
Objects, Object Types, and Object Identification
H.-D. Ehrich

Informatik/Datenbanken, TUBS, Postfach 3329, D-3300 Braunschweig, FRG

A. Sernadas C. Sernadas

Departamento de Matematica, IST, 1096 Lisboa Codex, PORTUGAL

~ b ~ l l ~ - The usefulness of category-theoretic concepts for a theory of object-oriented program-
ming is advocated. Objects (in the latter sense) are defined as objects (in the category-theoretic
sense) of a category OB. Colimits in OB are used to express aggregation of objects into complex
objects as well as interaction between objects. Object types consist of an identification system, the
object universe, and an instantiation system, describing the instances of the type. The main result
of this paper gives a semantic basis for database-like identification by keys: the object universe
can be specified uniquely (up to isomorphism) employing general principles of preservation of
data, distinguishability by keys, and representability by keys.

1. Introduction

Object-oriented approaches are becoming popular in programming, software design, databases and

other fields of computer science. Essentially. an object reflects the idea of an encapsulated entity

incorporating all concepts of a full-fledged computing system: data, storage, control, and

communication with other objects. Moreover, in order to master large and varying collections of

objects, they are organized into object types. Types are interrelated by a subtyping structure for

which an appropriate inheritance mechanism is employed.

Many of these concepts were already built into the simulation language SIMULA (DMN67), but it

took more than a decade of incubation to start the line of "object-oriented" languages and systems.

as they are called now. This line began with Smalltalk-80 (GR83). Again, it took a while for

object-oriented ideas to spread into other areas of computing, especially databases (Lo85, DD86,

sw87).

Whereas the traditional styles of imperative and declarative programming are fairly well under-

stood, with a considerable body of theory providing deeper insights into many aspects, this is not

the case with the object-oriented style of programming (Am86). In this paper, we contribute to

developing such a theory. The basis of our approach are processes (Ho85): they appear as sets of

life cycles of objects, i.e, allowed sequences of events. Roughly speaking, our model of an object

is such a process which can be observed along life cycles via attributes. For the notion of object

type, we put special emphasis on object identity (KC86).

With emphasizing processes as basic building blocks of objects, we are going beyond the scope of

current object-oriented languages like Smalltalk. Our purpose is to stimulate discussion on the

theoretical and conceptual basis of object-orientation as such, with not too much bias towards

systems as they are now, hopefully leading to insights which allow to evaluate current systems

HDEhrich
Schreibmaschinentext
H. Ehrig, H. Herrlich, H.-J. Kreowski, and G. Preuß, editors, CategoricalMethods in Computer Science, LNCS 393, pages 142–156, Berlin, 1989. Springer

HDEhrich
Schreibmaschinentext

143

and help to develop more advanced ones in the future. While this paper concentrates on semantic

foundations, there is related work on designing an object-oriented language for information

systems specification and a methodology for using the language (SSE89, SFSE89).

Our approach is different from that of GM87, although there are also parallels, especially in

adopting ideas and concepts from algebraic data type theory. Algebraic data type theory has

been a source of inspiration for developing our approach, especially the usefulness of category-

theoretic concepts. One particularly useful lesson from category theory is that it is not sufficient

to look at the entities you want to study, but that it is indispensable to look at the morphisms
between them. Indeed, the "aspect-of" and "part-of" relationships between objects generalize

neatly to object morphisms, giving rise to a category OB with objects (in the sense of object-

oriented programming) as objects (in the sense of category theory). OB is cocomplete, and

colimits provide the right concept for studying aggregation of objects into complex objects as

well as interaction between objects in a uniform way. In fact, a society of interacting objects

(to be explained in section 3) can be viewed as a complex object with the members of the society

as interrelated components.

Algebraic data types not only provide inspiration, they also appear as an integral part in our

theory, even in two respects: as value domains of attributes, and as object universes, i.e. identi-

fication systems within object types. In an object universe, the elements act as object "surrogates",

and the operations act as "naming" functions. An object type is such an identification system with

an instantiation mapping, associating an object (acting as a template) with each object surrogate.

The instances of the object type are all pairs of surrogates and their associated templates.

Intuitively, this means that the template is "qualified" with the associated surrogate.

Generalizing the subtype relationship, there are also morphisms between object types. The
resulting category of object types is cocomplete. This gives the basis for studying complex

object types, i.e. object types built from other object types by generalization or some form of

aggregation.

The main emphasis of this paper is on object identity. Employing database-like identification by

keys, the question is how object universes can be specified abstractly, i.e. up to isomorphism. Our

main result shows that this can be achieved by general, intuitively appealing principles of data

preservation, distinguishability by keys, and representability by keys.

This main result could have been presented without the material in sections 2 and 3. In fact, it is

a result about algebraic data type specification. We feel, however, that the context, i.e. our

theory of objects and object types, is essential for appreciating the relevance of the problem and

the result. Serving a more or less motivational purpose in this paper, sections 2 and 3 are kept

in a somewhat narrative survey style. Part of the material is elaborated in ESS88, and other

parts have yet to be elaborated.

2. Objects and Interaction

A prominent example of a data type is stack (BT88), and it is also a good example to demon-

strate some of the basic ideas about objects. As a data type, a stack with a set E of entries can

be modelled as a set S=E* of finite entry sequences, together with operations like empty:----)S,

144

top: S--~E, push: S x E - - -) S , pop :S - ->S , etc. which denote the empty sequence, the lef tmost

(or " topmost") entry of a sequence, adding a new entry to the left , and delet ing the le f tmost entry.

