
Objects Calling Home:
Locating Objects Using Mobile Phones

Christian Frank1, Philipp Bolliger1, Christof Roduner1, and Wolfgang Kellerer2

1 Institute for Pervasive Computing, ETH Zurich, 8092 Zurich, Switzerland
{chfrank,bolligph,roduner}@inf.ethz.ch

2 DoCoMo Communications Laboratories Europe, Munich, Germany
kellerer@docomolab-euro.com

Abstract. Locating physical items is a highly relevant application addressed by
numerous systems. Many of these systems share the drawback that costly infras-
tructure must be installed before a significant physical area can be covered, that
is, before these systems may be used in practice. In this paper, we build on the
ubiquitous infrastructure provided by the mobile phone network to design a wide-
area system for locating objects. Sensor-equipped mobile phones, naturally om-
nipresent in populated environments, are the main elements of our system. They
are used to distribute search queries and to report an object’s location. We present
the design of our object search system together with a set of simple heuristics
which can be used for efficient object search. Moreover, such a system can only
be successfully deployed if environment conditions (such as the participant den-
sity and their mobility) and system settings (such as number of queried sensors)
allow to find an object quickly and efficiently. We therefore demonstrate the prac-
ticability of our system and obtain suitable system parameters for its execution
in a series of simulations. Further, we use a real-world experiment to validate the
obtained simulation results.

1 Introduction

To be able to locate everyday objects at the touch of a button is a promising appli-
cation of ubiquitous computing. However, most systems which can be used for this
purpose require an expensive infrastructure for sensing objects, for example, using Ra-
dio Frequency Identification (RFID) readers installed in the environment [1–3]. Their
dependency on infrastructure precludes such systems from being used for locating ob-
jects in areas larger than confined indoor environments, particularly because of the costs
involved in adding infrastructure to a significant fraction of the world, i.e., the space in
which objects can be placed.

In this paper, we describe an object localization system based on mobile phones.
Mobile phones combine two very useful features: They are omnipresent in environ-
ments in which users live and are at the same time inter-connected by a homogeneous
world-wide infrastructure. Given that important objects can be augmented with an elec-
tronic tag such that they can be detected when brought into the vicinity of a mobile
phone, many new applications become possible revolving around managing, monitor-
ing, or locating one’s everyday items.

Various technologies could be employed for object tagging and sensing objects
within a short range of the mobile phone. For example, RFID tags are expected to be

(a) (b) (c) (d)

Fig. 1. User issues an object search query

attached to various consumer products in the near future as they may realize significant
cost savings in stock and supply chain management. In particular, passive UHF RFID
technology or active tags with a small autonomous power source [4] are expected to
provide reading ranges of a couple of meters even with small reader modules. If im-
proved variants of today’s handheld RFID readers were integrated into mobile phones,
a ubiquitous system could be deployed within a few years using the short innovation
cycle established through mobile phone sales. In addition to RFID, other upcoming
radio communication technologies, some even compatible with the phone’s Bluetooth
capability, could be used to identify objects in the phone’s physical proximity in a sim-
ilar way. If small, inexpensive Bluetooth-discoverable tags [5] can be built (in fact our
prototype relies on battery-powered BTnodes [6]), a ubiquitous object sensing infras-
tructure is already in place today.

Note that each tagging technology defines a certain trade-off between tag costs,
achievable identification range, and costs of reader hardware. Irrespective of the em-
ployed technology, we assume that object sensors can be integrated into mobile phones,
as it has already been done with Bluetooth or NFC today. On a campus, in an office
building, or, generally, any relatively dense urban environment, it would be possible to
task mobile phones carried by other users with searching for an item one is interested
in. In an office environment, any employee’s mobile device could participate in sensing
such tagged items and “call home”, that is, notify the owner once the item is found
using the short-range object sensor. If the notification includes some indicator on the
location of the device which found the object, the owner may already have enough in-
formation to retrieve the item. For example, even a simple confirmation that some item
has been left at work, as shown in Figure 1, can be very useful to users as they may stop
searching somewhere else (e.g., at home) or just feel re-assured in case a valuable item
is missing.

In this paper, we describe the design of our object sensing system based on mobile
phones. A particular challenge of our application is to distribute an object search query
to a subset of users (more generally, to object sensors) that are likely to find a given
item. For this, we describe a set of heuristics which our system uses to define the scope
of a query. Furthermore, by means of an extensive evaluation of the system’s behavior,
we demonstrate the practicability of the presented system and the used query scoping
heuristics under varying operational conditions and with different system parameters.
As a result of our evaluation, we obtain adequate system-parameter settings for a range
of usage scenarios.

The remainder of the paper is organized as follows. We begin by surveying related
work in Section 2 and describe the service architecture involved in providing our proto-
type’s functionality in Section 3. In Section 4, we then discuss heuristics used for query
scoping and detail the query dissemination protocol in Section 5. In Section 6, we pro-
vide initial evaluations obtained using our prototype in our own office environment.
Further, in Section 7 we describe the simulation model we use to study the system’s
behavior in a wide-area environment and present the obtained results in Section 8. We
summarize the results and present our conclusions in Section 9.

2 Related Work

Various related work has argued for the relevance of locating everyday objects, moni-
toring the presence of items, or avoiding their loss. Many such systems employ a pre-
installed object sensing infrastructure [1–3]. Compared to these systems, we do not rely
on a pre-installed infrastructure which is costly to deploy and to maintain, but focus
on the use of mobile phones as hubs to a ubiquitous infrastructure. In the Smart Watch
prototype [7], RFID readers transmit their current readings to the passing user’s per-
sonal device, thus enhancing it with an object sensor. The user is then notified if objects
are missing compared to readings which were collected earlier. Another prototype [8]
allows train passengers to register their luggage with pre-installed object sensors, which
then protect against theft and remind passengers of their items before unboarding the
train. Both systems focus on reminding users before a loss takes place. As we assume
that tagged objects will be numerous and often intentionally left behind, we aim to avoid
immediate notification. Instead, we study how the location of an item can be determined
on a user’s request.

