UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Objects for simulation: Smalltalk and Ecology

Baveco, J.M.; Smeulders, A.W.M.

DOI
10.1177/003754979406200106

Publication date
1994

Document Version
Final published version

Published in
Simulation

Link to publication

Citation for published version (APA):
Baveco, J. M., & Smeulders, A. W. M. (1994). Objects for simulation: Smalltalk and Ecology.
Simulation, 62(2), 42-57. https://doi.org/10.1177/003754979406200106

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https //dare.uva.nl)

Download date:23 Aug 2022


https://doi.org/10.1177/003754979406200106
https://dare.uva.nl/personal/pure/en/publications/objects-for-simulation-smalltalk-and-ecology(5e49f0d8-ce0b-4e08-9a1f-6d7538c3a9c3).html
https://doi.org/10.1177/003754979406200106

SIMULATION 62:1,42-57
TECHNICAL ARTICLE © 1994, Simulation Councils, Inc.

1SSN 0037-5497/93 $3.00 + .10

Printed in the United States of America

Objects for Simulation:
Smalltalk and Ecology*

J.M. Baveco AMW. Smeulders
Dept. of Pure and Applied Ecology Dept. of Computer Systems
working group on Biological Information Techniques working group on Biological Information Techniques
University of Amsterdam University of Amsterdam
Kruislaan 320; 1098 SM Amsterdam, Kruislaan 320; 1098 SM Amsterdam,
The Netherlands The Netherlands

Introduction

In ecology, modeled systems are predominantly
represented at population or concentration level.
Models usually are sets of difference or differential
equations. Reflecting the complexity of nature, in most
cases they need to be solved numerically. In an ecologi-
cal context this modeling approach has conceptual
shortcomings. It is of limited use in dealing with
systems characterized by abrupt events (discontinuities)
and by interacting processes on multiple spatial and
temporal scales. Furthermore, in population models the
description of population behavior is usually derived
from the properties of an average individual, in an
average environment. System organization, emerging
from the interaction between unique individuals and
their local environment, is being ignored.

As an alternative, a combination of individual-based
modeling and discrete-event simulation may overcome
some of these limitations (see Figure 1.). A challenge to
the approach of simulating individuals is that their
numbers are variable and potentially high, and that
their behavior is complex. Developments in computer
hardware have brought this calculation-intensive
approach within reach of the common computer user.
New software technology, i.e. object-oriented program-
ming, makes it feasible to handle the complexity of the
associated programs. However, little software is avail-
able, tailored to the needs of ecologists (for some
examples see Hogeweg & Hesper, 1990). In the context
of a research project on variable-structure simulation, in
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this paper a framework for individual-based simulation
is described, called EcoTalk. It is intended to be an
environment in which individual-based models can be
developed and simulated rapidly. Integrated in the
object-oriented programming system Smalltalk, it
provides objects as the building-blocks for ecological
models. EcoTalk is thus based on the following three
concepts.

Individual-Based Modeling

A system is described in terms of local individuals,
interacting with one another and their environment.
Actions are not necessarily synchronous and different
types of individuals may have their own characteristic
timescale on which they operate. Although the rules for
behavior are shared by a group of individuals (e.g. those
belonging to the same species), the behavior is not
identical for all, due to the interplay between internal
properties and local circumstances. The ecologist thus
can take into account individual and local variability,
and study its relation to macroscopic (population-,
community-level) system behavior (Huston et al., 1988).
Individuals can be basic components of population,
community and ecosystem models. When multiple
steps in a food chain are involved, it is usually not
feasible to represent all components at the individual
level (for instance, fish, zooplankton and algae). For
practical purposes, such a model should include
individual-based representations of the entities at the
highest trophic level, acting on large spatial and tempo-
ral scales. The (numerous) entities, operating on smaller
scales, can be aggregated in population or sub-popula-
tion units, e.g. super-individuals: model individuals that
represent a large number of identical individuals. These
units should be much more flexible than they are in
traditional population-based models, i.e. they should
allow splitting, lumping, etc.