In an ob jec t -o r i en ted view, a s tack is not a type, but a single object instance. As an object, a

s tack has an in ternal s ta te which can be changed and observed. Concerning the operations on

objects , it is na tura l to adopt an impera t ive s tyle and dist inguish be tween events which change

the s t a t e and attributes which associa te observations with s ta tes . In con t ras t to the data type

view. we also have events for creating and destroying objects , moving them be tween s ta tes of

ex is tence and nonexis tence . For s tacks, let us suppose that the events are create, push(e) for a l l

e~E, pop and drop, and that the re is only one a t t r ibute top.

Single events in isolat ion do not te l l too much. Wha t ma t t e r s is which sequences of events a re

al lowed. Espec ia l ly informat ive about an object 's behaviour a re its comple te life cycles, s tar t ing

from nonexis tence and e i ther ending in nonexis tence or running on forever . A val id l ife cycle for

a s tack is cha rac t e r i zed as follows: it has to begin with create and end, if ever , wi th drop, and

each pref ix of a l ife cycle has to have at most as many pop's as push's in order to avoid popping

the empty s tack. Life cycles can be infinite, corresponding to nontermina t ing event sequences. A

set of finite and infinite sequences over an a lphabet of events is a s imple model of a process in
the sense of (Ho85). We concen t r a t e on determinis t ic p rocesses here. Formal ly , if X is a set of

events , then Xc=X*uX ° denotes the set of streams over X. The finite sequences T~X* are ca l led

traces over X. The life cycles of an object are denoted by Ac-X °.

Life cycles a lone do not te l l everything about an object e i ther . The behaviour of a s tack is

descr ibed sa t i s fac tor i ly if we descr ibe what we can observe, depending on what happened to the

s tack before. The observat ions we can make about a s tack a re the values of its top entry. The

top value is de termined by the finite sequence of events tha t happened so far. Formal ly , if we

have a set A of a t t r ibutes and a set obs(A) of observat ions over A (to be made prec ise below),

the obse rvab le behaviour of an object is model led by an attribute observation mapping
c~:X*--÷obs(A) associat ing observat ions wi th t races , in pa r t i cu la r init ial t r aces of l i fe cycles.

Thus, an object is given by its sets of events , a t t r ibutes , l ife cycles and observat ions. We first

make prec ise what we mean by an observat ion.

Let A be a set of a t t r ibu tes . For each a t t r ibu te aEA, we assume a data type type(a) which

de te rmines the values a can have. Since object universes a re a lso data types (see below), the

case of ob jec t -va lued a t t r ibutes is included. Moreover , types can be a rb i t ra r i ly complex, so we

also admit, among others , s e t -va lued and l i s t -va lued a t t r ibutes .

Deflniticm 2.1: An observation over A is a set of a t t r i bu t e -va lue pairs y C-{(al:d 1) (ar :dr)}

where a i~A and dietype(ai) for l~i~r. The set of observat ions over A is denoted by obs(A).

An observa t ion indicates values for some of the a t t r ibutes . A n a t t r ibu te ' s va lue need not be unique,

so each a t t r ibute may appear more than once in an observat ion. If its va lue is undefined, it does

not appear. The empty observat ion expresses that all a t t r ibutes are undefined.

Deirmiticra 2.2: An object ob=(X,A,A,c~) consists of a set X of events, a finite set A of attributes,
a set Ac-X ° of life cycles such that ~A, and a to ta l a t t r ibu te observation mapping ~x:X*--)obs(A)
such that ~(E)--~3.

145

The empty life cycle ~ expresses that the object remains nonexistent, and that must be possible

for any object. The observation of a nonexisting object is always empty. Actual ly, c(is only

needed for (finite) prefixes of life cycles, but assuming c(to be total simplifies matters.

An object can be viewed as the behaviour of a state machine with inputs X and outputs obs(A).
realizing c~ as its input-output i~nction and accepting o- language A. For more details see ESS88.

Two kinds of relationship between objects are of fundamental importance. The first is that an

object ob 1 is at the same time another object ob 2 or. to put it the other way round, ol) 1 is an

'*aspect of" ob 2. The second is that an object is a "part of ' another object.

As an example of the "aspect -of ' relationship, consider a patient as an aspect of a person:

a part icalar patient is a part icular person at the same time. As a person, he /she incorporates the

potential to be a patient, thus having, among others, al l events and attributes a patient has. In the

patient aspect, only the special patient events and attributes are "visible".

Let obi=(Xi,Ai,Ai,cxi), i=1,2. For the sets A 1 and A 2 of life cycles, we use the following notation.

AlgA 2 means that, for each XleA 1, there is a X2eA2 such that XIgX 2, which in turn means

that all event occurrences in X 1 appear in X2, in the same order, but possibly interspersed with

other events. -~X 1 corresponds to the hiding operator (concealment) on processes and the

restriction operator on traces (Ho85). On s t reams, it is defined by ~,~XI=E, x~,~Xl=X(Z-,~X 1) if

xeX 1, and x~,~Xt=~,I~X 1 otherwise. On life cycle sets, it is defined by A2~XI={ X,~X 1 t XEA 2 }.

