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ABSTRACT 
We study the general problem of oblique projections in discrete shift-invariant 

spaces of 12 and we give error bounds on the approximation. We define the concept 
of discrete multiresolutions and wavelet spaces and show that the oblique projec- 
tions on certain subclasses of discrete multiresolutions and their associated wavelet 
spaces can be obtained using perfect reconstruction filter banks. Therefore we ob- 
tain a discrete analog of the Cohen-Daubechies-Feauveau results on biorthogonal 
wavelets. 
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1. INTRODUCTION 
The multiresolution theory of the wavelet transform in Lz and the equivalence 
with perfect reconstruction filter banks in now well understood. These types of 
decompositions are usually classified in three main categories: orthogona16, semi- 
orthogonal’, and biorthogona1411’, where these properties are understood with re- 
spect to the continuous Lx-inner product. The more general class of biorthogonal 
wavelet bases includes all the other ones. Cohen, Daubechies , and Feauveau4 
provide an elegant interpretation of these decompositions in terms of oblique pro- 
jections that involves the interplay of two dual multiresolution ladders of subspaces 
in Lz. However, there are many applications such as digital signal processing and 
coding, in which such a continuous interpretation is not particularly relevant, and 
where one would prefer to adopt a purely discrete point of view. In the orthogo 
nal case, switching to a discrete interpretation is particularly easy because of the 
perfect equivalence of the underlying L2 and /z-norms”. Other concepts such as 
semi-orthogonality can also be carried over to the discrete domain but the underly- 
ing filter structures are usually not homogeneous; i.e., they vary from one scale to 
the other. Riou17 has investigated the general discrete biorthogonal case and has 
shown that such decompositions could be understood in term of non-orthogonal 
projections. However, he did not explicitly characterize the underlying projection 
operators and their corresponding approximation spaces. Thus, he did not fully 
bring out the parallel with the continuous case. 

The purpose of this paper is to investigate discrete multiresolution and wavelet 
decompositions from the perspective of oblique projections, which has been ne- 
glected so far. In particular, we generalize the concept of multiresolutions of La to 
the discrete sequence space 12. It turns out that there is also a similar link between 
perfect reconstruction filter banks and the discrete multiresolutions of /2 and their 
associated wavelets. In both the discrete and analog cases, the link comes from the 
interplay between shift-invariant spaces and oblique projections. For this reason, 
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we first study the general theory of oblique projections in discrete shift-invariant 
subspaces of 1z. This is done in section 3. We then define the concepts of discrete 
multiresolutions and some of their subclasses in section 4. In section 5, we show 
that the decomposition/reconstruction algorithm for certain biorthogonal pairs of 
homogeneous discrete multiresolutions {Scj), V~j)}~~m and their associated pair of 
discrete wavelet spaces {Tcj), l&‘~i~}jeIN + can be obtained by a perfect reconstruc- 
tion filter bank. 

2. DEFINITIONS AND NOTATION 
The Fourier transform of a sequence s(k) denoted by C(f) is defined to be 

(1) i(f) = c s(k)d2”fk 
The convolution between two sequences a and b is denoted by a * b: 

k=+cu 

(2) (u*b)(l)= c a(k)b(l-k), IEZ 
k=-cm 

Whenever it exits, the convolution inverse (b)-1 of a sequence b is defined by 

(3) ((b)-’ * b) (k) = 60(k) 

where S(k) is the unit impulse; i.e., S(O) = 1 and S(k) = 0 for k # 0. 

The reflection of a sequence b is the function b”, given by 

(4) b”(k) = b(-k), Vk E Z? 

The modulation b(k) f o a sequence b is obtained by changing the signs of the odd 
components of b: 

(5) i(k) = (-l)kb(k) 

The operator J,m of down-sampling by the integer factor m assigns to a sequence b 
the sequence lna [b], given by 

(‘3) (L M) (k) = b(mk), Vk E z 

The operator rrn of up-sampling by the integer factor m takes a discrete signal b 
and expands it by adding m - 1 zeros between consecutive samples: 

(7) (Tm PI> (k) = ;k”‘/;rTk’ 7 
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3. OBLIQUE PROJECTIONS IN SEQUENCE SPACES 

In this section we consider the general problem of projecting signals on a space 
S in a direction orthogonal to a space V, possibly different from S. When S # V 
we get the oblique projection Ps~v. We will restrict our attention to the shift 
invariant subspaces of 12, although some of the result are more general. 