Discrete-event Simulation

The asynchronous events and multiple timescales,
characterizing individual-based systems, can be
handled in discrete-event simulation. In discrete-event
simulation, the simulation clock moves from event to
event, with intervals of undetermined length in be-
tween. Periods with no activity in the system are
skipped, while periods with intense activity imply a
high density of events and consequently a slow pro-
gressing of simulation time. A discrete-event timing
regime is compatible with the simulation of continuous
processes. Continuous processes are usually simulated
as synchronized state-changes occurring after a certain
timestep. They can be represented by events, repeti-
tively scheduled on a fixed timestep base.

Object-Oriented Programming

In object-oriented programming (OOP), objects are
program modules defined as a combination of data and
procedures. Data encapsulated in an object can only be
changed by the procedures of this object. Objects
communicate by sending messages (procedure-calls) to
one another. Objects are abstract data types, that is, they
can be used as building-blocks for new objects. Objects
are organized in a hierarchy. This organization, based
on inheritance and polymorphism, is characteristic of
OQP. Each object inherits the properties of its parent
object: its data-structure and procedures. However, an
object may also overrule the definition of an inherited
procedure (polymorphism).

Object-oriented programming’s first aim is to master
the complexity of large software systems and promote
the reuse of software components. In simulation, the
benefits of inheritance have long been recognized.
Already in SIMULA, new models could be constructed
efficiently, by defining them as subclasses of existing
model classes. Object-oriented programming has been
applied successfully to deal with the complexity of
ecological systems (Larkin et al., 1988; Saarenma et al., .
1988).

In simulations involving a large number of compo-
nents, encapsulation of data inside objects is a relevant
feature. In the context of the research presented here,
additional arguments in favour of object-orientation
include (1) the concept of an individual belonging to a
species, nicely fits the definition of an object, adhering to
the rules of its class but otherwise acting on its own local
data, (2) the hierarchical organization of objects lends
itself well to a representation of taxonomical relations
between component species, (3) in an individual-based
approach, the analogy between computation by mes-
sage-passing and communication by signals can be
exploited.

A one-to-one relationship between objects and
realworld physical entities results from the object-
oriented approach. The observation and animation of
system behavior and the task of collecting data become
easier, as the state of an object persists during the
simulation as a coherent set of properties.

In this paper, EcoTalk will be considered from a
practical point of view, evaluating its performance and
expressiveness. From the few widely-available object-
oriented tools for the PC, the Smalltalk environment
was selected for implementation of EcoTalk, due to its
extreme flexibility. First, elements of Smalltalk are
discussed. Then, the functionality of EcoTalk is de-
scribed. Next, some applications are shortly considered.
The concluding section is devoted to the feasibility of
the object-oriented approach.
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Figure 1. An EcoTalk simulation in action. Instances of several classes (left, bold) cooperate to maintain a simulation control
structure (top level), to represent the real-world system (intermediate level), and to extract information (bottom level). The
system represented here consists of m individuals of species A, p individuals of species B, in an environment made up of n
elements of type C. A number q of data collectors of type D collect information. The main pointer structure is depicted, as well
as the main flow of information/control between the simulation and the user interface.
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originally represented object behavior by simulating
parallel processes, synchronized by semaphores. Here,
the process-interaction approach is left behind and
replaced by single event-scheduling, as the latter
involves less overhead and appears more transparent.
Probability density distributions, needed in the genera-
tion of stochastic parameters, are added according to the
description found in Goldberg & Robson (1983). An
alternative to the standard (linear congruency) random
number generator is also added (Kirkpatrick and Stoll,
1981).

Overview

The classes figuring in an EcoTalk simulation are
divided into three categories (the levels in figure 1). Ata
basic level, they constitute a commonplace discrete-
event simulation framework (‘Simulation Control
Structure’). A second level unites the classes with a
counterpart in the real world (‘Artificial World’). Finally,
some classes serve to extract information from the
simulations (‘Data Collecting’). Each level also includes
its user interface elements.