The analogous operation ~A 1 on observations yeobs(A 2) is defined by Y~Al={ (a:d)~y] acA 1 }.

Definition 2.3: ob 1 is an aspect of ob 2 , formally Obl~ob 2. iff XIc-X 2 and AlC-A 2, and the

following inheritance conditions hold:

(1) A 1 ~ A 2 (life cycle inheritance) ,
(2) c~ 1 (~ X 1) = ~2(~)-~AI for each trace ~X~ (observation inheritance).

Life cycle inheritance expresses that each (possible) life cycle of object ob 1 (e.g. a patient)

should be contained in some (possible) life cycle of ob 2 (e.g. a person), and observation inheritance

says that any ob 2 (person) trace, restr icted to an ob I (patient) trace by hiding the additional

events, gives rise to the same observations in ob 1 and ob 2 when only considering the attributes

of ob 1 . This means that the additional (non-patient) events have no side effecZs on the values of

attributes in the (patient) aspect. Although some object-oriented languages, e.g. Small talk, do not

have this property, it is essential in our theory for a c lean encapsulation of aspects as (sub-)objects

in themselves.

The other important relationship between objects is the "par t -of ' relationship between a composite

object and its components. A car. for instance, consists of a chassis, an engine, etc. In a way. the

events, attributes, life cycles and observations of its engine are "contained" in those of a car.

An engine event "gives rise" to a car event, but it is not real ly one in itself. Similarly, an engine

attribute is observable when looking at a car as a whole, but it is not a car at tr ibute in itself.

Formally, the "par t -of ' relationship between objects is a general izat ion of the "aspect of '

relationship. The events and attributes of the components are not "the same", but "give rise to

corresponding" events and attributes in the composed object. This is appropriately modelled by

mappings instead of inclusions. This way, we obtain a morphism concept between objects.

146

Let obi:(Xi,Ai,Ai,e(i), i=1,2.

Definition 2.4: An object morphism h :ob l - ->ob 2 is given by an event mapping hx : X I - -) X 2

and an attribute mapping hA: AI- - -)A 2 with type(a)=type(hA(a)) for each acA 1 , such that the

following generalized inheritance conditions hold:

(1) hx(A 1) ~ A 2 (generalized life cycle inheritance)

(2) hx(~):p-~hx(X1) * hA(O~l(~))=c(2(~)q~hA(A1) for all ~EX] and all o~X~.
(generalized observation inheritance)

Here, h X is extended to life cycles by mapping them event by event along the sequence, and this

is in turn extended to sets by taking the set of images. Similarly, h A is extended to observations

by mapping attribute-value pairs Ca:d) elementwise to (hA(a):d). In the sequel, we will omit the

subscripts X and A when no confusion can arise.

The class of all objects with their object morphisms forms a category, called the category OB

of objects.

Composite objects are formed by putting objects together such that each of the latter is a "part

of" the former. Objects may have common parts, and objects with common parts may be composed

again. This way. a rather involved part structure may arise. A useful categorial concept for

studying this is that of a colimit. Thus, we are interested in the existence of colimits in OB. The

following result is proved in ESS88.

Theorem 2.11: OB is cocomplete.

This theorem gives the background and general framework for studying object aggregation, i.e.

putting objects together to form composite objects, as well as object interaction. In a general

sense, interaction means to share something. Our model allows for rather general forms of

object sharing, but in practice only special kinds of entities are shared: events or attributes.

A certain kind of attribute sharing is common in databases. For instance, in an order issued by a

customer, the part ordered should be the same as the part shipped to the customer in fulfilling

that order. In fact, attribute sharing is the basis for the natural join operation of relational

databases, which in turn is the foundation of relational database design.

In object-oriented systems, event sharing is usually given preference over attribute sharing. The

latter means to share memory which contradicts the locality principle of object encapsulation.

Event sharing may appear in several forms, for instance as synchronous message passing by

sharing special send and receive events.

Whichever sharing mechanism is adopted, the underlying mathematics is the same, namely that

of object sharing, expressed by object morphisms, and colimits in the category OB of objects.

A single event e can be viewed as an object ({e},~,{E}, Xx.~)), and a single attribute a can be

viewed as an object (~,{a},{E},Xx.~).

Example 2.12: Let stack 0 and stack 1 be two stack objects isomorphic to the one given above,

with all events and attributes of stack 0 indexed by 0, and those of stack 1 indexed by 1. Suppose

we want to "synchronize" the pop events of the two stacks, i.e. stack 0 and stack 1 should share

their pop events (poP0-=popl). To this end, we define a new ("global") event poPO 1 , also con-

sidered as an object poPOl=({poPo1},~,E ,Xx.~), mapped to poP0 and poPl, respectively, by

morphisms P0 and Pl" Event sharing is described by these two morphisms.