3.1. Shift-invariant sequence spaces 

We define the m-shift-invariant sequence space (or m-shift-invariant discrete sig- 
nal space) to be a subspace S(u, m) c 12 that is generated by the translation of a 
single sequence u(k) (f or notation, see previous section): 

(8) S(u, m) = s(k) := c c(i)u(k - mi), =tm [c] * u c E l2 . 

iezz 

When it is clear from the context, we will write S or S(u) for S(u, m), and we 
will say shift-invariant space instead of m-shift-invariant space. We will require 
S(u) to be closed and to have {u(k - mi)}dEz as its Riesz basis. The following 
theorem gives the necessary and sufficient condition for the above requirements to 
be satisfied: 

Theorem 1. If there exists two positive constants CY > 0 and D > 0 such that the 
sequence u E 12 satisfies 

m-l 
(9) a! 5 A(f) := c IG ((f 

i=o 

then the space S(u) is a closed subspace of 
basis. 

Proof. From Parseval identity we get that 

- Wm)12 I P, 

12, and {u(k - mi)}dEz is its Riesz 

Using the change of variable t = mf and using the fact that E(f + 1) = c(f), we 
rewrite the right hand side of (10) to get 

1 1 m-1 

(11) J Iil(f It( elf = m-l J C IW - W-d2 IWl”4 
0 0 i=l 

The theorem then follows from the equation above and the definition of Riesz bases. 
n 

Remark 3.1. It should be noted that the converse is also true, i.e., if S(u) is 
a closed subspace of 12 and {u(k - mi)}dEz is its Riesz basis, then condition (9) 
holds. A proof of this last assertion can be obtained by an argument similar to the 
one in theorem 2 of2. 
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3.2. Oblique projection on S in the direction orthogonal to V 

For the remainder of this paper, we will require the shift-invariant spaces to be 
closed and generated by a Riesz basis that satisfies condition (9) of theorem 1. The 
oblique projection Pslvg of the sequence g E 12 on the space S(u, m) in a direction 
orthogonal to the space V(h, m) must satisfy 

(12) ((9 - Pslvg)(k), h(k - ml)>12 = 0 Vl E z 

BY letting Pslvg =tm [ ] c * u, we rewrite the above equation as 

(13) l?n [xl*c=lm [g*h”l 
where x is the cross-correlation between u and h (i.e., x = u * h”). If .lrn [x] is 
invertible, then the oblique projection is well defined. It is given by 

(14) c=lm i*g [ I 

(15) ii =tm [(lm [xl)-‘] *h” 
In fact, the converse is also true and we have the following theorem: 

Theorem 2. The oblique projection PS~V is well defined if and only if Jna [x] has 
an inverse in 12. The oblique projection is given by Pslvg =tm [c] * u where c is 
given by (14). 

Proof. If the oblique projection is well defined (i.e., existence and uniqueness of 
the projection), then uniqueness implies that the operator Jna [x] * l is injective. 
Moreover, if we let g =tm [d] * h in (13), then we can choose the right hand side to 
be any element of 12 since by (9), irrs [h * h”] is invertible. Thus, by the existence 
of a projection for each vector in 12, we conclude that Lna [x] * l is surjective. The 
closed graph theorem then implies the boundedness of (Jm [xl)-‘. H 

The whole procedure of finding the oblique projection can be interpreted in terms 
of filtering as shown in Fig. 1. 

