cset(x) < 0

(46)

Although two separate objectives were used, for comparison purposes, both final designs were evaluated
using the cost of energy metric. The difference in cost of energy between the two objectives as a function of
rotor diameter is shown in Figure 15a, and the variation in m/AEP is shown in Figure 15b.

(a) Solutions are compared to minimum cost of energy so-
lutions (both evaluated using COE).

(b) Variation in m/AEP approximately predicts the correct
optimal diameter.

Figure 15. Designs with minimum m/AEP as a function of rotor diameter.

The metric m/AEP resulted in suboptimal designs in terms of minimum COE, though they were the
optimal solution for minimum m/AEP . Both metrics found very similar designs for diameters smaller than
the reference design, but for larger diameter rotors, the minimum m/AEP designs had about a 1% higher
cost of energy. The reason for this discrepancy is that the metric m/AEP overemphasizes the role of the
tower mass. Figure 16a shows the relative contribution to total mass from the different components of the
turbine and Figure 16b shows the relative contribution to total cost for the baseline design. The tower
dominates the mass of the turbine at about 53%. However, it contributes a much smaller fraction to the
total costs (about 9%). These relative contributions are typical of land-based turbines.42 Thus, when the
objective is to minimize m/AEP , the contribution of the tower plays a disproportionate role. At least, a
fairly accurate optimal rotor diameter is predicted using this metric (Figure 15b), which is not always the
case with m/AEP metrics.

23 of 31

American Institute of Aeronautics and Astronautics



The difference between the minimum COE and minimum m/AEP designs can be seen more clearly
by examining the chord and twist distributions as the rotor diameter increases. Figure 17 compares the
optimal chord and twist distribution for the two metrics at D/D0 = 1.05. The minimum m/AEP design
attempts to sacrifice rotor performance to reduce thrust and decrease tower mass. We observe that the
minimum m/AEP design uses a thinner structure outboard to reduce thrust (and power) and unloads the
tip significantly to further reduce thrust. To compensate for the reduced structure, the design has a much
higher spar cap thickness outboard. Compared to the minimum COE design, the minimum m/AEP design
produces 7.7% less thrust at rated speed, which allows for a 6.7% lighter tower. At the same time, the annual
energy production decreases by 1.9%. Because the contribution of the tower mass is so large, the net effect
is still a reduction in m/AEP . In this case, minimizing m/AEP is not a good surrogate for minimizing the
cost of energy (though it is better than just maximizing AEP).

(a) Relative contribution to total mass. (b) Relative contribution to total cost.

Figure 16. Relative contributions to total mass and total cost of the baseline design. Cost contributions
already include the fixed charge rate and tax rate. The tower contribution is of particular note.

(a) Comparison between chord distributions. (b) Comparison between twist distributions.

Figure 17. Comparison of chord and twist distributions for minimum COE and minimum m/AEP design at
D/D0 = 1.05.

To improve the predictive ability of m/AEP , other alternatives may be considered. For example, if
tower mass is disproportionately emphasized in minimizing m/AEP , perhaps the tower mass could be fixed.
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However, ignoring the tower completely and minimizing mrotor/AEP is not a useful option. Similar to the
previous example, this metric overemphasizes the effect of the rotor mass and thus leads to optimal solutions
that reduce rotor mass at great expense to aerodynamic performance. Instead, including a fixed tower and
nacelle mass is a much more reasonable approach. We defined

mfixed = mblades +mother (47)

where the mass of the blades was estimated as before, but the contribution of the other components were
fixed at the values reported for the NREL 5-MW reference model32 (mhub = 56,780 kg, mnacelle = 240,000
kg, and mtower = 347,460 kg). The optimization problem was then

minimize mfixed(x;D)/AEP (x;D)

with respect to x = {{c}, {✓}, {t},�}

subject to cset(x) < 0

(48)

The minimum mfixed/AEP designs are compared to the minimum COE designs as a function of rotor
diameter in Figure 18a. Although the first design was not optimized for minimum COE, they were both
evaluated for cost of energy to facilitate a comparison. We note that this objective produced essentially the
same designs as the minimum COE designs, which is somewhat fortuitous. The constant nacelle and tower
masses played a fractional role that was similar to the role of the balance-of-station (BOS) and operations
and maintenance costs in estimating cost of energy (though they were not precisely constant). Figure 16
shows that the rotor mass and rotor costs consume similar fractions of total mass and total cost, respectively.