147

P0
P°PO1 - - > stack0 P0:P°P01 ~ P°Po

Pl q0

stack 1 - > stack01 > stack 0 II stack 1
ql

The colimit of these two morphisms (in this case a pushout) consists of an object stack01 and

two morphisms to it, q0 and q l ' as shown in the diagram above. Intuitively, stack 01 consists

of separate copies of stack 0 and stack 1 , "glued" together at the pop events. In more detail , it

has the following events (giving the copies the same names):

create 0 , droPo , pusho(e) for all e~E ,

create 1 , droPl , pUShl (e) for al l e~E ,
and poP~I (a new event representing the shared pop event)

The attributes are top 0 and toPl. The morphisms q0 and ql send poP0 and poPl • respectively,
~t to poP01" All other events and the attributes are sent to themselves (or, rather, to their copies

with the same names). The life cycles of stack01 are all life cycles of stack 0 and stack I with

poP0 and poPl replaced by POP0t wherever they occur. The observation mapping of stack01 is

obvious: pusho(e) and POP~I affect toPo, and pUghl(e) and poP~I affect toPl. The paral le l

composition stack 0 IJ stack 1 (with sharing) is like stack01, but enriched by all interleavings of life

cycles in the ranges of q0 and ql" This object can be characterized by a (sort of) universal and

by a (sort of) couniversal property (cf. ESS88).

3. Object Types and Object Societies

An object type is given by an identification scheme and an instantiation scheme. Our semantic

model for the former is an algebraic data type U, called the universe of object "surrogates". It

consists of a carr ier set U and "naming" operations OP. The instantiation scheme is a mapping

from object surrogates to object templates. Let OB be the class of objects in the category OB.

Definition 3.1: An object type OT=(U,co) consists of a universe U=(U,OP) of object surrogates U

and naming operations OP, and an instantiation mapping co:U----~B.

Example 3.2: An object type STACK of stacks might use natural numbers as stack surrogates.

The universe then consists of the set ~={0,1,2 } of natural numbers. The constant 0: --)N and

the successor function succ:N---->N may serve as "naming" operations. Let stack=(X,A,A,o~) be an

object template displaying the structure and behaviour of stacks (cf. the informal description at

the beginning of section 2). The instance mapping of STACK is then the constant mapping sending

all natural numbers to stack, co(n)=stack for all n ~ l . An instance of type STACK is given by

the template stack qualified by a surrogate n~H (of. def'mition 3.3 and example 3.4 for details).

Please note that a data type can be considered a special case of an object type where ~ sends

each element d of the carrier to the empty object (~,~),{v},Xx.~). This corresponds to viewing

148

d a s a constant with its own value as "surrogate". Data elements cannot be changed by any

event and cannot be observed via any attribute. Objects in general are like variables.

Object identification is studied in greater depth in the following sections. Object instantintion

to:U >OB is based on object templates and qualification. Let ob={X,A,A,c~) be an object template

and let mU be an object surrogate.

Deffmitiot 3.3: The u-instance of ob is u.ob=(u.X,u.A,u.A,u.c~) where u.X={u.x] xcX}, u.A={u.a] a~A},

u.A={u.x 1 u.x 2 • • • I X l X 2 " - cA}, and u.cc(u.x 1 -" .U.Xn)=Ot(x 1 - ' -Xn).

Example 3.4: Referring to example 3.2 above, the n-instance of stack, n.sta~k for neN, has

events n.create, n.push(e) for all entries eeE, n.pop and n.drop, and attribute n.top. The life

cycles of n.stack are those of stack with every event qualified by n. After any finite prefix of an

n.stack life cycle, its observation is that of the corresponding stack trace obtained by omitting

qualification.

For elementary object types (as in example 3.2), the instantiation mapping will be a constant

mapping associating the same object template with each surrogate, i.e. all instances are isomorphic

copies of one fixed template. For complex object types, instantiation is more complicated: more

than one template can be used for instantiation, even for the same surrogate. The former case

occurs with generalization (see below), and the latter case occurs when we have subtypes.

If, for instance, PATIENT is a subtype of PERSON, then each patient is a specific person at the

same time or, to be more precise, the former is an aspect of the latter. So they should have the

same surrogate. In fact, assuming that every person may become a patient some time, the

universes of PATIENT and PERSON should be equal. In general, however, we should take into

account that not every surrogate of the supertype is in the subtype. As an example, consider

DIESEL cars as a subtype of CARs.

Let OTi=(Ui,t0i), i=1,2, be two object types, Ui=(Ui,OPi).

Def'mitioa 3.S: OT 1 is a subtype of OT 2 iff U 1 c-u 2 and to 1 (u)C-o 2 (u) for each u~U 1 .

Please note that the naming operations are not involved in this definition: we do not require that

subtype and supertype have the same identification scheme. It is, however, obvious that the

inclusion of U 1 in U 2 can be used as a key for U 1 .

Generalizing this in an obvious way, we obtain the following notion of morphism between object

types. Let OT 1 and OT 2 be as above.

Definition 3.6: An object type morphism h:OT1----~T 2 consists of a mapping hu:U1--->U 2 and a

Ul- indexed family of object morphisms hto={hto(u):~Ol(U)---->o2(hu(u)) [ucU1}.

The class of all object types with their object type morphisms forms a category, called the

category 0I" of object types.

As with objects, an essential categorial concept for studying object types is that of a colimit.

Since the categories SET of sets and functions and OB of objects are cocomplete, the following

theorem is evident.

Theorem 3.7: OT is cocomplete.

Coproducts of object types express generalization, for example LEGAL-PERSON= PERSON+

COMPANY. Identification for generalized types is studied in the following sections. As to

149

instantiation: each person or company instance is by itself a legal-person instance, with the

same surrogate and with the same object template.

On the instance level, object aggregation is expressed by parallel composition which is related to

colimits in OB. Very generally speaking, composing an object type by generalization or aggregation

is described by a parameterized data type (or data type constructor) by which a corresponding

composite universe is built. Generalized instances are simply left unchanged, and aggregated

instances are obtained as parallel compositions of a given sharing structure. Assuming for the

moment being that there is no sharing, the aggregated instances are built by disjoint interleaving.

