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Abstract. We contribute a large scale database for 3D object recogni-
tion, named ObjectNet3D, that consists of 100 categories, 90,127 images,
201,888 objects in these images and 44,147 3D shapes. Objects in the 2D
images in our database are aligned with the 3D shapes, and the alignment
provides both accurate 3D pose annotation and the closest 3D shape
annotation for each 2D object. Consequently, our database is useful for
recognizing the 3D pose and 3D shape of objects from 2D images. We also
provide baseline experiments on four tasks: region proposal generation,
2D object detection, joint 2D detection and 3D object pose estimation,
and image-based 3D shape retrieval, which can serve as baselines for
future research using our database. Our database is available online at
http://cvgl.stanford.edu/projects/objectnet3d.
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1 Introduction

Recognizing 3D properties of objects from 2D images, such as 3D location, 3D
pose and 3D shape, is a central problem in computer vision that has wide appli-
cations in different scenarios including robotics, autonomous driving and aug-
mented reality. In recent years, remarkable progress has been achieved on 3D
object recognition (e.g. [9,15,24,33,39,42]), as the field has benefited from the
introduction of several important databases that provide 3D annotations to 2D
objects. For example, the NYU Depth dataset [29] associates depth to 2D images;
the KITTI dataset for autonomous driving [10] aligns 2D images with 3D point
clouds, and the PASCAL3D+ dataset [40] aligns 2D objects in images with 3D
CAD models. With the provided 3D information, supervised learning techniques
can be applied to recognize 3D properties of objects. In addition, these datasets
serve as benchmarks for comparing different approaches.

However, the existing databases with 3D annotations are limited in scale,
either in the number of object categories or in the number of images. At least,
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they are not comparable to large scale 2D image databases such as ImageNet [1]
or Microsoft COCO [21]. After witnessing the progress on image classification,
2D object detection and segmentation with the advance of such large scale 2D
image databases, we believe that a large scale database with 3D annotations
would significantly benefit 3D object recognition.

Fig. 1. An example image in our database with 2D objects aligned with 3D shapes.
The alignment enables us to project each 3D shape to the image where its projection
overlaps with the 2D object as shown in the image on the right

In this work, we contribute a large scale database for 3D object recognition,
named ObjectNet3D, that consists of 100 object categories, 90,127 2D images,
201,888 objects in these images and 44,147 3D shapes. The images in our data-
base are collected from the ImageNet repository [1], while the 3D shapes are
from the ShapeNet repository [4]. In addition to 2D bounding box annotations
for objects of interest, a key aspect of our new database is that each object in
an image is aligned with a 3D shape. The alignment enables us to project the
3D shape to the image, where the projection of the 3D shape matches the cor-
responding 2D object in the image (see an example in Fig. 1). The alignment
between 2D and 3D provides 3D annotations to objects in 2D images, i.e., the
3D pose annotation and the closest 3D shape annotation for a 2D object. As a
result, our database is useful for 3D object recognition from 2D images. Projec-
tion of the 3D shape also produces segmentation boundaries of the object. In
addition, we can render an arbitrary number of synthetic images from the 3D
shapes. The rendered images can also be used to help 3D object recognition in
real images as demonstrated by [34].

The task of aligning a 2D object with a 3D shape is non-trivial. First, we
need to select a 3D shape that is similar to the given 2D object from hundreds or
thousands of 3D shapes. It is not feasible to ask annotators to go through all the
3D shapes one by one. Second, orienting the pose of the 3D shape for alignment
is error-prone, so it is not easy to control the quality of the alignment. (i) To
facilitate the selection of 3D shapes, we have applied the deep metric learning
method [31] to learn a feature embedding of the 3D shapes using their rendered
images. Given a 2D object in an image, our method is able to retrieve top ranked
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similar 3D shapes using the learned embedding. Then we ask annotators to select
the best one among the top K returned 3D shapes. (ii) To guarantee the quality
of the alignment, we have designed an annotation tool to align the 3D shape
with the 2D object. Our annotation interface allows annotators to interactively
find a set of camera parameters for each object that produce good alignment.

We have conducted baseline experiments on the following tasks using our
database: object proposal generation, 2D object detection, joint 2D detection
and 3D object pose estimation, and image-based 3D shape retrieval. These exper-
iments can serve as baselines for future research.

2 Related Work

We review representative datasets related to 3D object recognition.

