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Objectivity of classical quantum stochastic processes
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We investigate what can be concluded about the quantum system when the sequen-
tial quantum measurements of its observable—a prominent example of the so-called
quantum stochastic process—fulfill the Kolmogorov consistency condition, and thus,
appear to an observer as a sampling of classical trajectory. We identify a set of physical
conditions imposed on the system dynamics, that when satisfied lead to the aforemen-
tioned trajectory interpretation of the measurement results. Then, we show that when
another quantum system is coupled to the observable, the operator representing it can
be replaced by an external noise. Crucially, the realizations of this surrogate (classi-
cal) stochastic process are following the same trajectories as those measured by the
observer. Therefore, it can be said that the trajectory interpretation suggested by the
Kolmogorov consistent measurements also applies in contexts other than sequential
measurements.

1 Introduction

The quantum mechanics is a flagship example of non-classical physical theory. To human users, who
are firmly ingrained in the classical realm, many aspects of the theory often appear highly counter-
intuitive and sometimes even paradoxical; this is true both for the elements of the mathematical
formalism as well as the interpretative rules that correlate the abstract mathematics with user’s
experiences. Hence, it is only natural to look for instances when the quantum mechanics puts on a
familiar classical appearance. In this vein, there was a recent resurgence of efforts in the search for
the signatures of classicality manifesting in the statistics of the sequential quantum measurements
[ y S5 9y Ty Yy ]

In the language of quantum theory, the result of an experiment consisting of n consecutive
measurement events is depicted as a sequence of stochastic variables described by a joint probability
distribution P,—the quantum stochastic process [7]. The classical intuition would suggest that the
sequential measurement should allow the observer to uncover a trajectory that was traced by the
evolving physical quantity (the observable); after all, this is how measurements are supposed to
work in classical physics. Of course, quantum observables often behave in a way that contradicts
this naive intuition. The theory of probability ascertains that the measured sequence can be
interpreted as a sampling of an underlying trajectory—i.e., a trajectory that was traced over time
independently of the measurement events—only if the joint probability distributions satisfy the
Kolmogorov consistency (KC) condition. In formal terms: let Q(F) be the set of all possible
results of a single measurement of observable F, then P, (fn,tn;-..; f1,t1) is the probability of
obtaining the sequence of results fy,..., f1 [where each f; € Q(F)] in consecutive measurements
performed at the corresponding times 0 < t; < -+ < t,,; the family { P, }22 ; satisfies KC condition
(or ‘is consistent’, for short) when

Vin>1)V(0 <ty < - <ty VA <i <n)V(f1,.... ... fn €QUF)) :
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By the Kolmogorov extension theorem [8], any family of consistent joint probability distributions
uniquely defines a stochastic process. This makes the sequence of measured results effectively in-
distinguishable from the sampling of a randomly chosen trajectory (the realization of the stochas-
tic process), and thus, the quantum stochastic process is transmuted into the classical quantum
process. However, typically this is not the case because probability distributions P, describing
quantum measurements violate KC in general [9, 10], and fulfill it only under specific conditions
[ 3 Sy Dy Ty Yy ]

Therefore, in the special event when {P,}5°; is consistent, it follows that the sequence of re-
sults witnessed by the classical observer can be modeled with a stochastic process, i.e., an observer
performing the sequential quantum measurement of the observable represented by Hermitian oper-
ator F' cannot distinguish their results from the sequential sampling of trajectory f(¢) that realizes
the stochastic process F'(t). Given that, one is compelled to pose the following question: can
this trajectory picture be applied in contexts other than measurements performed by the classi-
cal observer? Can those trajectories be considered as objective entities? To put it differently, if
the classical observer perceives the observable F as a stochastic process, can we say that also a
non-classical observer—i.e., a quantum system coupled to F—evolves as if F' was replaced with an
external field represented by the process F(¢)? If this question is answered in affirmative, then one
is allowed to say that the quantum measurement of the observable F' achieves the classical ideal
where it becomes possible to observe the ‘actual, objective state (the trajectory) of a physical quan-
tity’. This is because, if there is a symmetry between classical and non-classical perceptions, then
the same fundamental description of the measurement result (the family {P,}%2 ;) also describes
the evolution of other quantum systems coupled to F. Here, we define the conditions the dynamics
of the observable F' has to satisfy to achieve this objectivity of its trajectory picture and we discuss
the physical implications it brings about. These conditions turn out to be formally equivalent with
the decoherent histories criterion of the consistent histories framework [11, 12, 13, 14]. However,
the fact that they guarantee the above-defined objectivity of the trajectory picture has apparently
gone unnoticed until now.

2 Classical observer

The classical observer experiences the dynamics of a quantum system through readouts of the
dedicated measuring apparatus. As per standard interpretation of the quantum mechanics, the
apparatus itself is treated as a primitive notion: it is assumed that the device can be built, but
the details of its inner workings and the particularities of its interactions with the observer as
well as with the measured system are not specified. The one thing that has to be specified about
every apparatus is the assignment of the Hilbert space partitioning {E (n)}n, such that E (n) 20
and ) E(n) = 1. The partitionings into mutually orthogonal subspaces are of particular interest
because they correspond to the direct measurements of physical quantities (the observables). For
example, the observable F' is represented by the Hermitian operator F = FT this operator has
spectral decomposition,

F= S 1RO, 2
€Q(F)

where the set Q(F') contains all unique eigenvalues of F and the operators ]5( f) are the projectors
onto the corresponding orthogonal eigenspaces, i.e., >, P(f) =1 and P(f)P(f") = 674 P(f).
(We will suppress the range of sums whenever it is clear from context that the variable belongs to
Q(F).) Therefore, {p(f)}feQ(F) defines an orthogonal partitioning of the Hilbert space, and that
partitioning can then be assigned to the apparatus measuring the physical quantity F'.

The Born rule defines how the partitionings assigned to measuring apparatuses correlate with
the readouts perceived by the classical observer; it states the following: given the unitary evolution
operator U(t) = exp(—itH) describing the dynamical law in the measured system S and the initial
density matrix p, the probability of reading out the result f; at the time ¢; > 0, and the result
fa at to > t1, ..., and finally the result f,, at ¢, > ¢,_1, in the sequence of n measurements, is




calculated according to the formula
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Here, the symbol ]—Ll:n A; (TT%, A;) indicates an ordered composition A, --- A, (A;---A,) and
P(f,t) = Ut (t)P(f)U(t) is the Heisenberg picture of the projector.
By default, the Born distributions P, are causal [9],

(3)
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Because of this relation it is possible to rewrite the joint probability distributions P, as a product
of conditional probabilities,

P(fp1) = t[P(f)pd]. ()
with the condition in a form of density matrix p,

Pn(fnatn) Pnfl(fnflatnfl) ._.PQ(f27t2)

Fulfu t) = Po_1(fr-1,tn—1) Po—o(fr-2,tn_2) Pi(f1,t1) Pi(ft)
n—1
= P(A|T )T (#0)) [T PUrtt|htin g10.0)- (6)
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where the density matrices conditioned on the history of previous measurement results are given
by

) (M PG) 5 (T, Pt
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and the relation (4) ensures their proper normalization. Typically, distribution of form (5) is
interpreted as describing a single measurement performed on the current state of the system p; [15];
therefore, the reformulation (6) suggests a reading that the sequential measurement is a composition
of independent measurement events where in each step the apparatus measures the state as it is
at the corresponding instant. However, it looks as if the very act of observation seemingly changes
the state in between the steps. Indeed, we see in Eq. (6) that the state at the time of the next
event, Py, . |7,..t., appears as the state from the previous event, py, |z, _,¢,_,, that was collapsed
onto the subspace corresponding to the measured result,

) ~ P(fi)dy i fomritns P(Fr) A
k k—1:tk—1

Thus, in this reading, the statistical dependence between results in a sequential measurement is
shifted to the state subjected to collapse events coinciding with each observation.