Note that an object search system could also be implemented by proactively send-
ing all sensor readings to a centralized service which could be queried when an object
needs to be located. Such a system would face the challenge of a global data collection
system, such as IrisNet [9] or Hourglass [10]. In this paper, we use a reactive, that is,
query-based approach, as the number of sensor readings (e.g., object X seen by object
sensor A) is expected to be much larger than the number of queries. Moreover, our
system avoids aggregation of all readings in a centralized database as this would have
severe implications for the user’s personal privacy. In particular, it is incompatible with
a privacy enhancing feature of our system: Objects which have previously been associ-
ated to their owner, will only be detected by a sensor after this sensor has received an
explicit query for the given object. Search queries for such objects contain the owner’s
key obscured by a random session identifier thereby implementing a lightweight au-
thentication protocol [11] between owners and their objects.

Finally in [12], the authors use the mobile phone as a gateway to access hetero-
geneous health-related sensors which have been pre-installed in the environment of the
user. Based on a different application, their system does not deal with two aspects which
are central in this paper: Query scoping (determining which sensors should be queried
from a large and homogeneous sensor array) and the obtained sensor coverage (identi-
fying the numbers of users and the mobility patterns which allow for reliable detection
of objects).

3 Use Case and Service Architecture

The main use case of our system, outlined in Figure 1, includes various aspects which
we describe in this section together with the respective services implementing them.
Association. The association service serves three main purposes. First, it keeps track of
associations between users and objects (Figure 1(b)). Objects are visible to everybody in
their initial state, but with association become visible only for queries initiated by their
owner’s device. Such association, accompanied by the exchange of a shared key [11],
prevents other users from using the system to perform a wide-area search for the as-
sociated object. In this context, the mobile network operator may act as a gatekeeper
and only distribute queries issued by object owners. Second, user to object sensor as-
sociation maintains a set of object sensors which are particularly relevant to the user,
for example, object sensors which have been installed at a remote holiday home. In the
scenario of Figure 1, Bob’s mobile device has been previously associated as a favorite
object sensor. Third, similar user to user associations can be used to grant group access
rights to certain objects, e.g., for families or groups of colleagues, or to determine in
which circumstances users’ identities are revealed.
Storage. However, our system does not depend on associated object sensors or users
being near the tagged object at the time the query is issued. Instead, it stores certain con-
text information when an associated object leaves the range of the local object sensor.
Specifically, the mobile device stores a location trace of the user around the “loss” event
which can help finding it later on. In a different usage scenario, which is not the focus of
this paper, user-installed object sensors may simply report a stream of sensed objects,
for example, carried by users passing by. For these cases, the service infrastructure pro-
vides users with a user database service that may be used as a sink for events generated
by object sensors and mobile devices. Moreover, all association relationships are kept
in a storage component called association registry. Storage services are available both
on the user device and in the back-end infrastructure [13].
Localization. For remembering the location of an object when it goes out of range
of the local object sensor and to provide location information for found objects, some
location information must be available on the mobile device. While the prototype im-
plementation is based on UMTS cell information, better localization functionality can
be added in a future system if increased accuracy is desired. We will quantify the effect
of varying positioning accuracy in Section 8.
Location Profile. In our prototype, we adapted [14] to perform statistics on the UMTS
cells in which users spend most of their time. This will allow us to implement a search
strategy which mainly considers locations where the user spends much time. Our pro-
totype includes functionality for naming these locations [15], such as ‘Office’ in Fig-
ure 1(d).

Figure 2(a) gives an overview of the system architecture: As mentioned, the mobile
phones are used to link object sensors to the back-end infrastructure. The back-end
infrastructure hosts the global query service, which provides adequate dissemination
support, cost control, and validity management for user queries, as we will describe in
Section 5. The global query service in turn is based on the query scoping service, which
implements application specific heuristics for retrieving the most appropriate subset of
object sensors and is described in the following Section 4.

Global Query

Service

Query Scoping

Service

User

Agent

User DatabaseUser Database

Object

Sensors

Association RegistryAssociation Registry

InternetInternet

User Location ProfileUser Location Profile

Tagged

Object

Mobile

Gateways

(a) System architecture

Location

Profile

OS

Registry

OS

Assoc.

User

Assoc.

Obj.

Assoc.

User

History

usrcell

Obj.

History

Neighb. loc usr

OS

obj

(b) Data model

Fig. 2. System architecture and data model

4 Query Scoping Service

There are various heuristics for distributing a query to a relevant subset of object sen-
sors. For example, one may distribute it to sensors near the location where the object
was last in range of the local object sensor. Similarly, all conceivable heuristics will be
based on some kind of history data available in the system. To elaborate on this, we
show a simple data model of our application in Figure 2(b): Objects are associated with
users (object owners) by the association service and also with locations (e.g., cells) in
which an object has been observed in the past. Users may choose to record a history
of their location on their mobile device (user history) or to enable the location profile
service, which computes the locations that are most relevant for a given user (e.g., their
home or office). In this simple model, locations are related to other locations via the
neighborhood relation. Moreover, users can be associated with certain object sensors
which they often use (e.g., which they have installed in their office or car) and with
other users which are family, friends, or colleagues. Finally, the mobile network oper-
ator keeps a database (OS registry) which stores the current location (e.g., the current
network cell) of certain mobile phones which can be used as object sensors.

Note that we omitted some details in the data model (most prominently a more
refined location model). However, we can use the data model to show how many con-
ceivable heuristics correspond to paths from an entity of type obj at the top to an entity
of type object sensor (OS) at the bottom of Figure 2(b).