Figure 2 shows how these classes fit into the inherit-
ance structure of the Smalltalk class hierarchy. Each
particular model is shaped by a combination of one or
more classes from the ModelComponent branch and
one from the ModelSystem branch. All basic EcoTalk
classes are abstract classes, that is, no instances of these
classes are used in a user-defined model. In the follow-
ing, the EcoTalk (kernel) classes are described in more
detail. Names starting with a capital refer to instances of
a class or to the class itself.

Simulation control structure

A simulation is considered to be an experiment
performed on a model system. An experiment makes a
relationship among three elements: a model, an experi-
mental frame, and the generated data. A model consists
of one or more components. The term experimental
frame is used to denote model specific information on
(1) observational variables, (2) input schedules, (3) initial
setting, (4) terminating conditions and (5) data process-
ing (Oren & Zeigler, 1979).

A simulation is an instance of class Experiment. Each
model system is an instance of a subclass of
ModelSystem. Each component is an instance of a
subclass of ModelComponent. ModelComponents are
atomic models (Zeigler, 1990), i.e. they cannot be
divided any further in more elementary components.
Some ModelComponent classes include information on
the coupling relations between instances, for instance,
ModelComponents representing spatial units are
connected to one another (neighbors) according to fixed
rules. Details on the implementation of these classes are
given in figure 3.

In ModelComponent common functionality is con-
tained by all simulation components, i.e. features
making it possible to recognize and count individual
active instances. The ability to schedule events in future
simulation time is defined in subclass Actor.
ModelSystem contains the properties shared by all
simulation models.

ModelSystems refer to the involved component

classes and the experiment they are subjected to. In all
simulations a structured ecological environment is

Object

Experiment  ModelSystem

Pool

T T

ModelComponent

N

Simulator

Actor

/K

Network  Inhabitant Space DataCollector
CPInhabitant Sampler Observer

Figure 2. An overview of the hierarchical relations between the kernel EcoTalk classes. Object is the root class of the entire

Smalltalk class hierarchy.
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Object

Experiment

~comment
~date
~time
~modelSystem Model System
~simulator
~classlnitProtocol
~spaceBuildingProtocol
~startUpProtocol
~restartProtocol
~endProtocol
~parameters
~samplingProtocol
~samplers

~observers

~status

~duration

~statistics

~components
~experiment
~rootSpace
~networks
~timeUnit

Simulator

~cuwrrentTime
~eventQueue
~eventCount
~experiment
~lastEvent
~modelSystem
~ActiveSimulator

ModelComponent

~demons
~existence
~label
~Counter

Figure 3. Basic EcoTalk classes, with their instance and class variables (capital).

assumed. This spatial structure can be reached via the
ModelSystem. All model-specific methods are added in
subclasses, e.g. defining parameter values, initial
conditions, and the kind of data to be gathered. These
methods define a default experimental frame for each
specific model.

Class Experiment is used to define, run and end a
simulation. An Experiment is started by connecting it to
a ModelSystem. The ModelSystem supplies its default
experimental frame to the Experiment. As long as it
resides in the Experiment (as Protocol instances, see
figure 4), the simulation can be restarted quickly. All
definitions that constitute the experimental frame can be
overruled interactively during the simulation experi-
ment.

Message

~argumems

~receiver

--sclector

Protocol  Demon Event Flow

~conditionBlock ~condition ~assessed
~key ~priority ~controller
~tie ~conversion

~flow

Figure 4. Subclasses of the standard Meésage class are used
for delayed or repeated execution of code.

The Experiment connects a Simulator to the simulated
system. The Simulator maintains the simulation clock
and receives all notifications of time-based activations
(Events, see figure 4). Notifications sent by
ModelComponents are channelled through the Simula-
tor class object, to the currently active Simulator. The
Simulator adds these events to its future events list, with =
their time label as a key for sorting.