Datasets with viewpoints. In these datasets [19,22,23,28,36], objects are
annotated with both bounding boxes and viewpoints. Generally speaking, most
datasets with viewpoint annotations are small in scale, coarse in viewpoint dis-
cretization and simple in scene context. For example, the 3DObject dataset [28]
provides viewpoint annotation for 10 everyday object classes such as car, iron
and stapler, with 10 instances per category observed from varying viewpoints.
The EPFL Car dataset [23] consists of 2,299 images of 20 car instances at multi-
ple azimuth angles, with almost identical elevation. Compared to these datasets,
we provide continuous viewpoint annotation to realistic images from the web.

Datasets with depths or 3D points. Datasets in which 2D images are regis-
tered with depth or 3D points are introduced. The RGB-D Object dataset [18]
provides RGBD images of 300 common household objects organized in 51 cate-
gories which are captured from a turntable. The NYU depth dataset [29] contains
1,449 densely labeled pairs of aligned RGB and depth images, where objects from
894 categories are labeled. The SUN RGB-D dataset [32] has 10K RGBD images
and provides 2D polygons, 3D bounding boxes with orientations and 3D room
layout annotations. The KITTI dataset [10] proposed for autonomous driving
registers images with 3D point clouds from a 3D laser scanner. Compared to
these datasets, we align a 3D shape to each 2D object and provide 3D shape
annotation to objects, which is richer information than depth or 3D points and
allows us to transfer meta-data from the 3D shape back to the image.

Datasets with 2D-3D alignments. An influential work in building datasets
with 2D-3D alignment is LabelMe3D [27] that estimates the 3D scene struc-
ture based on user annotations. Recently, a few datasets were introduced that
align 2D objects in images with 3D shapes. The IKEA dataset [20] provides 759
images aligned with 213 3D shapes which are IKEA 3D models from Trimble
3D Warehouse [5]. [17] introduces a new dataset for 2D-3D deformable shape
matching. PASCAL3D+ [40] provides 2D-3D alignments to 12 rigid categories
in PASCAL VOC 2012 [8]. Although PASCAL3D+ contains 30,899 images, it is
still limited in the number of object classes (12 in total) and the number of 3D
shapes (79 in total), so it is insufficient to cover the variations of common object
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Table 1. Comparison between representative datasets with 3D annotations

# categories # images # 3D shapes 3D annotation type

3DObject [28] 10 6,675 N/A Discretized view

EPFL Car [23] 1 2,299 N/A Continuous view

NYU Depth [29] 894 1,449 N/A Depth

SUN RGB-D [32] ∼ 800 10,335 N/A Depth

KITTI [10] 2 14,999 N/A 3D point

IKEA [20] 11 759 213 2D-3D alignment

PASCAL3D+ [40] 12 30,899 79 2D-3D alignment

ObjectNet3D (Ours) 100 90,127 44,161 2D-3D alignment

categories and their geometry variability. We contribute a large-scale 3D object
dataset with more object categories, more 3D shapes per class and accurate
image-shape correspondences. Table 1 compares our dataset to representative
datasets in the literature with 3D annotations.

3 Database Construction

Our goal is to build a large scale database for 3D object recognition. We resort
to images in existing image repositories and propose an approach to align 3D
shapes (which are available from existing 3D shape repositories) to the objects in
these images. In this way, we have successfully built the ObjectNet3D database.

3.1 Object Categories

We aim at building a database for object category recognition, so the first step
is to decide what categories to work on. Since we are going to utilize 3D object
shapes to provide 3D annotations to objects in 2D images, we consider only
rigid object categories in this work, where we can collect a large number of 3D
shapes for these categories from the web. For deformable and articulated objects
such as animals, deformation and articulation of a 3D shape is required in order
to align the shape with the corresponding object in a 2D image. We consider
the extension to non-rigid object categories as a future work. Table 2 lists all
100 object categories in our database. These categories cover most of the rigid
categories in the commonly used object recognition datasets, such as the 12 rigid
categories in PASCAL VOC [8] and the 9 rigid categories in [28], but our dataset
is one order of magnitude larger in terms of the number of categories.