For example, we can query object sensors which:

I) Are near the location where the object was last seen.
II) Are near locations recently visited by the user.

III) Are near locations where the user spends a large amount of her/his time.
IV) Are associated with the object owner (as in Figure 1).
V) Match the above strategies III and IV for a different (associated) user, such as a

family member, or even for a friend of a friend, etc.

While, intuitively, none of these heuristics can guarantee success, they all incorpo-
rate particular application-level assumptions on where users keep personal belongings
and where these are generally left. Note how each heuristics represents a path in the
data model of Figure 2(b): Heuristics I corresponds to the path (obj-loc-OS) on the left,
while heuristics V corresponds to the path obj-usr-usr-loc-OS.

The application programmer may now define which relation types to use in the
search by assigning weights to each one. The search algorithm, described in detail in
complementary work [16], is then started with a source entity (i.e., the sought object)
and a destination type (i.e., object sensors) as parameters. It will then “unfold” this an-
notated data model into a search tree of entities related to the sought object. Each edge
in the tree, during algorithm execution, will be annotated with a relevance measure, de-
rived from the user-defined relevance of the respective relation. The entities in the tree
are visited in order of decreasing relatedness to the source entity. If a visited entity is
of type destination type, it will be added to the algorithm’s result list (in which con-
tained entities are also ordered by their relatedness to the sought object). The algorithm
stops once entity limit entities have been returned or relatedness falls below a given
relatedness threshold.

The algorithm’s advantage is that relations can be encapsulated in distributed com-
ponents executed on various platforms of the system (e.g., some users would prefer to
store their location profile on their mobile device only, while other relations are stored
on the back-end server). In this paper, we do not focus on the search algorithm itself
(details are described in [16]), but analyze the performance of the contained heuristics.

Please note that heuristics I-III employ the OS registry relation, which associates a
set of locations L with a set of object sensors near them. Due to user mobility, however,
the object sensors near the set L will change with time. To compute a query scope that
is independent of user mobility, when heuristics I-III are implemented, location will
be the destination type parameter passed to the search algorithm. The returned set of
locations L, for example, a set of cells, is then passed on to the global query service,
which will distribute the query to these locations as described in Section 5.

5 Global Query Service

If users are interested in finding an object o, they will issue a find query to the global
query service. At this time, they may specify a message cost limit qmax denoting a limit
on the messages sent during query dissemination and a time limit tmax after which the
query will terminate at last.

If the search strategy IV is chosen, the set of object sensors is determined by the
scoping algorithm. Here, a query will be distributed to the first qmax sensors returned
by the algorithm and be active for at most tmax time.

If search strategies I-III are chosen, query scoping will not directly return a set of
object sensors, but a set of locations. In the basic location model we employ, these
can either be a set of cells (the most basic localization already available on the phone)
or a set of geographic points (if phone localization is more precise) together with an
associated measurement error. Because the set of object sensors associated with these
locations may change over time, our system installs (or un-installs) a query at sensors
which come close to (or, respectively, depart from) these locations. Whether a sensor

s is close to the returned locations is defined by the implementation of a predicate f
(which maps s to either true or false).

Depending on the way locations are modeled, we use two different implementations
of f(s). Given a set of cells C, f(s) will be true if the mobile phone (with its object
sensor s) is currently served by any of the cells in C. Note that this information is
already available at the mobile network operator, that is, it can be accessed without
additional costs on the server side of our infrastructure.

In case the mobile devices are equipped with more accurate positioning means, the
locations returned by query scoping will instead be a set of geographic points P . Here,
f(s) will be true if the current position measured by a mobile phone’s object sensor s
is within a certain range r away from the points P . This range r will depend on the
error incurred at the positioning sensor when the points in P were measured (we will
discuss a concrete implementation in our evaluation section). Note that such additional
positioning information will only improve the efficiency of query dissemination if po-
sitioning information of all object sensors is already known at a database on the server.
Otherwise, it would be inefficient to propagate all object sensor positions to the server
before query dissemination, and therefore a different approach is chosen: The query is
distributed to object sensors in a set of cells C which “cover” the whole area surround-
ing the points P (the actual object sensor will be turned on only later, once the predicate
f(s) evaluates to true). Note that the total number of distributed queries is now the same
as if locations were a set of cells C.

When installing queries for such “location-based” strategies I-III, the total number
of object sensors at which a query will be installed (qtotal) is made up of two parts,
qtotal = qinit + qmob. Here, qinit, denotes the number of users queried initially at the
time the query is issued. At this time, qinit users/sensors are randomly chosen out of the
initial query scope Sinit = {s|f(s) = true}. The number qinit is set as

qinit = min(qmax, |Sinit|, A/oA) (1)

where oA represents the area which can be covered by a typical object sensor (for
example a disk around the sensor with a given radius) while A denotes an estimate of
the total area in which f would return true. Here, we assume that due to user mobility,
A/oA object sensors should be enough to cover the total area involved, although if
all users were stationary, sensing areas oA may overlap and more queries would be
required.

In addition to qinit, the query will be installed at a second set of sensors qmob

for which f(s) becomes true while the query is active. Given a query duration t =
min(treply, tmax), where treply denotes the time at which a sensor has reported having
found the object o, this effort qmob can be modeled as

qmob ∼ A◦mt (2)

where A◦ denotes the circumference of the scope area A and m denotes a factor
representing the mobility of users. Therefore, both query success and communication
effort are expected to rise with t and with m.

After a query installation at an object sensor s, object sensing will be performed
continuously until tmax expires. The mobile device associated with s un-installs the
query autonomously either when f(s) becomes false or tmax is reached.