Ecological components

Ecological components are subclasses of Actor (figure
5). Individuals are instances of subclasses of Inhabitant;
their environment is represented by instances of sub-
classes of Space. An individual-based simulation can,
however, also be performed with Spaces alone, as will
be shown in the host-parasitoid example.

Both Inhabitants and Spaces are characterized by their
ability to carry out tasks, i.e., to simulate behavior.
Basically, they appear in the simulation after receiving
the message “startUp’, and disappear after receiving
‘finishUp’. More complex behavior is simulated by
executing methods representing simple actions. A few
examples are listed in table 1. In general, the description
of an Inhabitant’s behavior should be self-contained,
avoiding dependencies on other components’ code that
would complicate the reuse of the single component in
other models.

Objects embodying the environment function as
containers of a collection of Inhabitants. In addition,
they may display their own behavior - although in
many simulations this will not be the case. Predefined
methods, as building blocks for such behavior, refer
mainly to the dynamical creation of new Spaces,
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Table 1. Some of the methods provided in Inhabitant (upper) and Space (lower), that can be used as building-blocks for behavior.
Self refers to the object instance that is executing the method. An important task of a spatial unit may be to collect statistics on the

inhabitants it contains (bottom).

goto: aSpace

kill: anInhabitant
lookAround

lookUp

moveRandom
moveRandomNeighbor

reproduce

die remove self from the simulation

make self an inhabitant of aSpace
remove anlnhabitant from the simulation
answer the inhabitants in self's Space
idem, in self's superSpace

self go to a random Space

self go to a random neighbor Space

create a new inhabitant of self’s type

addLevelWithDim: aPoint
addNeighbor: aDirection
addSubSpaceAt: aPoint
averageProperty: aSymbol

add a new grid of Spaces below self

add a new Space as a neighbor in aDirection

add a single Space below self

average the values for property aSymbol over all inhabitants

inhabitantType: aString  with class name aString

ModelComponent
Actor
~creation
Inhabitant  Space
~coordinates ~coordinates
~mode ~dimension
~mySpace ~inhabitants
~mySubSpace ~level
~SpaceLevel ~neighbors
~superSpace
~subSpace

~Neighborhood
~HierarchyActive

Figure 5. Classes implementing basic ecological components.
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connections, and layers. Subclasses of Space can define
additional properties, and events acting on these
properties.

Spaces are arranged in a hierarchy by default, with
large-scale elements containing small-scale ones. This
feature allows simulations to involve different spatial
scales. As an option, the neighborhood of each Space
may either consist of 4 or 8 neighboring Spaces.

Individuals, Populations & Concentrations

EcoTalk permits a combined individual-and popula-
tion/concentration-based approach. Components
whose continuous dynamics are simulated, may
represent individuals or aggregated units like popula-
tions. Within a discrete-event world view, continuous
processes are approximated by creating a chain of
events parallel to the other events related to the specific
component. These events update the state of the con-
tinuous variable. This may suffice to represent relatively
autonomous processes occurring inside individuals, e.g.
respiration or food digestion.

For fixed interaction links between population units,
EcoTalk provides another representational formalism: a
System Dynamics approach (Cellier, 1991, Chapter 11).
This formalism is appropriate for the specific model
when a continuous-change world view dominates, and
events disrupting the interaction network are scarce. A




pools-flows metaphor is applied: the state-variables are
pools in a network, connected by material, energy or
information flows. As a consequence, the object-oriented
implementation presented in this paper is based on the
classes Network, Pool and Flow (figures 4 and 6).

Each Pool represents a single quantitative property.
Flows link the Pools to one another, creating a Network.
This Network repeatedly schedules its own activation.
Upon activation, the Network in its turn activates all
Pools. The Pools then calculate their state-change
according to a forward Euler integration, and set their
new value. A Network is made up of distributed
integrators, operating on the timestep defined by the
Network. More than one Network may be present, each
with its own characteristic stepsize.