Can this picture of system state being collapsed by the measurement be objectified? What is
the standard one would apply to decide whether Eq. (6) and the narration we have built around
it, is a sufficient reason to consider the state collapse as an objective event? Consider that the
very idea of collapse, understood as a sudden, non-unitary (i.e., not following the dynamical law
of the system) change of state that coincide with the measurement event, came to be only because
of a particular result of algebraic transformations to the formula defining P,. Given that, the
most that can be said at this point is that the collapse is something subjectively perceived by
a classical observer performing sequential measurements. To even entertain the possibility of its
objectification, it should be possible to show this kind of state change appearing in, at least, one
context other than the sequential measurements. The more diverse the contexts the picture of
collapsing states can be adopted in, the more justified the claim of its objectivity—this is the
standard we are setting for our present investigations. To our best knowledge, collapse has not




been demonstrated in any other context of the quantum theory, and so, the state collapse picture
does not clear our standard. Therefore, the collapse is, at most, inter-subjective among classical
observers (i.e., classical observers agree that they perceive the same picture). Our aim is to show
that the trajectory picture suggested by the Kolmogorovian consistency of Born distributions turns
out to be more than inter-subjective when assessed against the same standard—we will demonstrate
that the trajectory picture can be applied in contexts beyond sequential measurements.

3 Consistent Measurements

The causality relation (4) applies only to the latest measurement result in the sequence; an analo-
gous relations between Born distributions that would involve results mid sequence are not readily
apparent in the general case. Nevertheless, the quantum mechanics does not prohibit such relations
as a matter of principle. An important example—and the subject of this paper—is the Kolmogorov
consistency (1) (KC), a relation between Born distributions inspired by the fundamental laws of
the classical theory of stochastic processes.

In the classical theory, physical quantities are represented by trajectories traced over time in
accordance with the system’s dynamical laws. These trajectories are considered as objective entities
in the sense that the same fundamental description of the trajectory accounts for both the results
of measurements, as well as any other non-measurement interaction with the physical quantity in
question: ‘when the (classical) tree falls, it makes a sound even if there is no one around to hear
it.” The Kolmogorovian consistency is the manifestation of this fundamental postulate of classical
physics; let us explain why by reviewing some fundamentals of the theory of stochastic processes.

Formally, a classical stochastic process X (¢) representing a physical quantity is defined as a map
from the set of outcomes of random event (the sample space) to trajectories x(t)—the real-valued
functions of time ¢t € R. Every process X (¢) is assigned with a probability distribution functional
Px|[z] for its trajectories x(t); as a probability distribution this functional is non-negative, Px|[x] >
0, and normalized,

/ Py [s][Da] = 1, 9)

where [ ---[Dz] indicates the functional integration. Given the probability distribution Py [z] one
can calculate the expectation value of arbitrary functionals of X (t),

WX] = lim %ZW{@} - / Py [2]W[a][Da, (10)

where {z;(t)}X, is an ensemble of independently sampled trajectories. The moments of the pro-
cess,

X(tn) - X(t1) = /Px[x] (Hx(ti)> [Dz], (11)

are important example of expectation value. Since any regular functional W[X] has some form
of series expansion into a combination of products of X(¢), the problem of computing W[X]
can be broken down into manageable steps each solved with the use of an appropriate moment.
However, the functional integral form of stochastic average (11) is difficult to work with. In practical
applications the formal definition utilizing the functional Px|z] is almost always rewritten in the

language of joint probability distributions {P)((n)}zozl. Each joint distribution is a standard function

of n pairs of arguments: a real value x; and the time ¢;. The functions P)((n) are proper multi-varied
probability distributions that are non-negative and normalized,

V(n 2 DV(xq,...,zo)V(0 <ty < -+ <tp):
P)((n)(xmtn;...;xl,tl) > 0; Z P)((n)(asn,tn;...;zl,tl) =1. (12)
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(For simplicity we are assuming here that process X(¢) is discrete, hence the sums over z; rather
than integrals; although, ¢; € R.) The joint distribution P)((n)(xn,tn; ...;T1,t1) is interpreted as
the probability that a randomly chosen trajectory z(t) passed through all the consecutive values
x; at the corresponding points in time ¢; (assuming t; < -+ < t,,); in formal terms,

P)((.n)(l‘n,tn; .. .;lfl,tl) = /Px[l‘] <H 5(1‘(151) — ZEZ)> [DJL‘] (13)

This means that moments (and thus, any expectation value) can be rewritten to utilize the joint
distributions instead of the unwieldy functional integration,

/PX[J;] <Hx(ti)> D)= Y PPt s t) (H x,) . (14)
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However, as the joint probability distributions are meant to describe the course of objective tra-
jectories, they have to be consistent. If P)((n)(. ..;&;, ti;...) is the probability that trajectory has
passed through z; at time ¢;, then P)((") (oot )+ P)((n) (...,x}, t;;...) is the probability that
z(t) has passed through either x; or z, and thus, ) P)((")(. .3 &4, t;; .. .) is the probability that it
has passed through any value. Since trajectories are functions defined on the whole real line, the
probability for the occurrence of all possible alternatives at time ¢; (i.e., trajectory passing through
any value) must be equal to the probability without any constraints imposed on the trajectory at
this point in time. But the probability for the trajectory to pass through the sequence of values
Zp,-..,r1 minus the constraint at ¢; is given by the joint distribution of order n — 1 where the
1th pair of arguments is skipped, P)((n_l)(acn7 tns ... Zets; . .. 21, b1 )—i.e., the Kolmogorov consis-
tency. Hence, in the context of classical theory, the fact that stochastic processes are realized as
trajectories is manifested as consistency of joint probability distributions. The reciprocal is also
true: the extension theorem states that any infinite family of multi-varied probability distributions
that is consistent, uniquely defines a stochastic process with trajectories as its realizations.