A query is declared successful if some object sensor s reports having found o at time
treply with treply ≤ tmax. The current position of s represents the location at which the
object was found and will be included in the reply issued to the user (if a user-defined
name is associated to the location of s, a reply will look as in Figure 1(d)). Once the first
report is received, it could be useful to uninstall the query at all participating sensors
(sending an additional qinit + qmob messages) in order to avoid useless “object-found”
reports if sensors come in range of the object at a later time. However, as the number
of such useless reports is usually much smaller than qinit + qmob, we do not explicitly
uninstall the query, but instead let each sensor s autonomously remove the query on the
timeout tmax or when f(s) turns false. Finally, a query is terminated without success,
once the query timeout tmax is reached (in contrast, reaching qmax does not terminate
the query – in this case, a reply may still be received by queried sensors due to user
mobility).

In the remainder of the paper we will evaluate the presented query scoping service
based on the search heuristics of Section 4. In particular, Sections 7 and 8 focus on
evaluating the practicability of strategy I where we search an area close to the location
where the object was last seen. Strategies II and III, similarly based on locations, depend
on real-world data which is hard to model accurately. Nevertheless, one can use the
considerations of Eq. (1-2) to relate the results we will present for strategy I to different
search areas with different sizes. Finally, in the following Section 6, we evaluate the
simple heuristics IV by means of a small user study performed in our office environment
– the obtained results will then serve as a validation of the results obtained through
simulation.

6 Real-world Experiment

The crucial question is whether the object search system can perform well enough to
be a useful application. For answering this question, we first come back to the scenario
introduced in Figure 1, where the user is at home and tries to verify the whereabouts of
a given object which was left at the office. The mobile phones of the user’s officemates
(e.g., Bob) are registered with the association service and thus are considered relevant
object sensors.

Our experiment was performed with four users working on the same floor. The users
were given mobile phones running the object search prototype already tasked to per-
form continuous object sensing for all objects (using repeated Bluetooth discovery) and
reported them in regular intervals to the back-end database. Similarly, 10 BTnodes [6]
representing tagged objects were distributed in various rooms of the same floor. Figure 3
shows the experiment’s setup (tagged objects are shown as numbered circles while the
offices of the four participating users are shaded).

Note that while Bluetooth may be too expensive and battery-intensive to be used as
an object tagging technology in a future system, it nevertheless allows to test whether,
given a future technology with similar radio range, the mobility of a few office col-
leagues suffices to detect a given object in reasonable time.

Each user’s readings were reported to the database as (user, time, obj id) tuples. We
considered only readings obtained during core office hours (9 a.m.–5 p.m.) while all
others were discarded, resulting in around 30 hours of data. Using the collected data,
we could compute the reply time of a query for a given object o issued to the four

10

C

B

D

1225 1244 544 444 558 629

623 529 372 363

1 2 3

9

8 7

4 5 6

Fig. 3. Experiment setup

colleagues at an arbitrary point in time (say at time tq): The reply time corresponds to
the time between tq and the next database entry on the queried object o.

Based on this consideration, we computed the expected average query reply time
for each object, given that queries for this object were distributed uniformly over the
experiment time. Note that non-office hours are simply “skipped” in this computation.
In order to save messaging costs, user devices cached seen objects and only re-reported
them to the database 10 minutes after their last report on the same object. This way,
even if an object sensor has seen the object continuously, the resulting reports will yield
an average query reply time of 5 minutes instead of zero.

For each object, Figure 3 shows the average reply time in seconds. Intuitively, we
obtain better results for objects with a participating user in the same room. Further, note
that the best results were obtained for objects close to the printer and the coffee machine
(objects 7 and 8), while the worst results are for objects in rooms that were not visited
by the participants during the time of the experiment.

We show a cumulative density curve of the observed reply times for object 2 (with
worst results), object 7 (with best results), and the average over all objects in Figure 6(a).
In all cases, reasonable success rates can be obtained with a maximum query time tmax

of 30 minutes.

7 Model

In the last section, we focused on a small and confined search area and query scope.
In the remaining sections, we use simulations to investigate the characteristics of an
object search system operating in the wide-area with a larger user base, which provides
us with a basis for the design of such a system given certain environmental conditions.

Note that adequate models of a future execution environment are hard to obtain,
as these must consider many aspects of daily life. To provide an accurate basis for the
design of an efficient system, models must define the number of participating users, the
frequency at which these users lose or search for certain objects, particular scenarios in
which objects are lost, the average number of tagged objects owned by each user, and so
forth. Intuitively, such a model contains many parameters which cannot be influenced
by the system designer. We call these environmental parameters. Our approach to these
parameters is to investigate a significant portion of the (unfortunately) vast parameter
space.

On the other hand, there are many design parameters which determine the sys-
tem’s performance and can more or less directly be set and varied by the system devel-
oper. These include the size of the search scope (the number of users that participate in
searching for an object), the sensing range of an object sensor (which can be influenced
by employing more expensive tag and object sensing hardware), or the timeout used for
queries. For these design parameters we aim to find the most appropriate values, i.e.,
the parameter settings which can implement object search with the least communication
overhead.
Scenario and Metrics. In the evaluated scenario, a user misplaces an object o and
later issues a search query to the global query service. We assume that at the time the
object left the range of the integrated object sensor, the user’s mobile device recorded its
location p. This location p will act as a hint for the search (implementing the presented
heuristics I). We will evaluate two versions, a cell-based version in which p is a cell,
and a position-based version in which p is an actual geographic point measured with
a certain positioning error. In both versions, query scoping is performed according to
Section 5.

The main metric we observe is the success rate of our system. This rate corresponds
to the fraction of queries upon which a notification from some object sensor is received
within the query timeout tmax. Further, we will examine the overhead for query distri-
bution qtotal and the contained part qmob which is caused by user mobility.