Each Pool only exists in relation to, and can only be
created and destroyed by a CPInhabitant. CPInhabitant
(figure 6) is a subclass of Inhabitant with the ability to
manipulate such internal Pools. Like Inhabitants,
CPInhabitants behave event-wise. Certain events affect
their Pools, e.g. when they lead to creation, destruction
or modification of the interaction network in which the
Pools are engaged. Conversely, the continuous sub-
system represented by the Pools may affect the dynam-
ics of the discrete system, when thresholds in Pool
values are defined, that, when surpassed, trigger events
in the containing CPInhabitant.

Collecting Data

The task of gathering information is separated from
the behavior of model components. Specialized objects
collect the data, operating alongside the regular compo-
nents. In this way, flexibility and conceptual clarity are
enhanced. Data collectors can be created any time
during an experiment. Their behavior may be as
complex as that of Inhabitants - or even more complex
(like the observers in Hogeweg & Hesper, 1981).
EcoTalk provides two basic types (figure 7).

Samplers collect the states of model components at
fixed, predefined, time intervals. Observers serve the
same purpose, but are not activated on a time base.
They collect information after being activated by state-
changes in the objects they observe. To this end, a
mechanism for access-based activation (figure 4) is
implemented, based on the demon concept (Murata &
Kusumoto, 1989).

EcoTalk Interface

The interface for EcoTalk was pieced together from
the GUTI building blocks offered by Smalltalk. Its
windows are related to the different EcoTalk levels
(figure 1) and serve the purposes of (1) exerting user
control, (2) browsing the simulated system and (3)
depicting the collected data.

ModelComponent
Pool Actor
~cotntainer
~flows //
~flowValues
~lastUpdate . .
—rerwork - Network Inhabitant
~value ~lastUpdate
~pools
~step .
CPInhabitant
~pools
~Relations
~Thresholds

Figure 6. Classes implementing continuous system
dynamics.

Actor
DataCollector
~file

Sampler Observer
~sampledObjects  ~active
~sampledValues  ~observedEntity
~start ~observedValue
~step ~observedTime
~SamplerFile ~reportInterval

~ObserverFile

Figure 7. Data collecting classes.
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A text window, EcoTalkTranscript, is defined as a
global variable. All other EcoTalk components may send
information concerning their status to this window.
Items selected from the EcoTalkTranscript menus lead
to the creation of new ModelComponents and
ModelSystems. For a new series of experiments on an
existing model, an ExperimentEditor is opened.

The ExperimentEditor controls all major steps in-
volved in a simulation. It has an Experiment as one of its
instance variables. This Experiment is manipulated via
the menus of the ExperimentEditor. To be more specific
(figure 8), the menu items refer to high-level handling of
the Experiment, editing parameters and data-collectors,
executing the experiment step by step, inspecting the
control structure objects, and opening views on the
dynamic state of the simulation. An ExperimentEditor
consists of subpanes, showing lists of the involved
parameters and data-collectors. Parameters and data-
collectors can be defined interactively, in dialog win-
dows. When running the simulation in the Smalltalk
development environment, source code browsers can be
opened on the model components. The code can be
inspected, changed and saved. An interrupted simula-
tion may thus resume with modified component
behavior.

Once the Experiment has been edited and the simula-
tion is ready to start, a SimulatorControl window is
opened from the ExperimentEditor. It offers refined
control over simulation execution. A SimulatorControl
consists of subpanes displaying event queue status, and
depicting the event distribution. The state of the simu-
lated system can be inspected at any moment. This is
achieved by browsers that open a view on the constella-
tion of spatial elements, and assist in navigating through
space. They either apply hierarchical relationships
(SpaceHierarchyBrowser) or neighborhood relation-
ships (NeighborhoodBrowser) as a criterion. Both show
the state of the system by means of lists of spatial
elements and their inhabitants, as well as graphically by
means of bitmaps displaying the spatial distribution of
(user-defined) states. They make it possible for the user
to intervene directly in the simulation and change its
course of events.