3.2 2D Image Acquisition

After finalizing the object categories in the database, we collect images for each
object category from the ImageNet database [1]. ImageNet organizes images
according to the WordNet hierarchy. Each node in the hierarchy is named a
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Table 2. 100 object categories in our database

Aeroplane Camera Eraser Jar Pencil Shovel Toothbrush

Ashtray Can Eyeglasses Kettle Piano Sign Train

Backpack Cap Fan Key Pillow Skate Trash bin

Basket Car Faucet Keyboard Plate Skateboard Trophy

Bed Cellphone Filing cabinet Knife Pot Slipper Tub

Bench Chair Fire extinguisher Laptop Printer Sofa Tvmonitor

Bicycle Clock Fish tank Lighter Racket Speaker Vending machine

Blackboard Coffee maker Flashlight Mailbox Refrigerator Spoon Washing machine

Boat Comb Fork Microphone Remote control Stapler Watch

Bookshelf Computer Guitar Microwave Rifle Stove Wheelchair

Bottle Cup Hair dryer Motorbike Road pole Suitcase

Bucket Desk lamp Hammer Mouse Satellite dish Teapot

Bus Diningtable Headphone Paintbrush Scissors Telephone

Cabinet Dishwasher Helmet Pan Screwdriver Toaster

Calculator Door Iron Pen Shoe Toilet

synset that corresponds to a noun (e.g., car, boat, chair, etc.), and each synset
contains images depicting the concept. For each object category in our database,
we first find its corresponding synset in ImageNet, then we download images in
the synset. For can, desk lamp and trophy, we did not find the corresponding
synsets in ImageNet. For fork and iron, there are a limited number of images
in ImageNet. Thus, we crawl images for these 5 categories using Google Image
Search. Figure 2 displays some images from different object categories in our
database. For most of these images, there are salient objects from the corre-
sponding category in the image. Some objects tend to appear together, such as
teapot and cup, bed and pillow, keyboard and mouse, and so on. Some objects
may appear in complex scenes, for instance, a car in a street scene or a bed in
an indoor scene.

3.3 3D Shape Acquisition

In order to provide 3D annotations to objects in 2D images, we collect 3D
shapes for the object categories in our database. First, we manually select repre-
sentative 3D shapes for each category from Trimble 3D Warehouse [5]. These 3D
shapes are selected to cover different “subcategories”. For example, we collect
3D shapes of sedans, SUVs, vans, trucks, etc., for the car category. Figure 3(a)

Fig. 2. Example images in our database
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...

Fig. 3. Examples of the 3D shapes for bench in our database. (a) 3D shapes manually
selected from Trimble 3D Warehouse. (b) 3D Shapes collected from ShapeNet

shows the seven 3D shapes we collected for bench, where they represent different
types of benches. These 3D shapes have been aligned according to the main axis
of the category (e.g., front view of bench), with their sizes normalized to fit into
a unit sphere. In addition, we have manually selected key points on each 3D
shape as illustrated by the red dots in Fig. 3(a), which can be used for key point
recognition in images or in 3D shapes. There are 783 3D shapes in total that
are collected from Trimble 3D Warehouse in this way, which cover all the 100
categories.

Second, to increase the number of 3D shapes in our database, we download
3D shapes from the ShapeNet repository [4]. Similar to ImageNet, ShapeNet
organizes 3D shapes according to the WordNet hierarchy. We use the ShapeNet-
Core subset [7] since all models are single 3D objects with manually verified
category annotations and alignment. ShapeNetCore covers 55 object categories,
among which 42 categories overlap with the 100 categories in our database. So
we download 3D shapes from these 42 categories in ShapeNetCore contributing
additional 43,364 3D shapes to our database. Figure 3(b) shows some 3D shapes
of benches from the ShapeNetCore repository. These 3D models are valuable
since they capture more shape variations and have rich texture/material infor-
mation.
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3.4 Camera Model

After collecting the images and the 3D shapes, our next step is to align an
object in an image with a 3D shape. We describe the camera model we use for
the alignment as illustrated in Fig. 4(a).

First, the world coordinate system O is defined on the center of the 3D shape,
with the three axes (i, j, k) aligned with the dominating directions of the 3D
shape. Second, the camera coordinate system C is denoted by (i′, j′, k′), and we
assume that the camera is facing the negative direction of the k′ axis towards the
origin of the world coordinate system. In this case, the rotation transformation
between the two coordinate systems can be defined by three variables: azimuth a,
elevation e and in-plane rotation θ. Let’s denote the rotation matrix by R(a, e, θ).
The translation vector of the camera center in the world coordinate system can
be defined by azimuth, elevation and distance d as T (a, e, d). R and T determine
the extrinsic parameters of our camera model. Third, for the intrinsic parameters
of the camera, we use a virtual focus length f that is fixed as one. We define
the viewport size as α = 2000 (i.e., unit one in the world coordinate system
corresponds to 2,000 pixels in the image), and denote the principal point as
(u, v) (i.e., the projection of the world coordinate origin in the image). Finally,
the projection matrix M of our camera model is

M =

⎡

⎣

αf 0 u

0 αf v

0 0 1

⎤

⎦

︸ ︷︷ ︸

intrinsic parameters

[
R(a, e, θ) T (a, e, d)

]
.