In our experiments, we will not examine object sensing costs explicitly, as we expect
wide-area query installation to dominate the total cost due to the object sensor’s much
shorter wireless range and potential energy efficient optimizations of the object sensing
implementation (e.g., object sensing could be performed only after a user has moved).
Environment Model. We assume that the object is left in a densely populated urban
environment. In this setting, we will study how an object can be found by users who
move according to pedestrian mobility models (see details on the mobility models be-
low) in a square area of 1 km2. The choice of the user density ud is derived from the total
population during the day in an urban area estimated in the Momentum project [17] (a
downtown Lisbon example which we cite from [17] is shown in Figure 4(a)). For urban
environments, the authors estimate the fraction of users with “pedestrian” mobility pat-
terns as around 50%-70%[17, p. 37] from the total. The total includes other users who
are assumed to be stationary or moving differently, e.g., with higher speeds on streets;
we omit these users in our simulations. Moreover, as we are only interested in users
associated with a single mobile provider, we chose more pessimistic values for the user
density ud: We will vary ud from 100-2000 users/km2, values which represent around
a hundredth to a tenth of the estimated total daytime population. The default value for
ud is 500 users/km2.

As mentioned, in some settings we use cell identifiers for positioning. To study such
scenarios, we used actual position and orientation data from UMTS antennas together
with a detailed model of land use types (e.g., buildings, highways, open, water) provided
by the same project to compute the identifier of the strongest-signal cell for each point
of the simulation area [17, 18]. In Figure 4(b), we give an example of a resulting cell-
coverage map computed for a UMTS network of downtown Lisbon. For cell-based
scenarios the simulation area is enlarged to 10 km2 to avoid border effects with fairly
large cells. We are aware that in reality several cells may be observed at a given location
at different points in time, depending on dynamic factors such as interference, fading,

47,000 to 130,000

30,000 to 47,000

20,000 to 30,000

16,000 to 20,000

13,000 to 16,000

10,000 to 13,000

6,000 to 10,000

2,000 to 6,000

0 to 2,000

(a) Lisbon population distribution per
km2 during the day [17]

(b) Lisbon cell coverage and campus model

Fig. 4. Environment models

or user mobility. Because of this effect, in the cell-based scenario additional cells would
need to be searched to be successful.

In this study, however, we assume that the object can be found in the cell where it
was last seen. Results for scenarios in which several cells need to be searched to cover
a certain location could be extrapolated from the results we provide.

Mobility Models. Generally, the tagged object will not move once its owner left it
somewhere. In turn, the users’ mobility model is a crucial aspect in our evaluation, as
it determines the coverage obtained by object sensors carried by users. Therefore, the
user densities we assumed in our simulations are quite small compared to actual densi-
ties observed in urban environments, on campus, or on office floors. In this regard, the
fraction of simulated users represents the subset of all users who move according to the
model we simulate. Additional users, e.g., sitting in their offices or moving differently,
may then only improve results.

In the most basic setting, we use a random waypoint mobility model parameterized
for pedestrian users. Users pick a random destination and start moving towards it with
a speed drawn uniformly from (2,4) km/h. (The average speed of 3 km/h is chosen
according to the ETSI guidelines [19].) As our simulation area can be fairly large, a
trip’s destination is chosen to be within 200 m from the user’s current position.

We will also use a second mobility model which was derived from user WLAN
traces observed on the Dartmouth campus [20]. The model includes hotspot regions
which represent central points of the campus (for example, a hotel, a library, or a cafe-
teria). These hotspots tend to contain many users and also represent popular destinations
chosen by the campus population. In our adaptation, we use five hotspot regions out of
which one is in the middle and the other four shifted to each side of our simulation area.
Each hotspot region’s size is one hundredth of the simulation area. Half of the trips of a

given user are made inside the current hotspot and half are directed to another (arbitrary
uniformly drawn) hotspot on the campus. The remaining (non-hotspot) area is called
the cold region. In our implementation, users never choose a destination in the cold re-
gion but only travel through it. As hotspot regions have a higher density, their positions
and sizes are apparent in Figure 4(b), which shows a total density of 1000 users/km2 in
a 10 km2 area of downtown Lisbon.

As in [20], the chosen trips include (in our version 2 to 5) waypoints, which are uni-
formly drawn from the rectangle between the user’s source and destination and visited
in the order of their distance to the source. The chosen speed and pause times follow
log-normal distributions parameterized according to [20, table 3]. Note that the pause
time distribution has a mean of 0.71 hours with a high standard deviation of several
hours as the original paper found that users tend to stay in a hotspots for longer periods.

To avoid an initial transient period, we used initializations of user trips according
to the perfect simulation method [21]. In the campus mobility model, however, some
distributions had to be estimated, and thus a transient period of 1000 s remains. Object
search queries are issued after this period.

Sensor Model. A mobile device operates its object sensor continuously as long as a
query is installed and running. In the default case, we assume that the object sensor
has a sensing range of 5 m, that is, the object sensor sends a notification once the user
carrying it comes within 5 m of the sought object.

Moreover, in some simulations we assume that the user has a position sensor avail-
able (e.g, GPS). To model the sensor’s localization error, the position returned by the
sensor is drawn uniformly from a disk centered around the actual position of the user.
We refer to the radius of this disk as the positioning error ep used in the simulation (ep

is set to 100 m if nothing else is stated). Note that with this error distribution, the den-
sity of observing an actual error, say e, is proportional to the circumference of a circle
with radius e, and therefore the mean error is (1/

√
2)ep. This positioning error occurs

not only when the owner’s mobile device records the position p where it has last seen
an object, but also when distributing a query to object sensors near p, as these object
sensors’ positions are measured with an independent positioning error.