Finally, windows are provided to display the data
collected by Samplers and Observers dynamically, in
tables, plots or histograms. EcoTalk features also an
animation of the states-of the spatial elements.

How to use EcoTalk?

An EcoTalk model is constructed and tested in the
Smalltalk development environment. In model building,
the EcoTalk kernel classes are treated as abstract classes,
and not modified. Thus, for each new model a subclass
is added to ModelSystem, and for each new component

a subclass is added to the ModelComponent branch. In
a series of experiments, these classes are tested thor-
oughly using Smalltalk debugging tools, and further
refined. To construct an external model base, the new
model classes can be written to ASCII files (figure 9: 1)
or transferred to binary DLL’s (figure 9: 3). By trimming
the development classes from the environment, a
runtime executable Smalltalk is created (figure 9: 2),
containing Smalltalk and EcoTalk kernel classes ptus
one or more models.

Extensive analysis of model system behavior can be
performed in such a runtime system. Each experiment
starts with the default experimental frame, laid down in
the ModelSystem’s source code. Interactively, the
experiment is tailored by the user, supplying other
parameter values, creating new data collectors, opening
different windows, and so on. Only the behavior of the
ModelComponents cannot be changed (in runtime
systems). Using binary object storage facilities, complete
simulations can be interrupted and stored, for use in
different sessions. They may constitute a simulation
base (figure 9: 4). Collected data are exported to external
files, or exchanged with other data-processing packages
(e.g. spreadsheets) through Dynamic Data Exchange or
clipboard facilities.

ILLUSTRATIONS
Host-Parasitoid Spatial Dynamics

Host-parasitoid systems describe a basic interaction in
ecology, for animals (hosts) parasitized by animals of
similar size. Analysis of simple mathematical models
has shown that in homogeneous environments, these
interactions, like comparable predator-prey interactions,
may result in complex population dynamics. In spatial
systems a new level of complexity is added. Local
populations can go extinct, while uninhabited areas can
become colonized. Simulations have shown that
extinction and colonization may balance one another,
resulting in a global persistence of both populations.
Hassell et al. (1991) demonstrated that diffusion-like
(local) dispersal in such systems may produce persisting
spatial patterns, including high-density waves travelling
or spiralling through the environment. The results were
obtained in simulations of difference equation and
cellular automata systems.

An EcoTalk model is constructed to analyze the
spatial dynamics of host-parasitoid systems (Baveco &
Lingeman, 1992). It simulates locally interacting indi-
viduals, with local dispersal. Unlike previous work, it
makes it possible to relate the spatial patterns of distri-
bution to the detailed behavior of individuals, e.g.
individuals may move directionally, motivated by the
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Figure 9. Facilities for orgazanizing models and simulations, in modern Smalltalk environments.

status of their immediate environment, their accumu-
lated experiences or other strictly individual parameters.

Two versions of the model have been developed.
Initially, each individual and each location was repre-
sented by an object in the program. To improve simula-
tion performance, in an alternative model the system
was represented exclusively by locations (patches). The
state of a patch was defined as the number of hosts and
parasitoids it contained. In the individual-based version,
events occurred to individuals. Many of these events
changed the properties of a spatial unit, e.g. dispersal,
reproduction and death changed the number of Inhabit-
ant objects in a patch. In the patch-based model, the
same type of events occurred. However, these events
only changed the state of the patches.

Fish Interactions

In fish communities numerous examples are found of
organisms with a position in the foodweb that is
changing during their life cycle. At different stages in
their ontogeny, they may be competitors, predators
and/or prey. The interactions between species are a
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function of body size, age and the trophic structure of
the community.