However, there is still a problem with the metric mfixed/AEP . The use of this metric implies that a
cost of energy estimate is absent. Figure 18b shows the variation in mfixed/AEP as a function of rotor
diameter. We see that the trend is completely opposite to that of the cost of energy. Although the trend
may not always reverse, the relative change between designs will certainly differ between the two metrics.
As the rotor diameter increases, the annual energy production decreases faster than mfixed increases. The
difference is because only the rotor mass is changing in mfixed, and it is a relatively small component of
the total mass. On the other hand, as the rotor diameter increases, turbine capital costs generally increase
at a much faster rate than mfixed (BOS and operations and maintenance costs also increase somewhat).
These results suggest that mfixed/AEP may work well for fixed diameter optimizations, but for variable
diameter studies, this metric will not predict the correct rotor diameter, and may, in fact, suggest very
different optimal diameters.

(a) Solutions are compared to minimum cost of energy so-
lutions (both evaluated using COE).

(b) Variation in mfixed/AEP predicts wrong trend.

Figure 18. Designs with minimum mfixed/AEP as a function of rotor diameter.

One final modification to the m/AEP metric was made. It was clear that, in order to capture the
correct variation in performance as rotor diameter changed, the change in the nacelle and tower mass must
be estimated. However, this must be done in such a way that the optimizer will not have an overly large
incentive to reduce tower mass at the expense of aerodynamic performance. As discussed in Section II.C,
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the tower sizing scaled primarily with rotor thrust. In Eq. (25), the thrust contribution to the tower’s axial
stress is generally much larger than from the weight of the top mass. We assumed that tower mass scaled
directly with the tower thrust. This is the type of trend seen in WindPACT studies and in the NREL cost
and scaling model.10 Therefore, we can estimate the mass about a reference design as

m

m0

=
CTV

2
ratedD

2

CT 0Vrated
2
0D

2
0

(49)

This equation allowed us to estimate tower mass as rotor diameter changed (conservatively) but, as discussed
previously for the objective minimum m/AEP , the optimal solution significantly decreased rotor thrust
(and thus power) to reduce tower mass. This same incentive exists here by decreasing the thrust coefficient
of optimized designs. To avoid this incentive, we removed thrust coefficient from the equation, with the
assumption that optimal solutions should have similar maximum thrust coefficients. Then the mass can be
estimated as

m

m0

=
(VratedD)2

(VratedD)20
(50)

For a given rotor diameter, the only way for the optimization to decrease the tower mass is to decrease rated
speed. Because the optimization was done at a fixed machine rating, it was synonymous with increasing
aerodynamic performance. Thus, with this “trick” we aligned the objectives and forced the optimizer to
find reasonable designs. We will denote this mass calculation as mmodified, where all mass components are
estimated in the same way, except for tower mass, which was estimated using

mtower�modified

mtower�modified0

= max

✓√
0.9,

(VratedD)2

(VratedD)20

◆

(51)

where the first portion came from Section II.C to account for a constraint on the moment of inertia, and a
cubic spline was added to provide a smooth transition in the tower mass.

Figure 19a shows a comparison in cost of energy between designs optimized with the modified mass metric
and minimum cost of energy designs. The designs differed only slightly, with the minimum mmodified/AEP
designs differ only by about 0.3% from the optimum cost of energy. However, like the previous case, this
metric does not predict the correct optimal rotor diameter (Figure 19b).

(a) Solutions are compared to minimum cost of energy so-
lutions (both evaluated using COE).

(b) Variation in mmodified/AEP does not predict the cor-
rect optimal rotor diameter.

Figure 19. Designs with minimum mmodified/AEP as a function of rotor diameter.