Alternatively, we also model a scenario in which the positioning sensor simply re-
turns the identifier of the UMTS cell to which the mobile phone is currently connected.
This is a worst case scenario as most cell-based localization approaches combine sig-
nal strength information from multiple nearby cells together with antenna positions to
obtain more accurate localization results.

Scoping. As mentioned, in the position-based version the scope will consist of a disk
with a certain radius r around the position hint p. Because at the time when p was
measured the object is out of range of the user’s object sensor, we set r as r = sr + ep

where sr denotes the range of the object sensor and ep the positioning error. Similarly,
if p is a cell id, the scope will consist of the object sensors served by the cell p.

Note that in this model, the object really lies within the computed scope. While
this is not always true in reality, our simulation focuses on evaluating the system’s
performance for situations in which the search strategy is in fact correct. If in reality,
the search strategy should fail in q percent of all cases, the resulting success rates can
be extrapolated from the results we provide.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

S
u

c
c
e

s
s
 r

a
te

 w
it
h
 t

m
a

x
=

3
0
 m

in

qmax

50m
100m
200m

Cell-based
Random

(a) Success rate

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20 40 60 80 100 120 140 160 180 200

q
to

ta
l

qmax

50m
100m
200m

Cell-based

(b) Sent messages

Fig. 5. Success rate and overhead with different positioning technologies

8 Evaluation

Using the simple scenario and the environment models described above, we aim to
investigate several aspects of a future object sensing system. Foremost, given some
scope, we want to confirm whether it is possible to find objects with reasonable success
rates and small-enough overhead. Further, we aim to investigate how large cell-based
scopes compare to position-based scopes and to a random query dissemination strategy
which queries a certain fraction of all users. Moreover, we aim to gain insights into the
sensitivity of the system’s performance with regard to parameters such as user mobility,
object sensing range, or chosen query timeouts.

8.1 Success rate

In the first set of simulation runs, we investigated the query success rate observed with
position-based scoping and cell-based scoping. Figure 5(a) shows the fraction of suc-
cessful queries (upon which the queried sensors have located the object within 30 min-
utes), when the user-imposed limit qmax denoting the maximum number of queries is
varied. Five different graphs show the results obtained with different positioning errors
ep (from ep=50 m to ep=200 m), cell-based scoping, and a random strategy where we
distribute the query to a fraction of qmax/500 of all users. For all graphs, the obtained
success rate can be increased by raising the maximum number of queries qmax and
reaches acceptable levels of above 90% with qmax=200.

The number of messages qtotal which were actually sent in the same runs is shown
in Figure 5(b). As, by the definition of our protocol, the search area becomes larger with
an increased positioning error, the required effort increases as well. Similarly, searching
the coverage area of the whole cell where the object was left requires sending more
messages before obtaining reasonable success rates. Note, however, how in Figure 5(b)
the actual number of sent queries qtotal at some point stops growing with the user-
imposed limit of maximum queries qmax. This is because with small enough scopes
the object is found before the maximum message limit qmax is reached. Observe also,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500 1800

S
u
c
c
e

s
s
 r

a
te

Reply time [s]

best (node 7)
avg.

worst (node 2)

(a) Real-world measurements

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500 1800

S
u
c
c
e

s
s
 r

a
te

Reply time [s]

100 users/km
2

200 users/km
2

500 users/km
2

1000 users/km
2

2000 users/km
2

(b) Random waypoint simulations

Fig. 6. Cumulative density functions of reply times

how the performance of cell-based scoping is comparable to a 200 m positioning error
and even outperforms the latter in terms of qtotal. This is because with position-based
scoping and large positioning errors, many ineffective queries are sent to mobile devices
which erroneously measured a position which was close to the position hint p.

Finally, as Figure 5(a) shows, any scoping performs better than a random strategy.
Even if 40% of all users are queried, the success rate is still only around 60%. Needless
to say, the communication effort of the random strategy is worst as it is proportional to
the total number of users (not shown).

8.2 Timeout, sensing range, and different mobility models

Apart from scoping, several other parameters may significantly influence the perfor-
mance of the system.

The first such parameter is the timeout used for queries. Here, it is not clear, when
the replies were received and whether a more adequate choice of the timeout (previously
set to tmax=30 min) can be made. Note that choosing an adequate timeout is particularly
relevant when object sensing itself is considered a significant cost. Especially because
in reality the object might be outside the chosen scope, it is important not to sense in
vain for too long, but at the same time to issue a confident “not-found” reply. Further,
the system performance is expected to vary with the user density. We show the interplay
of these two parameters with position-based scoping in Figure 6(b). Each graph repre-
sents the cumulative density function of the reply time obtained after 5000 repeated
simulation runs (each data point represents the fraction of requests answered within
the given timeout) if no message limit qmax is imposed. As expected, the likeliness
of finding the object increases with a longer timeout, but for high user-densities very
short timeouts are already sufficient. Moreover, very good success rates can be obtained
with tmax=30 min, even with user densities down to 500 users/km2. For lower densities
longer timeouts must be used.

Observe that the graphs of Figure 6(a) measured in our office floor experiments,
in which the actual user density was greater than 4000 users/km2, are comparable with

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

S
u

c
c
e

s
s
 r

a
te

 w
it
h
 t

m
a

x
=

3
0
 m

in

Object sensor range sr in m

100 users/km
2

200 users/km
2

500 users/km
2

1000 users/km
2

2000 users/km
2

(a) Sensing range

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

S
u
c
c
e

s
s
 r

a
te

 w
it
h
 t

m
a

x
=

1
2

0
 m

in
.

qmax

500 users/km
2
 (hot)

500 users/km
2
 (cold)

100 users/km
2
 (hot)

100 users/km
2
 (cold)

(b) Campus mobility

Fig. 7. Varying sensing range and mobility

user densities of 500 to 200 users/km2 in Figure 6(b). This is compatible with our earlier
conjecture that the random waypoint simulation only models the “pedestrian” fraction
out of the total users, and confirms that the approach to look at user densities which are
smaller than in reality is valid.