Coming back to the issue of quantum observables, when the system’s properties cause the Born
distributions to satisfy KC condition, the extension theorem implies that { P, }52 ; defines stochastic
process F'(t). Distributions P, then play the role of joint probabilities prn), and, as for all stochas-
tic processes, they combine into functional distribution Pg|[f] for process trajectories f(t). Con-
sequently, each value in a sequence f,, ..., f1 [with probability distribution P, (fn,tn;-.-; f1,%1)]
is equivalent to the sample of a trajectory, f; = f(t;), where f(t) has distribution Pr[f]. On a
surface level, we conclude from these observations that the results of the sequential measurements
of KC-satisfying quantum observable F' can be simulated with the sampling of classical stochastic
process F'(t) without the loss of any information. On a higher level, the KC condition (1) itself
suggests the interpretation that F appears to classical observer as a trajectory traced over time
independently of the action of measuring apparatus and the individual measurement events only
uncover the already determined value. To explain how we are coming to this conclusion, first
consider the following. In the theory of probability, the sum over ith argument on the LHS of KC
condition (1) is typically meant to indicate that the measurement was performed at time t; but
the observer has discarded, or has forgotten, the result. On the other hand, the Born distribution
that skips the argument at t; describes the situation where there was no measurement at that
time. Hence, the KC condition could be understood to mean that the influence of the measuring
apparatus on the course of the observable dynamics is insignificant (in the sense that it does not
affect the statistics of the following measurements), because simply forgetting the result of a mea-
surement that was performed, is indistinguishable from the situation when the measurement never
happened in the first place.

In summary, we have argued here that when the Born distributions {P,}> ; satisfy the Kol-
mogorov consistency condition, the classical observers perceive the measured observable as a trajec-
tory akin to realizations of classical stochastic process. In such an event, we say that the trajectory
picture (of observable F') applies in the context of sequential measurements. Therefore, when
tested against our standard of objectivity, at this point we can only affirm that the trajectory pic-
ture is, at least, inter-subjective among classical observers. However, in what follows we will show




that the trajectory picture is more than inter-subjective because—unlike the previously discussed
state collapse picture—it can be applied in context that do not involve measurements or classical
observers. To this end, first we shall define the notion of non-classical observer and introduce the
formalism that allows to speak of its perceptions of quantum observables.

4 Non-classical observer

We define the non-classical observer (of the observable F') as any other quantum system O, with
its own dynamical law Uo(t) = exp(fitﬁo), that is brought into contact with the original system
S. For O to ‘observe’ the physical quantity F' (in an analogy to classical observer performing
measurements of F directly on S) the two systems need to interact according to the law that
involves operator F, i.e., the total OS Hamiltonian of the form

Hy,=H,ol+10H+)\G, & F, (15)

is a minimal model of such an ‘observing’ interaction. The unitary evolution generated by this
minimal model reads

A~

Ups(t) = e os = U, (£) @ U(t)Vosl(t, 0), (16)

where the interaction picture evolution operator is given by the standard time-ordered exp,
. . 0o t To 1
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and the interaction pictures of coupling operators is given by Go(7) = Ul (7)G,U,(7) and F(r) =
Ut(r)EU(7). The system O is, of course, changed by the interaction with £ which manifests as
the deviations from the system’s free evolution. The most basic way to quantify these changes is to
examine the dynamics of the reduced state of O, p,(t) = try[Uss(t)po ® p UL, (t)], or more precisely,
its interaction picture g,(t) = Ul (t)po(t)U,(t). Note that, formally, O is an open quantum system
and S plays here the role of the environment.

In appendix A, we show that the influence from the observable F exerted onto g,(t) can be
parameterized with g-average over the two-component g-stochastic process (Fy(7), F—_(1)),

Bo(t) = tr [ Vos (1,0)p0 © p Voo (0,0)| = (VolF1)(2, 000 Vo[ F-1(0,1)) (18)

where we have introduced an auxiliary O-only operator functional, derived from the OS interaction
operator by replacing F'(7) with a function,

. . 00 t T2 1
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The g-average itself is defined as a linear operation formally resembling the stochastic average (10),
but instead of probability distribution functional it utilizes the complex-valued g¢-probability func-
tional

WIEF-)) = [ [ Qelfe fWIE £ DLDS), (20)

The g-probability functional Qr[f, f—] plays then the role of the distribution (but not probability!)
for the two real-valued trajectories of g-stochastic process representing observable F'. Analogously
to the stochastic expectation values, in practical calculations any g-average can be solved with

moments computed using the family of joint g-probability distributions {Q%")},‘;O:l [16, 17] (compare
with Eq. (13) and see appendix A),

Q) (Fus Fonrtn) = QS (fus fomrtui i 1 fo1,t1)
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We are using here the same notation convention as in Sec. 2. Each joint g-probability Q;?) is a
complex-valued function of n argument triplets: the time point ¢;, and a pair of real eigenvalues
f+i. Using the decomposition of identity, > 7 ]5( f,t) = 1, it is straightforward to verify though
direct calculation that g-probabilities satisfy the relation analogous to Kolmogorovian consistency,

Vin > V(0 <ty < <ty)V(1 <i <n)V(f1, foase Bt =025 frn fon)
S QW (Fur Fonotn) = QF (fns Fonstns s fid=rTis 3 1o foast), (22)
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which explains how {Q%")};'Lozl combines into the functional distribution Qp[fy, f—]. Alternatively,
the consistency of g-probabilities can be explained as a special case of so-called generalized extension
theorem [9]. Also note that Eq. (21) formally resembles the formula for so-called decoherence
functional found in the consistent histories formulation of quantum mechanics [11, 12, 13, 14]; we
defer a more detailed discussion on this link to the end of this section.

The key point is that the family of joint g-probabilities can be considered as a stand-alone object,
abstracted from the specific context of dynamics of the reduced state of O. In such an approach,
g-probabilities can be thought of as a way to quantify the dynamics of a given observable, like F’;
the Eq. (21) is treated then as definition: using this formula one can compute g-probability QS,;L)
associated with the chosen observable given its spectral decomposition {P(f)} #, the dynamical
law U (t) for the system the observable lives in, and the initial condition p. Appendix B showcases
a number of examples where {le)};l’ozl have been computed from first principles for a collection
of concrete quantum systems. As a stand-alone object, the g-probability family contains the
description of the classical observer’s perceptions; indeed, note that the ‘diagonal’ part of ng)

equals the Born distribution for the sequential measurement of observable F, ng)( I, foytn) =
P, (fn,tn). However, the ‘classical’ joint probability is only a part of the whole distribution; hence,
it is convenient to define the decomposition of g-probability into its diagonal and the off-diagonal
‘non-classical’ parts,

g:‘n)(.fna f—n,tn) = 5f7,,f,npn(.fnatn) + (I)n(.f'm f—'rutn)' (23)

We shall refer to ®,, as the interference term. The relation (18) demonstrates that both parts
of g-probabilities come into play in the context of the dynamics in system O where they fully
encapsulate the influence exerted by the observable F'. Moreover, this result generalizes to any
context involving physical quantities (observables) in O: the influence from F onto g-probabilities
associated with an arbitrary O-only observable are fully described by {QE,? o 1 as well. For
example, the g-probabilities associated with observable represented by X, = Zw :vPo( ) can also
be written in the terms of a g-average (see appendix A),

(@, o, t)

:tr<<HVO[F+](0,t)]5 (w5, t3) Vo Fiy] tl,0> (H ti) Po(a_i, t:)V,[F }(t2,0)>>

o (24)

Based on these observations we conclude that, as Born distributions {P,}°%; describe how
classical observers perceive the observable F', then by analogy g-probabilities {le)};’f:l describe
the perceptions of F' for non-classical observers. The plural ’observers’ is no mistake here because
le)’s are determined exclusively by the properties of the observed system S, and thus, one family
of g-probabilities suffices to describe the perceptions of S-only observable F' for any and all non-
classical observers. Therefore, we can say that the appearance of the quantum observable described




by {ng)}zozl is inter-subjective among non-classical observers. Finally, since P,’s are a part of

le) ’s, the perceptions of classical and non-classical observers can be meaningfully compared. The
most obvious observation that can be made here is that, in general, their perceptions are not the
same as they differ by the interference terms ®,,—in other words, the appearance of quantum
observable F' is generally not inter-subjective between classical and non-classical observers.