We discuss generalization and the most useful forms of aggregation: tupling and grouping by

means of sets and lists. The construction of the universes will be discussed in the following

sections.

The object type OT=OTI+OT 2 consists of the universe U=UI+U 2 and the instantiation mapping

to(u)=wl(U) if u~U 1 and co2(u) otherwise. Considering the injections consisting of those of the

universes and the identities on the instance level, OT is a coproduct of OT 1 and OT 2 in the

category Or.

The object type OT=OTlxOT 2 consists of the universe U=UIXU 2 and the instantiation mapping

~(u 1 ,u 2)= co l(Ul)tl co2(u 2).

The object type O T f | e t O T 1 can be defined as follows. For the universe, we have U=se tU I, and

for instantiation, ¢a(V) is the parallel composition of all instances el(U) for u~VC-Ul: a set object

instance has all events and attributes of its member objects, and its life cycles are all interleavings

of those of the members.

The object type OT=liat OT 1 canbe defined in a similar way. For the universe, we have U: l i a t U 1 ,

and for instantiation, to(L) is the parallel composition of all instances c01(u) for the elements u of

list L over U 1. Thus, on the instance level, there is no difference between sets and lists, the only

difference is on the surrogate and identification level.

Further examples can be constructed aggregating objects into bags (multisets), trees, etc. of

objects.

By adding interaction information to one or several object types, an object society can be built:

it is an object instance, constructed from all instances of the types and the interaction information

expressed by object sharing, utilizing colimits and parallel composition.

We illustrate this by an example. When specifying the object society of a trader's world, we first

define the object type structure involved, say CLIENT, ORDER, DEPOT, PRODUCT, SUPPLIER,

STOCK, etc. By generalization, we can consider all instances of all these types assembled together

in one type, say TRADE. Adopting event sharing, we can now introduce global events as objects

with morphisms to those local events that are to be shared. The object society trader's-world now

is the composite object built as the parallel composition of all instances of TRADE with over-

lapping defined by the event sharing morphisms.

150

4. Complex Object Universes

Complex object types are composed from other object types. In this section, we study what this

means for object universes. We study in part icular , how complex object universes can be

specified.
As composition operators for universes, we assume the following: + denotes disjoint union and is

used to express generalization; x denotes car tes ian product and is used to express one form of

aggregation (tupling); l e t denotes the set of finite subsets and is used to express another form of

aggregation (grouping). Other forms of aggregation like list, bag, t r ee can be introduced, but

we wil l not do so, for the ease of presentation. Knowing how it works with le t , it is not difficult

to work out the details for the others.

Let S be some set of base sorts. Each sort s ~ S denotes a set A(s).

Defiai t ioa 4.1 : The set S # of sort expressions over S is inductively defined as follows:

(1) each sort s~S is a sort expression,

(2) 0 and 1 are sort expressions,

(3) if cx and ~ are sort expressions, so are c~+~, c¢×~, l e t cc ,

(4) nothing else is a sort expression.

Like sorts, sort expressions are interpreted by sets. Their interpretation is completely determined

by that of the base sorts, if we define

A(0) =

A(I) = {~}

A(c(+13) = A(~) + A(~)

A(~×~) = A(cd × A(~)
A(met c~) =]PfinA(Oc)

(empty set)

(one-element set)

(disjoint union)
(cartesian product)

(finite subsets)

With these interpretations in mind and working "up to isomorphism", we assume that + and x are

associative, and that + is also commutative. So we will wri te CXl+. " +c~ n or c~ 1 x . . . ×cz n without

b r acke t s , the former in arbitrary order. There are obvious isomorphisms c~+0 ~ c~ and ~xxl - l×cc ~ c~.

Thus, in a sense, we may view 0 and 1 as empty sum and product, respect ively .

Like data types, object universes are algebras, so we have to consider what happens to the

operations when composing the carr ier sets. More precisely: given a set t~ of function symbols

of the form f : ~ - ~ (where, for the sake of generali ty, cx and ~ are arbitrary sort expressions),

which composite function symbols can be defined and interpreted reasonably? Clear ly , f: 0 ~ is

interpreted by a function A(f):A(¢x)-)A(~). In what follows, we will omit the A (.) ; i t w i l l b e

c lear from context what is meant.

F rom a set G of given base functions, we can compose new functions by para l le l composition.

Deirmition 4.2 : The set t~ = of function expressions over Cl is inductively defined as follows:

(1) each function f:~x-)~ is a function expression ,

(2) 0 :0 -)0 and 1:1-)1 are function expressions,

(3) If f:cx--)~ and g : T -) 8 are function expressions,

so are f+g : oc+V --) ~+8 , fxg : ccx~(---) ~×8 , and l e t f : l e t cc -) l e t ~ .

(4) nothing else is a function expression.

151

0 denotes the empty function, and 1 denotes the one-element function sending the only element

in 1 to the only element in 1 . For the other compositions we have

f(a) if a is of sort

f+g(a) = g(a) if a is o[sort y

fxg(a,b) : (f(a), g(b)) ,

set f({a I a n }) = { f(a I) f(an)}.