︸ ︷︷ ︸

extrinsic parameters

(1)

By fixing the focal length f and the viewport α, we have 6 variables to be
estimated: azimuth a, elevation e, in-plane rotation θ, distance d and principal
point (u, v), which define the alignment between the 3D shape and the 2D object.

3.5 Annotation Process

We describe our annotation process to provide 3D annotations to objects in 2D
images. (i) We label the 2D bounding box of every object in the images that

Fig. 5. Viewpoint distributions of different categories in our database. We visualize
the camera position as a point on the unit sphere (red points: in-plane rotation < 15◦;
green points: in-plane rotation > 15◦). See [3] for more plots (Color figure online)
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belong to the 100 categories in our database. Occluded objects and truncated
objects are also labeled. (ii) Given an object indicated by its bounding box,
we associate it to the most similar 3D shape among those downloaded from
Trimble 3D Warehouse (Fig. 3(a)). That is, an annotator is asked to select the
most similar 3D shape from 7.8 3D shapes for each object on average. (iii) We
align the selected 3D shape to the 2D object using the camera model described
in Sect. 3.4. For the alignment, we have developed an annotation interface as
illustrated in Fig. 4(b). Objects are shown one by one in the annotation tool,
and annotators can modify the camera parameters via the interface to align
the objects. Annotators have full control of all the 6 camera parameters using
the interface: azimuth, elevation, distance, in-plane rotation and principal point.
Whenever these parameters are changed, we re-project the 3D shape to the image
and display the overlap, which is helpful for the annotator to find a set of camera
parameters that align the 3D shape with the 2D object well. Our criterion for
the alignment is maximizing the intersection over union between the projection
of the 3D shape and the 2D object. Figure 4(b) shows the finished alignment for
a computer keyboard. Figure 5 illustrates the viewpoint distribution of several
categories in our database.

3.6 3D Shape Retrieval

In our annotation process, we have manually associated every object in the 100
categories to a 3D shape among these 3D models from Trimble 3D Warehouse,
where we have around 7 or 8 3D shapes per category. For 42 object categories
among the 100 categories, we have additional 3D shapes from ShapeNetCore
(Fig. 3(b)). In this case, it is not feasible to manually select the most similar
3D shape among thousands of 3D shapes. So we develop a 3D shape retrieval
method by learning feature embeddings with rendered images, and we use this
method to retrieve the closest 3D shapes for objects in the 42 object categories.

Specifically, given a 2D object o and a set of N 3D shapes S = {S1, . . . , SN},
our goal is to rank the N 3D shapes according to their similarity with the 2D
object. We formulate it as a metric learning problem, where the task is to learn
a distance metric between a 2D object and a 3D shape: D(o, S). To bridge
the two different domains, we use rendered images to represent a 3D shape:
S = {s1, . . . , sn}, where si denotes the ith rendered image from the 3D shape S

and n is the number of rendered images (n = 100 in our experiments). Then we
define the distance between a 2D object and a 3D shape as the mean distance
between the 2D object and the rendered images from the 3D shape: D(o, S) =
1
n

∑
n

i=1 D(o, si). Now, the task converts to learning the distance metric D(o, si)
between 2D images, which is an active research field in the literature.

We apply the lifted structured feature embedding method [31] to learn the
distance metric between images, which achieves better performance than con-
trastive embedding [13] and triplet embedding [38]. The training is conducted
with rendered images only, where images rendered from the same 3D shape are
considered to be in the same class. As a result, the learned feature embedding
will group images from the same shape together. In testing, given a 2D object
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o, we compute its euclidean distance D(o, si) with each rendered image si in the
embedding space, and average them to compute its distances with 3D shapes. In
order to minimize the gap between rendered images and real test images, we add
backgrounds to rendered images and vary their lighting conditions as in [34].