In closing we wish to point out some notable connections between g-probability parameter-
ization and other established theoretical approaches found in the literature. The inspection of
Eq. (18) suggests a possible intuitive interpretation for the components of g-stochastic process
(Fy(t),F_(t)). The F,(t)-component appears to play the role of an external field driving the
‘branch’ of evolution going forwards in time, while F_(¢) drives the backwards-in-time evolu-
tion branch. Then, the non-classical off-diagonal part of g-probabilities [the interference terms
D, (fn, f—n,ts)] would be responsible for the quantum interference between the forwards and
backwards branches. The classical diagonal part dg, ¢ , Py (fn,tn) comes into play only when
F_(t) overlaps with F (t) and both components merge into a single field. Such a structure of for-
wards and backwards fields is, of course, familiar from other approaches to open quantum systems,
e.g., Feynman-Vernon influence functional [18] or Keldysh field theoretical approach [19, 20, 21].
It should however be noted that the components Fy (t) and F_ (t)—the trajectories traced through
the domain of the eigenvalues of operator F—are fundamentally different objects than the paths
of Feynman-Vernon, and fermionic or bosonic fields in Keldysh formalism, see [4].

In contrast, the g-probability parameterization of dynamics of observable F' can be directly
linked with the consistent histories formulation of quantum mechanics [11, 12, 13, 14]. The link
is straightforward: the central object of the histories formalism—the decoherence functional—has
the same form as the g-probability, provided that the events constituting a history are identified
with eigenspaces of observable F'. The principal difference between the two lies in their respective
origins. In the histories formalism, the decoherence functional is postulated as an improvement
on the Born rule of the standard quantum theory; as such, analogously to the Born rule, the
decoherence functional has the status of primitive notion. Then, the diagonal part of the functional
is used as a Born distribution while the off-diagonal part does not have an explicit utility. The
g-probabilities, on the other hand, are not postulated but rather are identified as a facet of the
standard formalism for describing the dynamics of quantum observable F. They appear naturally
in the description of a quantum system O coupled to S through F: Egs. (18) and (24) show that
the reduced state of O, as well as any multi-time correlation functions of its observables, all can
be expressed in terms of q-average over the totality of g-probability Qr[f, f—], not excluding its
off-diagonal part (in contrast to the consistent histories framework and the off-diagonal part of the
decoherence functional). It could even be argued here that, through the link with g-probabilities,
the decoherence functional (or Born distribution, for that matter) can be seen as an emergent
quantity derived from general formalism of standard quantum theory rather than a primitive
notion as it is postulated in the original formulation of the consistent histories formalism.

5 When the classical and non-classical observers are in agreement

By combining the decomposition of g-probabilities into diagonal and off-diagonal parts (23) and
their consistency (22), we establish the general relation between Born distributions mediated by
the interference term,

an(fnvtn)_Pnl(fn;tny7%77f17t1>:(H6f1xf1> Z (I)n(fnvffn;tn> (25)
fi
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In the context of Kolmogorovian consistency (KC), the above equation shows that { P, }52 ; becomes
consistent when the observable F' satisfies the consistent measurements (CM) condition:

Vin> V(0 <ty < <t )V <i<n)V(f1,.... ffyooos f)
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Thus, the fulfillment of CM (which is mathematically equivalent to KC) guarantees that the tra-
jectory picture of F' applies to the observations made by the classical observer. However, not much
can be said about the implications for contexts other than sequential measurements; in particular,
it is unclear how it would affect the perceptions of non-classical observers. To improve on this
issue, we propose to consider a simpler, but also stricter, condition—we say that the observable F'
satisfies the surrogate field (SF) condition when

SF: V(nz )V(fn, f-n)V(0 <t1 < - <tn): Pp(fn, fon,tn) =0. (27)

The SF (the reason for the name will soon become apparent) clearly implies CM&KC, and more
importantly, its broader physical implications for other contexts—and non-classical observers in
particular—are significantly more transparent. When the interference terms ®,, all vanish individ-
ually, then g-probabilities reduce to proper probabilities, ng)( FrsF=n tn) = 0, 5 . Po(frn.tn)
(and Qr[f+, f-] = O6[f+ — f=]Pr[f+] in the terms of functional distributions); of course, the re-
maining Born distributions are then consistent because CM&KC are already implied. This means
that, effectively, the two components of the g-stochastic process (F4 (t), F_(t)) in any g-average
[e.g., like in (18)] are merged together into a single proper stochastic process F(t) defined by now
consistent family {P,}52 ;—in short, the g-averages reduce to the standard stochastic averages.
Consequently, the non-classical observer’s reduce density matrix simplifies to,

~

do(t) 22 V,[F)(1,0)p0 Vo [ F1(0, 1), (28)

and thus, the dynamics in O appear as if the system was driven by an external noise F(¢) instead
of being coupled to actual quantum system S. In other words, as far as the dynamics in O are
concerned, the coupling to quantum observable F in SO Hamiltonian (15) has been effectively
replaced by the stochastic process F'(t),

N

H,, — H,[F)(t) = H, + \F(t)G,, (29)

and this stochastic Hamiltonian generates the evolution (28). In the context of open quantum
system theory (i.e., when O is considered open to S that is then treated as the environment), when
the surrogate field condition is satisfied—and the stochastic simulation of the dynamics in O is
enabled—one says [16] that the surrogate field representation of F is valid and the process F(t) is
called the surrogate field, as it is a surrogate for the coupling operator F.