With these interpretations in mind, we may assume that + and × are associative and that + is

commutative, as in the case of sets. So we will write f1+" " " +fn or fl×'" " xfn here, too. Again,

we have isomorphisms f+O~O and fx1~1×f'~-f so that we can view 0 and I as empty sum and

product, respectively.

5. Object Identification

We assume that we have a family DATA of data types as a supply of values for attributes.

Following the algebraic approach, DATA is a ~'DT-algebra where ~DT = (SDT, L~DT) is a data

signature. A number of techniques are available to specify a specific algebra DATA (abstractly,

i.e. up to isomorphism) within the category of all EDT-algebras. We do not go into this issue

here,

The object universe provides surrogates for all object instances and an identification system in

terms of naming operations, ultimately based on data values. We would like to give semantically

meaningful identification systems for complex object structures with intricate interdependencies,

and such identification systems can be rather sophisticated.

To give a few examples, persons may be identified by simple keys like social security number or

by name, address and birthdate. In some applications, however, it may be more convenient to

identify persons by their name and their affiliation which is, say, another object of sort company

(object-valued keys). To make things more complicated, in some contexts, persons may be

identified by their name (etc.) and their father who is another object of the same sort person

(recursive key). Even more complicated is an identification system for parts which may be

atomic or composite, where atomic parts are identified, say, by part numbers, and composite

parts are identified by the set of their components which are parts in turn. This involves recursive

keys, generalization and complex (set-valued) keys.

In practice, there are often several keys for the same object class, like name, address, affiliation,

etc., which together identify the objects. Formally, using product sorts, we can combine n such

keys kl: cc--)[~ 1 kn: ~ - - ~ n into j u s t one key k : ~ - - > ~ l x " " x~ n where k i is recovered by

k and subsequent projection on the i-th component.

It is quite common in real life to have several alternative keys where either one is sufficient to

identify the object. In this paper, we do not go into this ramification. Rather, we assume that we

have exact ly one key for each object sort expression. Many-keyed objects can be handled as

usual in the database field, picking one "primary" key and letting the others be attributes, approp-

riately equipped with constraints.

152

Let ~DT=(SDT,~DT) be a data signature, and let SOB be a set of object sorts. Let S=SDTVSoB.

Delemition5.1 :A key signature EKy=(SoB, f~Ky) over EDT gives a set GKy of function symbols

k [s] : s -~u s , one for each object sort s~So~, with costS #. The extended key signature of EKy is

5 ~ y = (S#-SDT , t ~ y) .

Clearly, if 5?Ky is a key signature, then YKY is again a key signature. Intuitively, a key signature

gives the object sorts and a single-keyed identification system for objects of these sorts.

Definition 5.2: Let 5~DT be a data signature and 5~Ky be a key signature over 5~DT. A universe

signature EUN=5?DT+5~Ky over ~DT and EKy is an extension of TDT by YKY" The extended

universe signature is E~N = 5~DT+~Ky.#

We want to give a 5?~N-algebra as a standard interpretation for the extended universe signature
n 5?UN that can serve as a universe. In the data part, of course, the given standard semantics

DATA of 5?DT should be preserved, Le. all data elements, and no additional data elements,

should belong to the universe. Technically, this means that the intended universe U should have

a EDT-reduct which is isomorphic to DATA:

(UI) U I EDT ~ D A T A .

This requirement, of course, does not yet characterize the intended universe U uniquely (up to

isomorphism), so we look for further conditions that U should reasonably satisfy.

Considerations of observability and constructivity suggest the following:

(U2) any two different objects in U should be distinguishable by key values,

(U3) any object in U should be representable by its key values.

We have to define what we mean by this. Two data elements or objects are distinguishable iff

they are not indistinguishable in the following sense.

Def'mitioa 5.3 (indistinguishability) :

(I) any two data elements are indistinguishable iff they are equal,

(2) tuples are indistinguishable iff their corresponding components are indistinguishable,

(3) finite sets are indistinguishable iff there is a 1-1 correspondence of indistinguishable

elements,

(4) any two objects are indistinguishable iff their key values are indistinguishable.

Definition 5.4 (representability):

(1) every data element is representable (by itself),

(2) tuples are representable i f fa l l their components are representable,

(3) finite sets are representable iff all their elements are representable

(4) objects are representable iff their key values are representable.

The three properties U1, U2 and U3 do not yet specify a universe uniquely (up to isomorphism)

either, but we are close. We have to require in addition that U be maximal with these properties,

i .e . U is not contained in any larger EuN-algebra with the same properties.

Definition 5.5: Let EUI q be a universe signature. A uni~,erse for EUN is a maximal E~N-algebra

satisfying U1, U2 and U3.

Thus, a universe provides a maximal set of surrogates for objects that can be represented and

distinguished with the given key system. Our main result shows that such a universe exists and

is (essentially) unique.

153

Theorem 5.6: For any universe signature EUN, there is a unique Cup to isomorphism) universe U

for EUN .

Proof: Within the initial-algebra framework of equational data type specification, a E~N-algebra

U satisfying U1, U2 and U3 can be specified along the following lines. The specification consists

of ZtYN and the following additional Chidden) operators and equations:

1. a "key generator" k~s]:¢Xs---~s as an inverse for each key operator k [s] : s - - - ~ s in C~Ky,

together with equations k'[s]Ck~s](x))=x and k~s](k'[s](y))=y.