4 Baseline Experiments

In this section, we provide baseline experimental results on four different tasks:
object proposal generating, 2D object detection, joint 2D detection and 3D pose
estimation, and image-based 3D shape retrieval. We split the images in our
dataset into a training/validation (trainval) set with 45,440 images, and a test
set with 44,687 images. In the following experiments, training is performed on
the trainval set, while testing is conducted on the test set.

4.1 Object Proposal Generation

Recent progress in object recognition can largely be attributed to the advance
of Deep Neural Networks (DNNs). Region proposals are widely used in different
DNN-based object recognition methods [12] as a preprocessing step to reduce the
search space on images. The main idea is to generate a few hundreds or thousands
of regions per image that are likely to be objects, then these regions are classified
with a DNN. We first apply four different region proposal methods to our dataset
and evaluate their performances: SelectiveSearch [37], EdgeBoxes [43], Multiscale
Combinatorial Grouping (MCG) [6] and Region Proposal Network (RPN) [25].

We use detection recall to evaluate the region proposal performance. It is
defined as the percentage of Ground Truth (GT) object boxes that are correctly
covered by the region proposals, and we say a GT box is correctly covered if its
Intersection over Union (IoU) with one of the region proposals is larger than some
threshold. Figure 6 presents the detection recall of these four region proposal
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Fig. 6. Evaluation of four different object proposal method on our dataset: Selec-
tiveSearch [37], EdgeBoxes [43], MCG [6] and RPN [25]
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methods on our test set according to different number of object proposals per
image and different IoU thresholds. For the RPN in [25], we experiment with
two network architectures, i.e., AlexNet [16] and VGGNet [30] (VGG16), where
we fine-tune their pre-trained networks on ImageNet [26] with our trainval set
for region proposal generation. First, we can see that, by using around 1000
proposals, all the four methods achieve recall more than 90 % with 0.5 IoU
threshold. The state-of-the-art region proposal methods work well on our dataset.
Second, it is interesting to note that the recall of RPN drops significantly when
an IoU threshod larger than 0.7 is used. This is because the RPNs are trained
with 0.7 IoU threshold, i.e., all proposals with IoU larger than 0.7 are treated
as positive examples equally. There is no constraint in the RPN training to
ensure that proposals with larger IoU threshold are preferred. Third, RPN with
VGGNet achieves the best recall with IoU threshold from 0.5 to 0.7, while MCG
performs consistently well across different IoU thresholds.

4.2 2D Object Detection

We evaluate the 2D object detection performance on our dataset using the Fast
R-CNN framework [11] which is considered to be a state-of-the-art object detec-
tion method. We fine-tune two CNN architectures pre-trained on the ImageNet
dataset [26] for the 2D detection task: AlexNet [16] and VGGNet [30] (VGG16).
Figure 7 illustrates the network architecture used in Fast R-CNN for object
detection. First, an input image is fed into a sequence of convolutional layers
to compute a feature map of the image. Then, given a region proposal, the RoI
pooling layer extracts a feature vector for the region proposal from the feature
map. The feature vector is then processed by two Fully Connected (FC) layers,
i.e., FC6 and FC7 each with dimension 4096. Finally, the network terminates
at two FC branches with different losses (i.e., the third branch for viewpoint
estimation in Fig. 7 is not used here), one for object class classification, and
the other one for bounding box regression (see [11] for more details). We have
100 categories in our dataset, so the FC layer for classification has dimension
101 with an additional dimension for background. The FC layer for bounding
box regression has dimension 4 × 101, i.e., for each class, it predicts the center
location, width, height of the bounding box.
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Table 3. Object detection evaluation in terms of mAP with the four object proposals
and two CNN architectures in the Fast R-CNN framework

SelectiveSearch [37] EdgeBoxes [43] MCG [6] RPN [25]

AlexNet [16] 56.3 52.5 56.0 54.2

VGGNet [30] 67.3 64.5 67.0 67.5

Fig. 8. Bar plot of the detection AP and viewpoint estimation AOS of the 100 cate-
gories on the test set from VGGNet with SelectiveSearch proposals