To summarize, we have identified here the surrogate field condition (27) under which the se-
quential measurement of F and the dynamics of a quantum system coupled to F are both indis-
tinguishable from their respective stochastic simulations. Moreover, and this is key, the stochastic
process the simulations are carried out with in both contexts, is the same surrogate field F'(¢)—the
process defined by the family of g-probabilities {ng)}zozl satisfying surrogate field condition, and
thus, reduced to consistent Born distributions {P,}5° ;. In other words, when the observable F
meets the surrogate field condition, then the perceptions of this physical quantity by the classical
and non-classical observers are in agreement. It must be underlined that this symmetry between
classical and non-classical perceptions is not only a philosophical curiosity, but also a physical
effect with tangible consequences. For example, consider the scenario where S plays the role of the




environment and one is interested in predicting the evolution of the reduced state of O coupled
to F, 00(t). When the surrogate field condition is satisfied and the surrogate field representation
of F' is valid, the explicit computation of the stochastic average in (28) is the main challenge in
executing the simulation of g,(t). This problem can be circumvented completely if one also has
access to the results of sequential measurements of F, which, in this case, are equivalent to the
trajectory sampling of the surrogate field F(¢). Indeed, since the measurement results and the
surrogate field driving O are both described by the same probability distributions {P,}%2 ;, the
measured samples can be used to approximate the stochastic average with the sample average [4],

Vo[F](t,0)poVo[F](0,1) = /PF[f]Vo[f](tv 0)poVo[£1(0,£)[Df]

%

N
%ZVo[fj](t,O)ﬁoVo[fj](O,t)7 (30)
j=1

where {f;(t) §V:1 is an ensemble of trajectories interpolated from the measured sequences [compare
with Eq. (10)]. The Eq. (30) is the most explicit demonstration that the trajectory picture emerging
for SF-satisfying observable applies equally in both measurement and non-measurement contexts—
essentially, it shows that the trajectories are interchangeable between the contexts. Therefore,
when assessed with respect to our objectivity standard, the trajectory picture is upgraded from
inter-subjectivity among classical observers only to inter-subjectivity between classical and non-
classical observers. However, since there is a categorical difference between the classical and non-
classical observers, the extension of inter-subjectivity to encompass both categories is not merely
quantitative either; typically, such cross-category extension is considered a sufficient condition for
upgrading from inter-subjectivity to objectivity.

Coming back to the specific question of Kolmogorov consistency of Born distributions, we
make a final note on the relation between the consistent measurements (CM) condition and the
surrogate field (SF) condition treated only as its enablers. From purely mathematical point of
view, the CM and SF conditions are obviously not equivalent, at least when the interference terms
®,, are considered in ‘vacuum’. That is, if {®,}52, was a set of arbitrary functions, then the
only thing that could be said is that CM is a weaker condition than SF (or SF is stronger than
CM) because SF implies CM but not the other way around. However, ®,’s are not arbitrary; to
the contrary, each interference term has a complex internal structure emerging from interactions
between the dynamical law U, the partitioning {P(f)}, and the initial condition 5. How exactly
this internal complexity changes the relations between SF and CM is, unsurprisingly, an extremely
difficult problem to crack. In a situation like this, when the mathematically strict answer is not
forthcoming, the relative significance of conditions can be estimated based on the plurality of
cases. If one cannot give an example of a physical system for which the formally weaker CM is
satisfied and, at the same time, the formally stronger SF is violated, then the probability that
CM is spurious (i.e., the weaker condition is only satisfied by first satisfying the stronger one)
increases. In fact, to our best knowledge, this seems to be the case. On the one hand, a number
of types of physical systems satisfying SF is readily available: we discuss some of the examples in
appendix B, and also see [14] for additional important class of example. On the other hand, we are
not aware of even a single instance of a system that would satisfy only the consistent measurements
condition, which strongly suggests that CM alone might be uninteresting from the physical point of
view. At the same time, the surrogate field condition seems to be well worth further consideration,
given its far reaching consequences in contexts beyond the problem of Kolmogorovian consistency.
Surrogate field representations, the non-classical observer perceptions, and open systems in general,
all count among those other contexts; aside the examples discussed here, we note that the consistent
histories theory should also be included on the list as the SF condition is formally equivalent to
the decoherent histories condition [22, 14], provided that one identifies the decoherence functional
as the g-probability.

6 Conclusions

We have identified the condition—the surrogate field (SF) criterion (27)—under which a quantum
observable F' appears to both classical and non-classical observers as the stochastic process F(t).

10



On the side of the classical observer this manifests as consistent measurements of 13’, i.e. sequential
measurements described by the Born probability distributions that satisfy the Kolmogorov con-
sistency (KC) criterion (1). Consequently, a result of a measurement performed by the observer
is equivalent to the sampling of a trajectory f(t) that realizes the process F(¢). On the side of
non-classical observer—that is, a quantum system coupled to observable F—the dynamics of the
system is indistinguishable from stochastic simulation where the quantum operator Fis replaced
with the process F'(t). The key point is that this surrogate field that mimics the coupling with ac-
tual quantum system, is the same stochastic process sampled by the classical observer. Therefore,
it can be said that when the observable F' satisfies the SF condition, then not only the quantum
stochastic process becomes classical, but it can also be considered as an objective entity.

Apart from the SF condition, we have also found a weaker (than SF) consistent measurements
(CM) condition (26) for Kolmogorovian consistency of {P,,}22,. In fact, CM and KC conditions
are equivalent—it is a direct consequence of relation (25) between Born distributions, a new and
interesting formal result in itself. However, we have argued that the stronger SF condition is
physically more substantial: when it is satisfied, the CM&KC are, of course, implied, but more im-
portantly, it also brings about the symmetry between the perceptions of classical and non-classical
observers. Hence, it seems more vital—even from practical point of view because of stochastic
simulations, see Eq. (30)—to verify whether SF is satisfied over just checking for CM&KC. If one
accepts this assessment, then the only real value of CM&KC would come from its potential ability
to determine the status of SF. Even though is it probable that CM is actually a spurious con-
dition (i.e., it can only be satisfied when SF is satisfied), we cannot dismiss the possibility that
Kolmogorovian consistency could be satisfied without SF'; therefore, at this time, the consistency
(or rather its violation) can serve only as a witness of surrogate field violation.
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A Derivation of g-average forms

A.1 Reduced state

The objective is to show that the interaction picture of the reduced state of O,
o(t) = s [ Vo (£, 0)p0 @ pV00(0,1)] (31)

where

N A~

Volt,s) = Te N GeOFOdr 0 oy GG T (r): F(r) = O (0 ET(F),  (32)

can be rewritten in the g-average form (18).
We begin by switching to the super-operator language (i.e., linear operators that act on oper-
ators):

00(t) = Atpo, (33)

where the dynamical map A; is a super-operator acting on operators in O and is defined as

A, = tr, [Vos(t, 0)(e ® p)vos(o,t)] = tr, {Teu JyGotro@,sir g o ﬁ)]

t To

A~ A

(=N [ fdr e, (1Goln) @ Fru), -+ [Go(m) @ F(r), e 4]--+))

t To

(N [dre- [dri, (1Go(r) @ Fr), o)+ [Golm) © F(r) )02 ), (34)

e T4
(e}
o

E
I
o

=]

=]
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where the symbol e is understood as a ‘placeholder’ for the argument of the super-operator acting
on operators to its right, e.g., [4,e]B = [A, B], or @A = A, etc. To arrive at this form we have
made use of a well known identity for exp (time-ordered and otherwise),

et ot ¥ Ctes
Te fs A(T)dr . (Te—z fs A(‘r)dr) — Tt fs [A(T),.]dT. (35)

Next, we aim to rewrite the map as a moment series. First, we use the spectral decomposition
of observable F,

Er)=U'm) | Y2 | Ur) =Y fP(fo7), (36)
!