A second important parameter, which is expected to have a large impact on the
performance, is the sensing range of the employed object sensors. In the runs shown
in Figure 7(a), we demonstrate the impact of the sensing range on the success rate of
position-based scoping. With 2000 users/km2, even a sensing range of 1 m yields ac-
ceptable results. As expected, however, the sensing range has a high impact. When de-
signing a future system that shall be robust to small user densities, it seems worthwhile
to invest in object sensing technology with a higher range.

Finally, a third crucial parameter is the mobility of the system’s participants. Here
it is unclear whether the random waypoint model used is perhaps too optimistic. To
analyze this, the simulation results of Figure 7(b) show the success rate with the campus
mobility model when raising the message limit qmax. We show four graphs for the cases
in which the object was left in a hotspot or in the cold region with two different user
densities. Because pause times in this model are quite long, we extended the query
timeout tmax to 2 hours. Note, however, that the total number of queries remains limited
to qmax and therefore the results remain comparable to earlier simulation runs shown
in Figure 5(a). Here, for very small user densities, the success rate cannot be improved
by raising qmax as the timeout remains the dominating constraint. For 500 users/km2,
however, the object can often be found with at most 200 messages even if it lies in the
cold region.

8.3 Effects of increasing user density

Additional lessons can be learned when observing our metrics’ sensitivity to an in-
creasing user density. These experiments were performed with cell-based scoping and
are shown in Figure 8. We show the success rate and the query reply time while vary-
ing the user density in Figure 8(a), and analogously the results for the campus mobility

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 1000 500 200
 0

 300

 600

 900

 1200

 1500

 1800

 2100

S
u

c
c
e
s
s
 r

a
te

 f
o
r

t m
a

x
=

3
0
 m

in
.

R
e
p
ly

 t
im

e

User density

Success rate (left)
Reply time (right)

(a) Performance (random waypoint)

1

0
 2000 1000 500 200

 0

 300

 600

 900

 1200

 1500

 1800

 2100

S
u
c
c
e

s
s
 r

a
te

 w
it
h
 t

m
a

x
=

1
2

0
 m

in
.

R
e
p
ly

 t
im

e

User density

Success rate (hot)
Success rate (cold)

Reply time (hot)
Reply time (cold)

(b) Performance (campus)

 0

 200

 400

 600

 800

 2000 1000 500 200

q
to

ta
l

User density

qtotal
qmob

(c) Overhead (random waypoint)

 800

 600

 400

 200

 0
 2000 1000 500 200

q
to

ta
l

User density

qtotal(hot)
qtotal(cold)
qmob(hot)

qmob(cold)

(d) Overhead (campus)

Fig. 8. Cell-based scoping when the user density is varied

model in Figure 8(b). The corresponding overheads are shown in Figure 8(c) and 8(d),
respectively. Note that for these runs no limit qmax is set.

Both overhead figures include the total overhead qtotal and the overhead due to
user mobility qmob included in the total. It is interesting to observe that qmob does not
increase with higher user densities. We explain this by the fact that the query reply
time decreases with increased user density and therefore compensates for the expected
increase in the mobility-based overhead. Quite differently, qinit (equal to qtotal− qmob)
increases proportionally to the user density as the number of queries is not limited by a
certain qmax.

The main result here is that once the success rate is good, an increased number
of messages is “wasted” towards lowering the reply time. In other words: waiting for
users to move is more efficient than simply querying more users. As a consequence, if
a higher reply time were acceptable, then the protocol can do with much less queries
(e.g., by computing qinit as if the density were 500 users/km2).
Summary. Summing up, we observed that high success rates can be obtained with a
range of different mobility patterns and scoping variants. Cell-based scoping, which is

free from additional overhead in propagating object-sensor position information, proved
to be particularly valuable. Finally, in certain circumstances the system may even work
with very low user densities which represent a hundredth of the expected daytime pop-
ulation in an urban area.

9 Conclusion

In this paper we presented the architecture, design, and evaluation of an object search
system relying on mobile phones as omnipresent object-sensing devices. Based on the
ubiquitous mobile network infrastructure which is already in place, wide-area search
for everyday objects becomes possible without incurring the high costs involved in
instrumenting a larger environment with an object-sensing infrastructure.

Our system makes use of an unconventional approach, which relies on the partici-
pants’ mobility in order to cover an essential portion of the users’ space. We therefore
spent significant effort on modeling and testing the circumstances in which such an ob-
ject search system would be used in the large. The results are encouraging. In all our
experiments, we could observe a high rate of successful queries, that is, of objects be-
ing found. While the time until a reply can be obtained varies with user mobility and
density, our conjecture – that most of the time an object found event will be received
eventually – was confirmed. Moreover, we could show that even in settings with high
positioning errors or which rely solely on the observed cell id for localization, the to-
tal overhead for distributing an object search query remains acceptably low. While this
does not change the basic fact that objects left in deserted places will not be found, we
showed that for objects left within the users’ space such a system is feasible.

In a broader context, this paper has analyzed the properties of the coverage obtained
from user-carried sensors. By means of the average query reply time we observed with
a certain sensing range, participant density, and mobility pattern (e.g., 30 minutes),
we have quantified the time which must pass before a point-shaped phenomenon has
been sufficiently covered. Therefore, the query reply time can be interpreted as the
(reciprocal of the) maximum sampling frequency that our user-centric infrastructure can
implement for a certain spot of the area under observation. If the phenomenon changes
only insignificantly between samples, then coverage is sufficient. For example, recent
work has mentioned measuring air quality or average noise levels [22] in urban areas.
In such systems, the examined trade-offs between sensing range, maximum sampling
frequency, and participant density are likely to re-appear.