We use Average Precision (AP) to evaluate the 2D object detection perfor-
mance. AP is computed as the area under the precision-recall curve for each
category, where 50 % overlap threshold is used as in PASCAL VOC [8]. To eval-
uate the overall detection performance on the dataset, we compute mean AP
(mAP) across all the categories. Table 3 presents the mAP for 2D object detec-
tion across all the 100 categories on the test set. First, we can see that VGGNet
achieves significantly better mAPs compared to AlexNet. Second, among the four
region proposal methods, using object proposals from SelectiveSearch and MCG
achieves better detection performance than using EdgeBoxes. RPN is able to
benefit from more powerful networks such as the VGGNet. Third, with VGGNet
and RPN proposals, we achieve the best mAP 67.5. For reference, the best mAP
on the ImageNet detection challenge 2015 (200 ImageNet categories) is 62.0 [2].
Figure 8 shows the detection AP of each category in our dataset. As we can
see, some categories are relatively easy to detect such as aeroplane, motorbike
and train, and some are more difficult such as cabinet, pencil and road pole.
These categories either have large intra-class variability or have less discrimi-
native features. Finally, we group all 100 categories into six super-categories:
container, electronics, furniture, personal items, tools and vehicles, and analyze
the detection false positives of these six groups using the diagnosing tool from
[14]. Figure 9 summarizes the results. For tools and vehicles, localization error is
the main source of false positives, while for the other four groups, a large portion
of the detection errors is also attributed to confusion with other categories or
background.
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Fig. 9. Distribution of top-ranked false positive types from VGGNet with Selec-
tiveSearch proposals: Loc - pool localization; Sim - confusion with a similar category;
Oth - confusion with a dissimilar category; BG - a false positive fires on background

4.3 Joint 2D Detection and Continuous 3D Pose Estimation

In this experiment, our goal is to jointly detect objects in 2D images and estimate
their continuous 3D pose. By aligning 3D shapes with 2D objects, we provide
continuous 3D pose annotations to objects in our dataset. We provide a baseline
model for this task by modifying the Fast R-CNN network. As illustrated in
Fig. 7, we add a viewpoint regression FC branch after the FC7 layer. So the
network is trained to perform three tasks jointly: classification, bounding box
regression and viewpoint regression. The FC layer for viewpoint regression has
dimension 3 × 101, i.e., for each class, it predicts the three angles of azimuth,
elevation and in-plane rotation. The smoothed L1 loss is used for viewpoint
regression as for bounding box regression.

Two different metrics have been proposed for joint detection and pose esti-
mation: Average Viewpoint Precision (AVP) in PASCAL3D+ [40] and Average
Orientation Similarity (AOS) in KITTI [10]. However, they only consider the
estimation error in azimuth. In order to evaluate joint detection and continuous
pose estimation in three angles, i.e., azimuth, elevation and in-plane rotation, we
generalize AVP and AOS, where we define the difference between the estimated
pose and the ground truth pose as follows: ∆(R,Rgt) = 1√

2
‖ log(RT Rgt)‖F ,

which is the geodesic distance between the estimated rotation matrix R and
the GT rotation matrix Rgt. In AVP, we consider an estimation to be cor-
rect if ∆(R,Rgt) < π

6 . In AOS, the cosine similarity between poses is used:
cos(∆(R,Rgt)) [10].

Table 4. Joint 2D detection and 3D pose estimation evaluation in terms of AOS/AVP
with the four object proposals and two CNNs in the Fast R-CNN framework

SelectiveSearch [37] EdgeBoxes [43] MCG [6] RPN [25]

AOS / AVP

AlexNet [16] 48.1 / 37.3 44.5 / 33.6 47.8 / 37.0 46.1 / 35.4

VGGNet [30] 57.1 / 43.0 54.2 / 39.6 56.8 / 42.9 57.0 / 42.6

Table 4 presents the joint detection and pose estimation results on the test set
with four region proposal methods and two CNN architectures. Figure 8 shows
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Fig. 10. Viewpoint error distribution of top-ranked true positives from VGGNet with
SelectiveSearch proposals

the AOS of each category from the VGGNet with SelectiveSearch proposals. Due
to the way AOS is computed, detection AP is always an upper bound of AOS.
The closer AOS is to AP, the better the viewpoint estimation. By examining
the gaps between AOS and AP in Fig. 8, we can figure out a few categories
with poor viewpoint estimation such as comb, fork and teapot. These categories
may be nearly symmetric or have large in-plane rotation angles. To understand
the viewpoint error distribution in azimuth, elevation and in-plane rotation, we
visualize it in Fig. 10. As we can see, azimuth error dominates for the six super-
categories. For tools and personal items, such as hammer or watch, in-plane
rotation error is also significant.