f

and we substitute it into the formula,

00 t T2
A= (=iNF [dry - [dr
X trs ka o(Tk) ® P(fr, ), Zfl o) ® P(fr,m1) 0 (0@ p) | . (37)

Second, we show that the S and O parts of the above expression are actually separable; to see this,
consider one of the super-operators >, f[Go(7) @ P(f,7),e] and act with it onto an operator in

an outer product form O®S ,

7

=Y [+(Go(r)0) @ (P(f+,7)8) = > f-(0G,(7)) @ (SP(f-,7))
I+ fo

= Y [+(Go(m)0) ® (P(f1,7)SP(f-,7) = > [-(0G,(7) ® (P(f1,7)SP(f-,7))
f.f- f+if-

= Z (f+GoO_OGO(T)f—) ® (P(f+’7)‘§]3(f—77—))
f+.f-

Z Gr(fs: f-) @ Pr(f, f-)(O © ), (38)
J4.f-

which can then be easily generalized to the super-operator equality,

Zf ®Pf; , ® ZQT era ®P(f+7f ) (39)
T, f-

To see this, take a product basis in the O + S operator space: if {OAZ}z is an orthonormal basis
in O-operator space, and {ga}a is a basis in S, then {Oz ® ga}iﬂ is a basis in O + S-operator
space. With this basis, any arbitrary operator A, can be decomposed into linear combination of
separable products, A,, = > i Ai0nO; @ S; the general result (39), then follows directly from the
special result (38).

Thanks to the separability, we arrive at the form where the partial trace over S can be computed
explicitly,

t

At—i(—i)\)k/dm--]zdn ooy

k=0 0 0 fi,f—k fi,f-1
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X trg Tk(fk7f— ) Pry (f1s f-1)P1 Gry (Fres fk) -+ - Gy (15 f-1)

:ki:(] —i\) /di /drl Z Z

0 fr f—k fi,f-1
x tr, [P(fk,m PR m) - P | G (fs )+ Gy (F1 f-1)

t

Z 7)\ dry, - /dTl Z Z QF fkaf*ka)ng(fk?f ) .-ng(flaffl)' (40)

k 0 0 Srerf—k J1,f-1

o

We have recognized in the traced factor the formula for g-probability (21). We are also recognizing
here a g-average in each term of the series,

ST S QW (s Fok )G (Fi for) -+ Gy (1, 1)
frsf—k fisf-1
k

= > 3 [[iprapsaQeise ) (T100: - £s(—: - 1)

frof—k fi.f-1 i=1
X Gr (f4-(Tk), f=(Th)) -+ Gr, (f4(11), f= (7))

:/ Qrlfy, f1Gn (f+ (1), (k) -+ Gr, (f4(10), S (1)) [DF][Df-]
= (Gr, (Fy k), F- (7)) - - - Gy (Fy (1), F(71))) - (41)

As a result, we can take the whole series under the sign of g-average,

=3 (-in" /di - /dﬁ (G (Fy (12), F- (1)) -+~ Gy (Fa(m1), P (1))
= 0 0

—<Z<M>’f /di /dngmwm)F( 0)- gn<F+<n>F<n>>>

k=0 0 0

_ <T€7i)\ fot gT(F+(T),F,(’T))dT>. (42)

The last step is to demonstrate that the series under the g-average evaluates to the form
presented in Eq. (18), i.e., we must prove that

Te~ ™y (P OLF-0)AT _prip 104 0) 0 T, [F_](0,1). (43)
The simplest way to show it exploits the fact that the two super-operators constituting G,

Gr(Fi(7), F- (7)) = Fi(1)Go(r)e + (= F_()8Go (7)) = G4 (1) + G- (1), (44)

commute with each other,

V(r. 7)) : G ()G (7)) = G_(7))G+ (1) = 0. (45)

If so, then the exp in (42) simply factorizes into composition of two (commuting) exps,

TN Jy Gr(Fe(r), P ()dr _ (TeiA IN g+(7)d7) (Te“ I g(ﬂw)

T (—iA fot F+(T)éo(7)d7)° Te o(+i>\ fot F_ (T)GO(T)dT)

—( —i\) /di /d71F+Tk Th) - F+(T1)Go(ﬁ))°
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° 3 (i)\)k dry - - - dTlF_(Tl)éo(Tl) - B (7 )GO(T )
X ];) / k 0/ k k
= VL[, ](2,0)0 (Vo[ F_](2,0)) " = Vo [F4](1,0)eV,[F_](0,1).  (46)

A.2 Q-probabilites

Here, the goal is to show that the general formula (21) for g-probability associated with the O-only
observable, say X, = > xP,(x),
ﬁos (%))] )

(47)

—>

1 n
O @@, tn) = tr KH Ul (t:) Po(wi) © 1 Aosm)) Po® P (H U1, (t:) Polz—i) ®
) =1

can also be written in the g-average form.
First, we translate the general definition of g-probability to the language of super-operators,

%) (T, @, tn)

=tr (H Vos(ov tz)( Ai(ti)ﬁo(xi)ﬁo(ti)) ® (ﬁT (tz)ﬁ(t ))V (tu 0)) ﬁo ® ﬁ( o >]

B 1 n
=tr (H (po(xiyti) ® i)‘A/vos(ti;til)> ﬁo ® ,5 (H Vos(tiflati)(-ﬁo(xfi,ti) ® i))
)

= tr _(Po(scn,tn) ®@1e If’o(z_n,tn) ®1

=tr [(Ptn (Tns Ton) ® ')QOS(tm tn—1)- (Ptl (z1,2-1) ® ’)Qos(th 0)po ® ﬁ] ) (48)

where to = 0 and we have used the definition of the interaction picture of evolution operator (16).
Second, using methods (and notation) from previous section, we rewrite the propagators 2’s in
the terms of generators G’s,

Qos(t, s) = Z —iA) /di /dT1 Z (H Gro (fis f=i ) ® (HPTk(fivfi)>' (49)
i=k

=0 s fr.f—k \i=k

When we substitute this form into Qg?o) we can, again, compute the trace over S explicitly,

(@, T )
oo oo tn 7_271,

S Sewsh fun o fo | fin /dﬁ SDIRD DY
kn=0 k1=0 in—1 tn—1 fi, 2, flil fikl

xtry [Prp (fit s f20,) - Pr (FL 1))
X tr, {Ptn (‘rru :L'fn)g‘r,? (f]?,ﬂ fﬁkn) T g‘rl”(flnv fﬁl) U
Pu (1,0 1)Gn (o )+ G (L F1)0]

[ee] [e'e) tn 7-;1 t1
E E Z:’W /dﬁ?n'“/dﬁn /dTlil /dT1 E E E §
n=0 k=0 tn1 tn1 0 Fin o Ty Tl
(kn+-+k1)/ pn n n . Crl 1 1
XQF (fk:nvf—knaTknw"7f17f—1a7—1)
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X tr, |:7Dtn (Tn, x—n)g'r,?n (e o) grll (f1, fi1)ﬁ0}