In future work, we aim to collect real-user data using our prototype implementation
(e.g., data on the participants’ social networks) and use it to test the effectiveness of
user-profile based heuristics which were not evaluated so far. Further, current work
focuses on extending our model with an aggregated cost measure which integrates the
costs of query dissemination with the costs of object sensing.
Acknowledgments. We would like to thank Michael Fahrmair, Friedemann Mattern,
and Daisuke Ochi as well as our anonymous reviewers for their thoughtful comments
and suggestions on draft versions of this paper, and Chie Noda for contributing to the
presented work in earlier phases of our research collaboration. Moreover, we would like
to thank Hans-Florian Geerdes for valuable advice on the Momentum dataset [18] and
Christian Floerkemeier for pointing out suitable hardware options for the implementa-
tion of a future object search system.

Bibliography

[1] Want, R., Fishkin, K., Gujar, A., Harrison, B.: Bridging Physical and Virtual
Worlds with Electronic Tags. In: Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI’99), Pittsburgh, PA, USA (1999)
370–377

[2] Decker, C., Kubach, U., Beigl, M.: Revealing the retail black box by interac-
tion sensing. In: Proceedings of the 23rd International Conference on Distributed
Computing Systems (ICDCS’03), Providence, RI, USA (2003)

[3] Yap, K.K., Srinivasan, V., Motani, M.: MAX: Human-centric search of the phys-
ical world. In: Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems (SENSYS’05), San Diego, CA, USA (2005)

[4] RF Code, Inc.: MantisTM active RFID tags 433 MHz data sheet. www.rfcode.
com/data_sheets/433_mantis_tags.pdf (2006)

[5] Wibree Technology. www.wibree.com (2006)
[6] BTnodes. www.btnode.ethz.ch (2006)
[7] Borriello, G., Brunette, W., Hall, M., Hartung, C., Tangney, C.: Reminding about

tagged objects using passive RFIDs. In: Proceedings of the 6th International Con-
ference on Ubiquitous Computing (UbiComp’04), Nottingham, England (2004)

[8] Shimizu, H., Hanzawa, O., Kanehana, K., Saito, H., Thepvilojanapong, N., Sezaki,
K., Tobe, Y.: Association management between everyday objects and personal
devices for passengers in urban areas. Pervasive 2005, Demonstration, Munich,
Germany (2005)

[9] Gibbons, P.B., Karp, B., Ke, Y., Nath, S., Seshan, S.: IrisNet: An architecture for
a worldwide sensor web. IEEE Pervasive Computing 2(4) (2003)

[10] Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: Proceed-
ings of the 22nd International Conference on Data Engineering (ICDE’06), At-
lanta, GA, USA (2006)

[11] Engberg, S.J., Harning, M.B., Jensen, C.D.: Zero-knowledge device authentica-
tion: Privacy & security enhanced RFID preserving business value and consumer
convenience. In: Proceedings of the 2nd Annual Conference on Privacy, Security
and Trust (PST’04). (2004)

[12] Trossen, D., Pavel, D.: Building a ubiquitous platform for remote sensing using
smartphones. In: Proceedings of the 2nd Annual International Conference on Mo-
bile and Ubiquitous Systems: Networks and Services (MobiQuitous’05). (2005)
485–489

[13] Bolliger, P., Langheinrich, M.: Distributed persistence for limited devices. System
Support for Ubiquitous Computing Workshop at Ubicomp 2006 (Ubisys 2006)
(2006)

www.rfcode.com/data_sheets/433_mantis_tags.pdf
www.rfcode.com/data_sheets/433_mantis_tags.pdf
www.wibree.com
www.btnode.ethz.ch

[14] Laasonen, K., Raento, M., Toivonen., H.: Adaptive on-device location recogni-
tion. In: Proceedings of the 2nd International Conference on Pervasive Computing
(Pervasive’04), Vienna, Austria (2004)

[15] Smith, I., Consolvo, S., LaMarca, A., Hightower, J., Scott, J., Sohn, T., Hughes, J.,
Iachello, G., Abowd., G.D.: Social disclosure of place: From location technology
to communication practices. In: Pervasive 2005, Munich, Germany (2005)

[16] Frank, C., Roduner, C., Noda, C., Kellerer, W.: Query scoping for the Sensor Inter-
net. In: Proceedings of the IEEE International Conference on Pervasive Services
(ICPS’04), Lyon, France (2006)

[17] Ferreira, L., Correia, L.M., Xavier, D., Vasconcelos, A., Fledderus, E.: Deliverable
d1.4: Final report on traffic estimation and services characterisation. Technical
Report IST-2000-28088, Momentum Project (2003)

[18] Momentum: Models and simulation for network planning and control of UMTS.
momentum.zib.de/data.php (2006)

[19] ETSI: Selection procedures for the choice of radio transmission technologies of
the UMTS. Technical Report 3.2.0, European Telecommunications Standards In-
stitute (1998)

[20] Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces.
In: Proceedings of the 25th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’06), Barcelona, Spain (2006)

[21] Le Boudec, J.Y., Vojnović, M.: Perfect simulation and stationarity of a class of
mobility models. In: Proceedings of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’05), Miami, USA (2005)

[22] Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Sri-
vastava, M.B.: Participatory sensing. In: Workshop on World-Sensor-Web
(WSW’06): Mobile Device Centric Sensor Networks and Applications, Boulder,
Colorado, USA (2006)

momentum.zib.de/data.php

	Christian Frank (ETH Zurich), Philipp Bolliger (ETH Zurich), Christof Roduner (ETH Zurich), Wolfgang Kellerer (DoCoMo Communications Laboratories Europe)