Interactions between two species, taking into account
the age-structure of the populations, have been simu-
lated with ordinary differential equation models (Post &
Rudstam, 1991). In such an approach, an average body
size is assumed to apply to all individuals in an age-
class. However, as body size is a critical parameter in
determining the interactions, in a more detailed investi-
gation of the regulatory mechanisms, the size distribu-
tion within an age-class should be taken into account. In
general, such size-structured populations are modeled
by partial differential equations (Metz & Diekmann,
1986). In case of small populations, certain stochastic
effects, or incomplete mixing, the conditions for a PDE
approach are not met. As an alternative, each individual
in the population is followed separately. Experiences
with such individual-based simulations are limited to
single-species models (Adams & DeAngelis, 1987).

Currently, an EcoTalk model is being developed for
two interacting fish populations. Based on individuals,
small-scale differences in body size are taken into



account. This approach allows a detailed investigation
of the role of size-based compensatory mechanisms in
the age classes exhibiting the highest plasticity in
individual growth (i.e. the juvenile stadia). A related
research topic refers to an investigation of the effects of
stochasticity and individuality when incorporated into a
model of size-based interactions between a consumer-
species and its food. The model formulations in question
range from a set of differential equations (all individuals
equal) to a discrete-event individual-by-individual
model.

PERFORMANCE

For the host-parasitoid application described above
the performance in terms of processed events per
second is estimated. An individual-based and a patch-
based version are compared, running under DOS 4.0
with Windows 3.0 (Smalltalk /V Windows 1.1), and
under OS/2 1.3 with Presentation Manager (Smalltalk /
V PM 1.3). The results, averaged over three runs, are
depicted in figure 10 and table 2. All runs started with a
dozen initial events. In the course of the simulation the
number of events in the event queue fluctuated heavily
with peak values steadily increasing up to (at the end of
the run) approximately 4000 to 5000. Figure 10 shows
that no serious degradation of event queue performance
was observed with increasing queue size. Table 2
indicates the performance gain by switching from an
individual-based to a patch-based representation (1.45
for Smalltalk/V PM and 1.27 for Smalltalk/V WIN). In
Smalitalk/V PM the simulations were executed almost
twice as fast, on the same platform.

DISCUSSION.
Illustrations

In developing both applications, we experienced the
benefits of object-orientation. New models were con-
structed efficiently, and with relatively minor efforts.
The interactive nature of Smalltalk, and its flexibility,
sped up model development and greatly encouraged an
explorative modeling approach, testing different model
designs (Baveco & Lingeman, 1992). Investigating a
specific model, the EcoTalk interface (added at a later
stage) proved very helpful in tailoring experimental
design.

The host-parasitoid model indicates that EcoTalk can
be used profitably for medium-sized individual-based
applications. On the particular platform, simulations of
up to approximately 10,000 individuals were feasible
(Baveco & Lingeman, 1992). However, for the model
system in question this proved inadequate to investigate
large-scale spatial pattern formation.

The fish population application includes both small-
and medium-sized individual-based models. Prelimi-
nary results (Scheffer & Baveco, in prep.) indicate that,
although some of the emerging population phenomena
could have been produced in differential-equation
models as well, the interpretation of the underlying
mechanisms is more straightforward in an individual-
based setting.

Expressiveness

Experiences with EcoTalk are limited to simulations
involving numerous components with a relatively
simple behavior (i.e. less than a dozen different events

Table 2. Performance of EcoTalk Simulations, in terms of
average event duration and processed events per second.

Smalltalk/’V PM Smalltalk/’V WIN
individuals patches (individuals patches
seconds/event 0.07 0.048 0.119 0.094
events/second 14.3 20.8 8.5 10.8
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for each component). For these models the applied
event scheduling approach is appropriate. Whether this
will also be the case for more complex interactions
remains to be seen.

In the fish population model, continuous processes,
fish respiration and zooplankton growth, are simulated
under a discrete-event timing regime. Their inclusion is
straightforward. However, ad hoc assumptions are
required to handle the state-variables that are subject to
change by both continuous and discrete processes. For
instance, zooplankton growth occurred on a fixed
timestep base, while zooplankton consumption by fish
occurred on an event base. In this case, the consumption
during the timestep was summed and at the end of the
timestep balanced with the increase by growth, to yield
the next biomass value.