~ tr, <Ptn(xn,x_n) 3 (=i / drfl - / arp T[ Gor (Fy (1), F- (7))
kn=0 i=knp

00 t1 T2 1
Py (a1, 71) ZHA)’“I/dTél-.-/dT%H@;(FATZ-I),R(TZJ)) >ﬁo
0

k=0 0 i=h

—iA F(Fy(7),F_(7))dr _ . - Ndr\ «
. |:<,Ptn($nyxn) S g Py (e a )T i S >po} .
(50)

Where we have again recognized the definition of ng) in the term traced over S. The final step is
to use the identity (46),

g?o)(wmwfnatn)
—tr [<(Po(xn,tn).P @ mr ) (VoL Fy (bt 1)OVo [ ] (b1, 1)) -

- (Polwr ) Polw—1, 1)) (Vo[ P2 )41, 000 Vo [F-)(0,11)) ) o]

:tr<<Hﬁo<mz, LA 1>> o (HVO[F (ki t) Pola—ist >>>
<<H DIFL(0,8) Py (4, 1) Vo [Fy ] tl,0>po (HV Py(z_i, t;)Vo|F ](t2,0)>>

(51)
B Examples of g-probabilities
B.1 Quasi-static observable
As the first example consider the case when
[F,H] =0, (52)

so that the Heisenberg picture of the observable is static, F'(t) = F' |and thus, P(f,s) = P(f)].
Then, the g-probabilities have a very simple form,

(L )ofLoeco )| | L) (L)

= 5fn.,f_n< H 5fn,fi5f_n,f_i) tr [P(fa)p] = 05, ( H Fur fl) tr [P(fn)p).
i=1 _
(53)

(Fn)(fn7.f—n) n - tI‘

As a result, the interference terms &, vanish automatically, and thus, the g-stochastic process
(F(t), F_(t)) is reduced to a single-component time-independent stochastic variable F' with prob-
ability distribution Pp(f) = tr[P(f)p]. Therefore, the system satisfies the surrogate field (SF)
condition (27) with a constant surrogate field.

B.2 Pointer observable

Consider a system S composed of two interacting subsystems, A and B,

H=Hp=H, 01 4+10 Hy+uGe®Gy; p=pa® pr, (54)
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but the observable F' belongs only to A,

P=N"fR(f) el (55)
f

In words: A can be treated as a non-classical observer of Gy, or, equivalently, B can be thought of
as an environment to the open system A. In that case, we can use the result of appendix (A) to ex-
press the g-probabilities associated with F' in terms of g-average over Qg, [g+, 9—|—q-probabilities
associated with observable Gy, of subsystem B,

Qgt)(fn»ffm —tra [<H Pt flv [GJru ](tivti1)>ﬁa] ) (56)

where £y = 0, the symbol Hll:n A; indicates an ordered composition of super-operators, A, - -+ Aq,
and

Pilf, F) = Pu(f, )0 Pu(f,1) = Tl Py (f)e "o 0cite o, (F)e e (57a)
Qg g-)(t,5) = Te ). oo (e, (57b)
G- (g+, g_) _ g+6iﬂf1a éaefirfia. o .ei'rﬁa GaeiiTHag_. (57(3)

Essentially, Eq. (56) is of the same form as Eq. (50) from appendix A.
Next, assume (i) the stationary initial state in B, [py, Hp] = 0, and (ii) the weak AB coupling
regime,

uty L 1, (58)

where 7, is the correlation time in B—the time scale on which the components of g-stochastic
process G4 (t) decorrelate; in more formal terms, if 73, is finite, then it is defined as such a length
of time that

(Gt +7)GL()---) (G +T)NG(8)---)
(G +T)G(t) ) ron, (- Grlt+T)HG-(1)--+)
(G (t+n)G()--) (Gt TGt )
(G (t+T)G (1)) (G (t+TNGE-()--)

i.e., when the distance between consecutive time arguments in a moment is larger than 7, the
moment factorizes.

One of the effects of weak coupling is the decorrelation of propagators €) in between the con-
secutive projectors P,

[<H Pt flv [GJF? ](tzatz 1)> ‘|~tra[<HPt fz, 1 [GJraG](tivtil») ﬁa‘| .
(59)

Indeed, if t; — t;_1 ~ 75, then Q[Gy, G_](t;,t;—1) ~ e (the super-operator identity) because p(t; —
t;—1) < 1, therefore, a non-negligible contribution comes only from propagators for which ¢; —
ti—1 > 7. But this means that there is enough distance between any two non-negligible 2’s for
(G4 (t),G_(t)) to decorrelate, and so, the g-average factorizes as in Eq. (59).

The other effect is the significant simplification of propagators. Each g-averaged evolution
segment in Eq. (63),

QG+, G-t tim1)) = <T€*uf 7(G+(7).G (T))d7>

(60)

formally resembles the dynamical map (42) that was ‘shifted’ in time from interval (¢,0) to (¢;,t;—1).
The weak coupling approximation to the dynamical map (also know as the Born-Markov approxi-
mation or Davies approximation) is one of the fundamental results of the theory of open systems
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(see [17, 23] for the derivation carried out in the language of g-probabilities). The formal resem-
blance to dynamical map allows us to apply the weak coupling/Born-Markov/Davies approxima-
tion to the non-negligible g-averaged propagators (60); as a result we obtain a map belonging to a
semi-group (for simplicity we are setting here (G (t)) = 0),

(G, G_](ti, ti1)) LS8 en(timtiz) L (61)

generated by the GKLS form super-operator,

c:—z[ZIm{% }+Z2Re{% ( oGl —7{GT o }); (62a)
Vo = /000 e (G, (5)G,(0))ds (and thus, Re{y,} >0); (62Db)
Gu = 0(w—€a+ea)l)(alGala/) (/| (where Hyla) = eala) ), (62¢)

a,a’

which guarantees that the approximated map is completely positive. Plugging this form of the
propagator back into Eq. (59) we arrive at the quantum regression formula (QRF) [24, 25],

(H Pro(fir fi)e Gimtis 1)£> p.
(H P(fi, f-i)A(ti — ti—l)) ﬁa] ; (63)

where P(f1, f-) = Pu(f+) ® Pua(f-) = Po(f, f-) and

At = 5) = =) (ilflaslt4L)

n Ty K1
QW (fr Fony tn) 250

=tr,

_ (e—itﬁu.eitHQ)GMQ(t—s)L (eisﬁu.e—isﬁa) _ (e—i(t—s)ﬁa.ei(t—s)fla)euz(t—s)E. (64)

The QRF form (63) does not satisfy the surrogate field (SF) condition (27) by default, but it
does open new options for suppressing the interference terms. One such option is to set the map,
or rather, its generator —i[H,, o] + 2L, to be a ‘lower block triangular’, i.e.,

V(f, 1+ # f=) 2 PUL ) (ilHay o] + 12 L)P(f1, f-) = 0, (65)

which, of course, implies P(f, f)A()P(f+, f—) =0 for all t > 0. Now, since each @,,(fn, f-n,tn)
has to involve at least one case of such a super-operator composition (note that f_,, = f, is always
true), we conclude that all interference terms vanish individually.