4.4 Image-Based 3D Shape Retrieval

In our annotation process, we propose an image-based 3D shape retrieval method
by deep metric learning (Sect. 3.6). The goal is to find the most similar 3D shapes
to a given 2D object. We present details of this experiment here. We learn a fea-
ture embedding for each category among the 45 categories where we have 3D
shapes from ShapeNetCore. First, to generate training images, we render 100
synthetic images for each 3D shape from different viewpoints. These viewpoints
are sampled from a distribution estimated with kernel density estimation using
the viewpoint annotations (azimuth, elevation and in-plane rotation) in our data-
base for that category. To mimic real images, we overlay the rendered images
on randomly selected background images from the SUN database [41]. Second,
we consider images rendered from the same 3D shape as in the same “class”. In
this way, we are able to apply existing deep metric learning methods to learn a
feature embedding for the rendered images. Specifically, we experiment with the
contrastive embedding [13], the triplet embedding [38] and the lifted structured
embedding [31], where we fine-tune GoogLeNet [35] pre-trained on ImageNet
[26] to learn the embedding. Finally, after training the network, each rendered
image is represented as a feature vector (in the embedded space) computed from
the last FC layer of the GoogLeNet, while a 3D shape is represented as mean of
the feature vectors of its rendered images.

To evaluate the learned embedding, we conduct the following image retrieval
experiment with rendered images, where we have ground truth 3D shape assign-
ments: given a rendered image, the goal is to retrieve images rendered from the
same 3D shape as the input image, which is exactly the task that the network is
trained for. For each category, we use 50 % of the 3D shapes for training, and test
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Fig. 11. Recall@20 from our user study for 42 categories that have 3D shapes from
ShapeNetCore. The number of 3D shapes for each category is shown in the brackets

on the other 50 %. We compute Recall@K to evaluate the retrieval performance,
which is computed as the percentage of testing images which have at least one
correctly retrieved image among the top K retrieval results.

Table 5 shows the Recall@K on rendered image retrieval, where we com-
pare the contrastive embedding, the triplet embedding and the lifted structured
embedding. As we can see from the table, lifted structured embedding signif-
icantly outperforms the other two due to its ability to utilize every pairwise
relationship between training examples in a batch [31]. Thus, we utilize the
lifted structured embedding to retrieve 3D shapes for real images in our data-
base. The goal is to provide the top K ranked 3D shapes for each 2D object,
then ask annotators to select the most similar 3D shape among the K returned
ones, since it is not feasible to ask an annotator to select the most similar shape

Table 5. Comparison between three feature embedding methods on rendered images

Recall@1 Recall@2 Recall@4 Recall@8 Recall@16 Recall@32

Contrastive [13] 60.7±19.9 69.0±18.7 76.3±16.8 82.6±14.3 87.7±11.5 91.8±8.7

Triplet [38] 82.3±11.9 87.2±9.5 91.0±7.4 93.9±5.5 95.9±3.9 97.4±2.7

LiftedStruct [31] 91.1±4.5 94.1±3.2 96.1±2.3 97.4±1.7 98.3±1.3 98.9±0.9

Fig. 12. Example of 3D shape retrieval. Green boxes are the selected shapes. The last
row shows two examples where we cannot find a similar shape among the top 5 ones
(Color figure online)
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among hundreds or even thousands of 3D shapes. In this way, we are able to
select a close 3D shape from ShapeNetCore for each 2D object in our dataset.
Figure 12 shows some 3D shape retrieval examples using our learned lifted struc-
tured embeddings.

We have also conducted a user study to test the performance of our retrieval
method on real images. We randomly sample 100 objects from each category,
and ask three annotators to decide if there is a similar 3D shape among the
top 20 retrieved 3D shapes for each object. Then we compute Recall@20 for
each category based on the annotators’ judgement. Figure 11 shows the results
from the user study. The mean Recall@20 is 69.2 %. The method works well on
categories with a number of 3D shapes large enough to cover the shape variations
(e.g. aeroplane, chair and car). On categories with fewer 3D shapes, the task
becomes more challenging, especially when the category has large intra-class
variability.

5 Conclusions

In this work, we have successfully built a large scale database with 2D images
and 3D shapes for 100 object categories. We provide 3D annotations to objects in
our database by aligning a closest 3D shape to a 2D object. As a result, our data-
base can be used to benchmark different object recognition tasks including 2D
object detection, 3D object pose estimation and image-based 3D shape retrieval.
We have provided baseline experiments on these tasks, and demonstrated the
usefulness of our database.
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