In EcoTalk a discrete environment is assumed, made
up of spatial units. Inside a unit, homogeneity is as-
sumed. For individuals whose behavior is guided by
fine-grained local information (e.g. the proximity of
other individuals), this grid-like representation may be
too coarse. Addition of spatial units with, internally, a
continuous coordinate system, and the associated
inhabitants moving inside these units, is under consider-
ation.

The use of classes as object templates in Smalltalk
poses restrictions on the representation of evolutionary
processes. It is easy to simulate genetic change as long as
itis confined to the values of instance variables of
objects and their offspring. The methods defined in a
class, however, apply equally to all instances. Solutions
to this problem of instance-specific methods, however,
are described by Beck (1993).

Performance

The processing time per event, as measured above,
allows estimation of the feasibility of a specific modeling
enterprise in advance. Better performance, clearly, is to
be expected on faster platforms, i.e. 486-based PC’s and
workstations. We improved performance by selectively
optimizing intensively used object methods. With the
host-parasitoid model, a substantial performance gain
resulted from switching to another system representa-
tion. A trade-off is noted between flexibility and perfor-
mance. It is in the nature of object-oriented program-
ming to create subclasses that are tuned to perform
certain tasks, at the expense of the flexibility displayed
by their parent class. For instance, in EcoTalk a Space
object contains its subspaces (pointers) as values in a
flexible Dictionary, with coordinates as their look-up
key. In the host-parasitoid simulations, optimized
subclasses of Space were used, with subspaces con-
tained in a faster accessible, but less flexible, Array.

Smalltalk and Simulation

For the purpose of individual-based modeling and
simulation, Smalltalk fell short in the following aspects:
(1) an efficient general-purpose mechanism for access-
based activation is absent, (2) multiple-inheritance is not
supported. The demons constructed in EcoTalk to
broadcast state-changes, served well from a practical
point of view. Conceptually they do not satisfy, as the
object to which demons may be tied still needs to take
explicit action in order to activate its demons, upon an
internal state-change. The same objection applies to the
dependency-mechanism that is a standard Smalltalk
feature (each object may have dependents). The depen-
dency-mechanism is heavily used by and interwoven
with the Model-View-Controller implementation, and
therefore not used to mimic access-based activation in
EcoTalk. Multiple-inheritance, i.e. the ability to inherit
from more than one superclass, would make it possible
to break down the ModelComponent branch into
several small hierarchies, each embodying a single
concept. Instead, much time was invested in finding an
acceptable single-inheritance structure, based on
considerations of simulation approach, biological level
of organization, and task in simulation.

With EcoTalk, a modeling system is constructed
inside a programming system. The modeling system
itself can be modified as easily as the user-defined
models. On the one hand, this appears an advantage:
the modeling system may benefit and mature from the
applications developed in it. On the other hand, unlim-
ited access to all parts of the system for all users is
dangerous (system crashes may easily occur), and
undesirable because modifying essential features will
limit the possibilities of model interchange between
modelers. We found a workable solution in the conven-
tion to treat basic EcoTalk classes as abstract classes. In
developing a new model, these classes are not used;
instead subclasses are created. The basic classes are
modified only by optimizing methods internally
(without affecting the object’s interface) or adding new
methods. To Smalltalk-illiterate end-users, models are
supplied as runtime EcoTalk systems, protected against
any modification, but still allowing all kinds of experi-
mentation.

A major asset of the Smalltalk environment is that it
provides for a Personal Simulation System, constantly
evolving and accumulating the experiences of the
modeler. The simulation system presented in this paper
can, thanks to its object-orientation, grow in different
directions. At the end of the EcoTalk branches, new
model classes appear, inheriting functionality from the
EcoTalk kernel classes and ecological detail from each
other. The kemel classes in turn evolve to become even
more fine-tuned to their tasks, while now and then they
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shoot out branches, forming a substrate for new types of
models.
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