Another option is to have the ‘upper block triangular’ generator together with the block diagonal
initial density matrix, i.e.,

(66)

||
E>

V(fofr # f-) s P(fes f-)(=ilHar o) + 4*L)P(f,f) =0 and pr,

Such a generator (and thus, the map) on its own would not guarantee that all interference terms
are automatically zero. If there were no constraints placed on the density matrix, it would be
possible to pass from non-block diagonal p, to P(f1, f—1) with impunity. Hence, the assumption
>t P(f, f)Pa = pa is needed to close this loophole.

A sunple example of a system that satisfies (65) can be found for a two-level A with

1

F=zo0l= 3 fINflel Al)= e 370w 0z 0]l (67)
f=%1/2
resulting in a surrogate field F(¢) in the form of random telegraph noise [16, 17]—a stochastic

process that switches randomly between two values (£1/2 in this case) with the rate ~.
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Previous papers investigating Kolmogorovian consistency in the context of sequential measure-
ments [1, 2, 3] either assume QRF is in effect, or consider the case when P, can be parameterized
with QRF without establishing the relation between actual dynamics and maps appearing in the
formula. Therefore, us having arrived at QRF form (63) as a result of weak coupling approximation
gives us an opportunity to compare our results with the conclusions drawn in those previous works.
In particular, QRF allows us to reformulate the consistent measurements (CM) condition (26) as
a condition placed on the map (this mimics the approach of [1, 3]),

Vin 21V <ty < <t VA <i <n)V(f1,oo o, floeoos fn)

Torrs | S @ulfn,fontn)

i fitfos

= trq |- P(firrs fir)Ativn — t) | Y0 P(fin fi) | Alti = i) P(fio1, fica) -
fiFf—i
= tra [+ P(fir1, fixr) A(tiv1 — i) (0 = A)A(ti — ti1)P(fio1, fi-1) -]
—0, (68)

where A = Zf P(f, f). If the density matrix is block diagonal, Ap, = p,, then the condition is
met when the map satisfies

V(I fOV(E >t >0) P, HAGPS ) =P HAE = )AAE)P(S, f). (69)

In comparison, it is shown in [1, 3] that the Born distributions parameterized with QRF are con-
sistent when (i) the density matrix is block-diagonal, and (ii) the map satisfies the ‘non coherence
generating and detecting’ (NCGD) condition,

V(t >t >0): AAE)A = ANt — t)AA{)A. (70)

Interestingly, the NCGD and CM conditions are, in this case, equivalent. Indeed, on the one hand,
when (69) is satisfied it clearly implies NCGD. On the other hand, since P(f, f) = AP(f, f) =
P(f, /A, assuming NCGD gives us

P HAOPS ) =P, HAADAP(f, 1) = P(f, AN — t)AA)AP(f', 1)
=P(f, HIAE = tYAAE)P(f', ). (71)
Finally, we find that the two types of surrogate field-satisfying maps we have listed above can
be identified as examples of NCGD map subtypes. According to the classification introduced in [1],
the lower block triangular map (65) belongs with the coherence non-activating maps that satisfy

AA(t)A = AA(t), and the upper block triangular map (66) is one of the coherence non-generating
maps that satisfy AA(t)A = A(t)A.

B.3 Macro-scale action

Consider a system living in a Hilbert space with a continuous basis, {|z)}32_., so that the

T=—00"

projectors onto eigenspaces of the observable F can be written as
P(H)= [ el (72
(f)

where T'(f) is an interval of a real line corresponding to the eigenvalue f. Then, we can rewrite the
g-probability associated with F' in the terms of probability amplitudes ¢1(x|z') = (x|exp(—itH)|x'),

(;L)(fn,f,n,tn) = (H/ dxz/ dxz) / dxodz_¢ 5(xn — {E,n)
i=1YT(f) T(f-4) —o0
n—1
x (zolplz—0) (H oY (Tig1|zi) Dtir—t; (x(i+1)|x_i)*> , (73)

=0
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where to = 0.

We now assume that the system can be assigned with a macroscopic-scale action S|[q] > h, so
that the amplitudes can be reformulated as Feynman path integrals [26] with the stationary phase
approximation in effect,

at)== . L
b (l‘|$/) _ / et Sldl [Dq] o e Sal@tla’t") (74)
q

(t)=a’

Here, Sg(z,t|z’,t") = S[qa] is the action minimized by the path ¢.(¢) that solves the classical
equations of motion (with boundary conditions g.(t) = x and g« (t') = ') corresponding to the
least action principle of the classical mechanics. In other words, g.(t) is the extremum of S[g], and
thus, in its vicinity the variation of the phase factor in Eq. (74) slows down considerably allowing
for a brief window of constructive interference; this is the basic explanation why the stationary
phase approximation could have been employed here. In the g-probability (73), aside the individual
probability amplitudes themselves, the interference effects due to macro-scale values of the action
also kick in at the point of integration over each interval I'(f1;), e.g.,

/ e%scl($i+17ti+1|zi7ti)+%5’cl(wi7ti|$i—l7ti—1)dxi. (75)
T'(fi)

As a result, such an integral vanishes due to destructive interference unless the interval contains a
stationary point of the phase, z* € T'(f;). Of course, the point counts as stationary when

_ 0Sci(@it1, tip1 |z, ts)
8a:i

N OSa(wi, tilwi—1,ti—1)]

x;=x5* 8x i
7 7

0

— = _pzi—>i+1 +p§:1—>i7 (76)
where pi',, | (pi’,_,,) is the initial (terminal) momentum of the path i — i +1 (i — 1 — 4) that
starts at x;,t; (z;—1,t;—1) and ends at x;41,¢;41 (x4, ¢;). Therefore, the phase is stationary only if
there is no jump in the momentum when switching from one path segment to the next. However,
even though the segments end/start at the same point, they are otherwise independent, and thus,
there is no reason why there should be no momentum discontinuity for an arbitrary value of z;.
The one case when the momentum would be continuous at every point is when z; happens to be
a part of the classical path ¢ — 1 — ¢ 4 1, i.e., there is no jump when the two paths ¢ — 1 — 4 and
i — i + 1 are actually parts of a single path going directly from x;_1,¢;_1 to x;41,%;41. Applying
the same argument to each integral we conclude that the g-probability survives the destructive
interference only when the arguments f,, are chosen in such a way that the corresponding intervals
T'(fn),...,T(f1) intersect the path gq(¢) that solves the classical equations of motion with the
boundary conditions ¢.(0) = x¢ and ¢q(t,) = x,. Of course, the same goes for f_,, and the
classical path with the boundary conditions ¢ (0) = z_g and ga(t,) = —_,. If the initial density
matrix is diagonal, (xg|p|z_o) = d(xg — —g)p(x0), then, it follows, that le) is non-zero only
when f_,, = f, because x_,, = x,, by default and when also z_y = x( the classical paths passing
through I'(f;)’s and I'(f_;)’s are overlapping. As a result, le)(fn, fonitn) =0f,. ¢ Pu(fn,tn),
so that ®,, = 0, and the surrogate field (SF) condition (27) is satisfied.
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