We have seen that m/AEP can be a useful metric for designs with a fixed rotor diameter and power
rating, but the optimization must be set up carefully. Because the mass of the tower is such a large portion
of turbine mass, and tower cost is not nearly as large of a fraction of total cost, the problem must be carefully
designed to prevent the optimizer from taking advantage of this difference. One approach is to fix the nacelle
and tower mass at constant values. This does lead to good designs at a fixed rotor diameter, but is a poor
metric for variable-diameter problems, as the turbine mass changes much more slowly than it should as the
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rotor diameter changes. At the same time, including an estimate of tower mass will often incentivize the
optimizer to sacrifice aerodynamic performance to reduce tower mass. If the optimization problem is set
up in such a way that this incentive is prevented, then reasonably good designs (close to minimum COE
designs) can be found for a given diameter. However, predicting the optimal diameter may still lead to
incorrect conclusions.

III.C. Minimum Cost of Energy

Minimizing m/AEP is certainly not a useful metric if the machine rating is allowed to vary. If a tower model
is included, then there is a large incentive to reduce the rating to minimize the tower mass. If the tower
mass is fixed, then there is little to no penalty for increasing the rating all the way up to its upper bound. A
cost model is necessary to capture costs associated with the machine rating, and to appropriately scale the
impact of the tower costs with the rest of the costs.

However, the details of the cost model cannot be an afterthought. Care must be taken to capture
the important effects. Often, optimization studies put considerable effort into improving the fidelity of the
physics modeling, but comparatively little effort into improving the fidelity of the cost model. As an example,
a similar study to the previous section was undertaken, but with variable machine rating

minimize COE(x; rating)

with respect to x = {{c}, {✓}, {t},�, D}

subject to cset(x) < 0

(52)

The optimization was done at a fixed power output of the plant, with a baseline of fifty 5-MW turbines.
Only the new BOS model is sensitive to changes in the number of turbines, the other components of the
cost equation are currently invariant to this change. Figure 20 compares the minimum cost of energy design
as a function of rating using the newly developed BOS model, and the original BOS model from the cost
and scaling model. Clearly, there is a substantial difference in the optimal machine rating (about 30%), and
a significant difference in optimal designs at a fixed rating. The only difference in these curves is the BOS
model. The previous BOS model uses simple scaling relationships (that do not scale well to large machine
ratings), while the new one uses a bottom-up approach in estimating component sizes and quantity. Thus,
even though improved fidelity exists in the physics, it is also needed in the cost modeling to obtain quality
solutions.

Figure 20. Comparison of minimum cost of energy designs as a function of machine rating using both the old
and new BOS model.

Though cost of energy is clearly a superior metric, a deterministic model may still be insufficient to
produce robust designs. One simple example is given below. Consider that all designs have been optimized
for a fixed wind speed distribution (Rayleigh distribution with a mean wind speed of 10 m/s). However, a
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manufacturer may design a turbine to be used at many sites. We considered a problem where the turbine
was intended for use in any wind power class from 3 to 7, which is common, and where the mean wind speed
at 50 m above the ground varies from 6.4–11.9 m/s. The turbine was optimized to minimize the expected
value of the cost of energy across those wind speeds, and the 50-m wind speed was used as a proxy for
the hub height wind speed. We gave each wind speed an equal weight (uniform distribution), though any
distribution could be used. The optimization problem was defined as

minimize < COE(x;V hub) >

where V hub ∼ U(6.4, 11.9)

with respect to x = {{c}, {✓}, {t},�, D, rating}

subject to cset(x) < 0

(53)

The cost of energy as a function of wind speed is shown for the optimal solution as compared to the point
design, which minimizes COE at V hub = 10 m/s in Figure 21. While the point design has a slightly lower
cost of energy at the design point of Vhub = 10 m/s, the robust design has a much lower cost of energy at the
lower wind speeds. The optimal blade shapes are similar; the main difference is that the robust design has
a 16% lower machine rating to achieve a higher capacity factor at the lower wind speeds. This also allows
the robust design to use a 3.4% larger radius and still satisfy the structural constraints. The net result is
that the robust design achieves a 1.2% lower average cost of energy than the point design. Although there
are clear benefits to site-specific design, even within a single site the variation in wind conditions may have
a considerable impact.

Figure 21. Cost of energy as a function of hub wind speed for a point design that was optimized at 10 m/s, as
compared to a robust design that was optimized to minimize the expected value of the cost of energy across
the wind speeds.