2. operators and equations for specifying the desired interpretation of the structured sorts, in-

volving injection operators for generating disjoint unions, construction operators for generating

cartesian products, etc, Since initial specifications for these purposes are well known, we do

not go into further detail here.

3. appropriate equations describing the desired interpretation of the composite key operators in

~ ¥ - ~ K Y ' using the operators in 2. We do not go into detail here either.

Let U" be an initial algebra of this specification, and let U be its E~N-reduct. Clearly, U and U"

have the same carriers.

Obviously, U" is specified as a conservative extension of DATA. Consequently, U1 holds for U.

As an initial algebra, U" is a free extension of DATA. Thus, all elements in the carriers of

object sorts are generated from data elements by the key generators and the generators for the

structured sorts. Consequently, U3 holds for U. From the equations given in 1 above, it follows

that each key operator must be interpreted by an injective function. Consequently, U2 holds for U.

Maximality and uniqueness (up to isomorphism) of U follow from the following

Proposition: For any E~N-algebra V satisfying U1, U2 and U3, there is an injective morphism

h:V---~U.

For constructing h, we observe that there is an isomorphism from the data part of V to that of U.

This is the basic building block for h. We define how h works on object "base" sorts, i.e. s~SoB.

It is then obvious from definition 4.2 how h works on the remaining structured sorts cx~S #.

Let a be an element in the carrier of object base sort s~So8. Consider its key value b=k[s]Ca) of

sort cx s. If b is mapped by h to hCb) in U, then a is mapped by h to that element h(a) such that

kEs]Ch(a))=hCb) holds. This h(a) exists in U: it is the element k'[s]Ch(b)) in U'.

Because of representability, this gives a well-behaved inductive definition of h. By construction.

h is a E~yN-algebra morphism. By distinguishability, h is injective. Consequently, hCV) is a sub-

algebra of U containing DATA. []

Remark S.7: In Eh86 and EDG86, a final algebra approach to constructing universes is given,

restricted to keys without generalization and without complex objects. This final approach has

been extended to generalized and complex keys in wig7. The approach here is different: it is

based on initial algebras (cf. SSE87). The universes of the final approach satisfy U1 and U2, but

in general not U3, i.e. they are not necessarily representable. The universe described here is

recovered in the final universe when restricting the lat ter to all representable objects.

154

6. Sla~'ialization

Besides general izat ion and aggregation into complex objects, there is another important mechanism

for deriving new object sorts from old ones, namely specialization. For instance, the object sort

c a r may be special ized to sportu cos , Diese l ear, compact ear, midsize car, etc. with the

intention that the special ized sorts inherit their identification systems from car. Sorts special ized

from the same sort need not denote disjoint object sets, as the above example shows, while

general izat ion means disjoint union. And there can be objects not occurring in any specialization,

which is not the case with generalization.

Special ization is easily included in our framework: we introduce a sort s specialized from u by

defining the inclusion function in: s ¢---~ ~ as a key in the key signature. Being a l i t t le sloppy, we

can t reat the composition k~0~]in as a "key" of s.

For example, if cars are identified by serial number s#:car--) int , then spor t l ears are also iden-

tified by serial number sn:sporte oar ~--~ oar----~int, too, and the same holds for Die lo l cars. etc.

Using inclusions ~n:s ~ >~ ,special izat ions of arbitrary structured sorts can be defined, for

instance rescue vehic le as a special izat ion of ca r+ aircraft . In the universe U according to

theorem 5.6 above, these inclusions can always be interpreted by identity functions. That means

that u and its specialization s denote the same set of potential objects. And this is meaningful:

in any actual population, we expect that the sports ears are among the cars, but not necessar i ly

al l of them. In the universe, however, not having any actual information, all (serial numbers of)

ears are potential (serial numbers of) t p o r t | ears.

If we include key constraints, a sort s special ized from ex may very wel l be more constrained

than c~. For example, we may know that Diese l ears are never produced by Rolls Royce, whereas

this does not hold for ears in general , and also not for other specializations like nq)orte ears. In

this case, the set of potential objects of sort s (specialized from cx) is properly contained in that

of c~.

On the other hand, any constraint on c~ is effective for its specialization s, too. This follows

from the fact that the universe is an algebra: the inclusions have to be total functions.

The approach also works for the case where we have one specialization s for several different

sorts c~ I % (a situation called "multiple inheritance"), for instance motor phmos as motor

vehicles and as ~Ir©rafts. We only have to make the (reasonable} assumption that these ~'s be

subsorts of one common supersort 6- Then k(s):sC--->~ is the key of s, and everything works.

7. Constraints

With object universe specification by keys, there is another problem which we cannot discuss

here in depth: in many applications, it is desirable to give constraints on keys in order to exclude

surrogates for objects that are intuitively not possible in the model world of the application. As

an example, consider persons whose birthdate precedes those of their parents.

Let CKy be such a set of constraints, for instance in 1st-order predicate calculus. In general , the

universe U for EUN as constructed above will not satisfy CKy , but CKy will probably be valid

in some subalgebrns of U (containing al l data elements}.

155

Let SUB(U) be the set of all subalgebras of U with the same data part, say DATA. SUB(U) is

partially ordered by inclusion, in fact, it forms a boolean lattice. Any set Q~SUB(U) of subal-

gebras has a least upper bound, lub(Q). An obvious candidate for a universe for EUN with key

constraints CKy would be the maximal subalgebra of U satisfying CKy, provided that it is unique.