This example may be simplistic, but it demonstrates the importance of considering multiple design points
in an optimization for improved robustness. Structural sizing constraints are affected by uncertainty associ-
ated with the loading conditions, safety factors, etc., while performance metrics are affected by variability
in the wind speed distributions, availability, etc. Characterizing the uncertainty of the model inputs and
performing optimizing under uncertainty is important to achieving robust designs.

IV. Conclusion

In this paper, we discussed the limitations of various objectives that are commonly used in wind turbine
optimization problems. The specific optimized designs produced in this study are not of primary interest,
as they will vary depending on the assumptions and fidelity of the model. However, the relative differences
in performance between different objectives highlight the following fundamental conclusions.

28 of 31

American Institute of Aeronautics and Astronautics



First, maximizing annual energy production typically leads to significantly suboptimal designs (in terms
of cost of energy), even when the internal structure is subsequently optimized. Part of the difficulty is that
similar aerodynamic performance can be achieved with designs that have very different masses. Appropriate
aerodynamic surrogates for mass and structural limitations are helpful, but are still considerably inferior to
a true structural model. Shaping the blade to minimize mass and subsequently optimizing airfoil sections
for maximum aerodynamic performance is not much better. Although both approaches lead to decreases in
cost of energy, they are inferior to metrics that combine the aerodynamic and structural performance.

Second, minimizing the ratio of turbine mass to annual energy production can be a useful metric, but
only for certain design problems and only if used with care. Even if a nacelle and tower model are not
used, a constant estimate of their mass must be included, otherwise potential decreases in rotor mass are
overemphasized, which can lead to extremely suboptimal aerodynamic performance. As the rotor diameter
(and thrust) change, exactly how the tower mass is estimated can substantially affect the optimal result. If
a fixed tower mass is used, then the optimization works well at a fixed rotor diameter, but for a variable-
diameter design, it predicts a very inaccurate optimal diameter. This error arises because, without changing
the size of the nacelle or drivetrain, the ratio of turbine mass to annual energy production decreases much
faster than it otherwise should. On the other hand, when the tower is allowed to resize, the problem must
be constructed very carefully. The difficulty is that tower mass consists of a large portion of total mass, but
tower cost is a rather small contribution to total cost. Thus, using m/AEP as the objective significantly
overemphasizes the role of the tower. Without careful construction of the problem, the objective m/AEP
overincentivizes the optimizer to decrease tower mass at the expense of aerodynamic performance. With
carefully constrained designs, this metric can work quite well for a fixed rotor diameter, but it may still
lead to incorrect optimal diameters for variable-diameter designs. For variable machine rating problems (or
designs where the material is varied), this metric is not helpful at all.

Finally, minimum cost of energy is the appropriate metric to balance aerodynamic and structural per-
formance with plant-level and operational costs. However, the fidelity of the cost model can dramatically
affect the results. Along with increased fidelity in the physics, increased fidelity in cost modeling is needed.
Furthermore, simply minimizing cost of energy may not be the most appropriate metric, as turbines need to
be designed to perform well in a variety of conditions. Even within a single site, environmental conditions
may vary significantly. Many of these inputs are inherently stochastic, and uncertainty exists in operational
and model parameters. These considerations suggest that simply minimizing cost of energy will lead to infe-
rior designs, and that optimization under uncertainty is particularly important given the stochastic nature
of the wind.

This paper has highlighted many of the important design considerations in choosing appropriate objectives
for wind turbine optimization problems. However, many opportunities exist to improve upon the insights
discussed here. Rather than using scaling relationships, full physics-based models for the drivetrain and
tower can be used. This will lend additional degrees of freedom to the optimization problem, allow for
more rigorous sizing constraints, and lead to a better understanding of the trade-offs in rotor aerodynamic
performance and turbine weight. The capital cost models used in this study are very simplistic; more detailed
cost models are needed to better capture the effect of materials and manufacturing costs that are the result of
changes to the structural ply schedule and blade shape. More thorough studies combining optimization with
uncertainty quantification are needed, along with a better understanding of the nature of the uncertainties
associated with the environmental conditions, physical processes, and cost metrics. Some of these potential
improvements are currently being investigated.
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