Unfortunately, this need not be the case (cf. Eh86).

A sufficient condition that there is a unique such maximal subalgebra is the following: each

constraint ~p~CKy that holds in all subalgebras in Qc-SUB(U) also holds in lub(Q), for all col-

lections of subalgebras Q~SUB(U).

For the case of keys without generalization or complex objects, a class of formulas with this

property has been characterized in Eh86 (called positive formulas there). These results, how-

ever, do not carry over to the more general case studied here.

8. Concluding Remarks

This paper gives a sketchy outline of an algebraic theory of objects and object types, concentrating

on object identity. The main technical result shows that universe signatures have canonical models

which can be used as standard universes.

There are many problems with specifying objects, object types and object societies which are only

briefly touched upon or not mentioned at all in this paper. E.g., object instances are observed

processes, and here the wide field of processes and their specification comes in. There are many

approaches, among them Petri nets, Hoare's CSP. Milner's CCs, and various forms of logic, for

instance temporal logic, process logic, action logic.event logic, etc. Our process model, i.e. sets

of streams as life cycles, is very simple and not powerful enough to capture all aspects of con-

currency and nondeterminism. It was chosen to get the general idea clear, but it should be

replaced by a more elaborate one, hopefully showing similar characteristics with respect to

process morphisms and colimits.

Since objects are observed processes, not only the processes have to be specified, but also their

effects on attributes, that is, roughly speaking, storage places containing elements from data

types. It is a challenging problem to look for an appropriate blend of specification methods that

can be put together, covering all aspects of objects and object types, with a nice model theory.

useful deduction capabilities, and helpful operational aspects for analysis, implementation, verifi-

cation and execution.

It is essential that the specification formalism allows for abstract descriptions so that it is possible

to find out how an object - or a group of objects - behaves without having to "look inside". This

will help to materialize one of the great potentials of the object-oriented approaches, namely to

establish a methodology for producing not only correct and efficient, but also reusable code.

Acknowledgement Thanks are due to the anonymous referee for helpful comments.

156

References

Am86

BT88

DD86

DMN67

Eh86

EDG86

E$$88

GM87

Go79

GR83

Ho85

KC86

Lo85

SFgE89

SW87

SSE87

$gE89

Wi87

America.P.: Object-Oriented Programming: A Theoretician's Introduction. EATCS
Bulletin 29 (1986), 69-84
Bergstraj.A.;Tucker,J.V.: The Inescapable Stack: an Exercise in Algebraic Specifi-
cation with Total Functions. Report No. P8804. Programming Research Group.
University of Amsterdam 1988
Dayal,U.;Dittrich,K.(eds): Proc. Int. Workshop on Object-Oriented Database
Systems. IEEE Computer Society, Los Angeles 1986
Dahl.O.-J.:Myhrhaug.B.:Nygaard,K.: SIMULA 67, Common Base Language, Nor-
wegian Computing Center, Oslo 1967
Ehrich,H.-D.: Key Extensions of Abstract Data Types. Final Algebras, and Data-
base Semantics. Proc. Workshop on Category Theory and Computer Programming
(D. Pitt et al, eds.), LNCS 240, Springer-Verlag, Berlin 1986, 412-433
Ehrich,H.-D.;Drosten,K.:Gogolla,M.: Towards an Algebraic Semantics for Database
Specification. Data and Knowledge, R.Meersman, A.Sernadas (eds.), North-Holland,
Amsterdam 1988. 119-135
Ehrieh,H.-D.;Sernadas,A.;Sernadas,C.: From Data Types to Object Types (to be
published)
Goguen,LA.;Meseguer,J.: Unifying Functional, Object-Oriented and Relational
Programming with Logical Semantics. In SW87. 417-477

Goldblatt,R.: Topoi, the Categorial Analysis of Logic. North-Holland Publ. Comp,
Amsterdam 1979
Goldberg,A.;Robson.D.: Smalltalk 80: The Language and its Implementation.
Addison-Wesley, Reading, Mass. 1983
Hoare.C,A,R.: Communicating Sequential Processes. Prentice-Hall. Englewood Cliffs
1985

Khoshafian,S.N.;Copeland.G.P.: Object Identity. Proc. OOPSLA'86, ACM SIGPLAN
Notices 21:11 (1986), 406-416
Lochovski.F.(ed.): Special Issue on Object-Oriented Systems. IEEE Database
Engineering 8:4 (1985)
Sernadas,A.:Fiadeiro,J.;Sernadas,C.;Ehrich,H.-D. : The Basic Building Block of
Information Systems (to be published)
Shriver,B.;Wegner,P.(eds.): Research Directions in Object-Oriented Programming.
The MIT Press, Cambridge, Mass. 1987
Sernadas,A,;Sernadas,C.;EhrichM.-D.: Object-Oriented Specification of Databases:
An Algebraic Approach. Proc. 13th VLDB, P.M.Stocker, W.Kent (eds,), Morgan-
Kaufmaun Publ. Inc., Los Altos 1987, 107-116
Sernadas,A,;Sernadas,C.;Ehrich,H.-D.: Object-Oriented Language Features for
Information Systems Specification (to be published)
Winter,L-H.: Zur Semantik van Schliisselsignaturen mit Generalisierung und
mengenwertigen Funktionen. Diplomarbeit, TU Braunschweig 1987