3.3 Angles between spaces and error bounds 

The oblique projection Pslvg of a function g E 12 on a space S in a direction 
orthogonal to V can be viewed as an approximation of g in the space S. The error 
e = g - Pslvg is orthogonal to V. The relation between this approximation and 
the least squares solution depends on the angle between the two spaces S and V. 
The angle between two closed subspaces S and V of a Hilbert space H is defined 
to be5pg 

(16) cos (?J(S, V)) = 8~;y;;fl w+4l> 

where PV is the orthogonal projection on V. It should be noted that d(S, V) is 
not equal to t9(V, S) in g eneral. Moreover, for the oblique projection PS~V to make 
sense, it is necessary that cos (d(S, V)) < 1. Otherwise, the space V n S’ would 
contain a non-zero vector and the oblique projection would not be well defined. It 
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should also be noted that if 6(S, V) = 0 then S C V. Thus if 29(S, V) = 29(V, S) = 0, 
then S = V and the oblique projection is equal to the orthogonal projection. If S 
and V are discrete shift invariant spaces, then we can prove the following theorem: 

Theorem 3. If S(u,m) and V(h, ) m are two discrete shift invariant spaces satis- 
fying the condition (9) of theorem 1, then 

(17) cos (79(S, V)) = cos (?9(V, S)) = ps,v 

where 

(18)ps,v = ess inf 
fE[-f,+l 

and where G, k are the Fourier transforms of u, h respectively. 

We have similar results for the continuous case’, and similarly, we will call ps,v 
the spectral coherence. 

It should be noted that if ps,v > 0, then the oblique projection of a signal g 
is well defined. Moreover, our result in9 implies that the error e = Pslvg - g is 
of the same order of magnitude as the smallest error that can be obtained when 
approximating g by an element in V. We have : 

Theorem 4. If ps,v > 0 then the oblique projection P,lv is well defined. More- 
over, we have the error bound 

(19) II9 - PSlVSII 5 ( ps,v)-l II!? - Pvsll 

4. DISCRETE MULTIRESOLUTIONS OF l2 

4.1. Multiresolutions of 12 

Definition: A discrete multiresolution {Sj}jem is a set of subspaces of 12 satisfying 

i: . . . cs2c&cs0=12; 

ii: Sj closed Vj E IN. 

Our definition of multiresolution is very broad. It does not endow any structure 
to the spaces Sj, j E lN. One possible structure is to require shift-invariance as 
defined below: 
Definition : A shift invariant multiresolution {Sj}jEm is a multiresolution in 
which each space Sj is generated by a Riesz basis of the form {umj(k - mjl)}lEz: 

Sj = 
{ 

s(k) 11 Cc(i)umj(k - mji),=fmj [c] * umj c E 12 
iEZ 

Since the spaces Sj must be nested, we must have the relation 

(21) Umj =tnaj-l [bmj] * U,j-1 
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where bmj is a sequence in 12. 
If we choose mj = #, we obtain the shift-invariant multiresolution {S(j) = S,j } jEm 

generated by u(j) = uPj (note the new notation), and we can prove the following 
theorem: 

Theorem 5. The set of subspaces {S(j)} jEm is a discrete shift-invariant multires- 
olution if and only if 

(22) u(j) =tpj-l [b(j)] * u(j-1) Vj = +I,+29 ... 

and there exists positive constants oj,@j > 0 such that 

(23) &j 52 Ii(j) ((f + Q/P)12 I Pj 
d=O 

An example of such multiresolution that uses spline functions for its definition 
can be found in3. 

An important special case of discrete shift-invariant multiresolutions is what we 
will call homogeneous discrete multiresolution defined below: 
Definition: A homogeneous discrete multiresolution is a discrete shift-invariant 
multiresolution in which u(o)(k) = 6(k) and b(j)(k) = u Vj E IN+. 

For homogeneous discrete multiresolutions we have the following corollary of 
theorem 5: 

Corollary 6. { Scj)}jEw is a discrete homogeneous multiresolution if and only if 
there exists two positive constants a, ,L3 > 0 such that 

(24 
P-1 

ff 2 c 16 ((f + WP>12 I P 
i=o 

Discrete multiresolutions do not include the concept of self-similarity between 
the spaces {Sj}jen\J as is the case for multiresolutions of L2. We can introduce this 
concept as follows: 
Definition: A multiresolution is self-similar if 

(i): VS E Sj * Lnaj [S] E Sj-1; 

(ii): VZ E Sj-r there exists a unique element s E Sj such that Jmj [s] = 2. 

For homogeneous multiresolutions {Scj,(u) = SPj(u)}jem, we can prove that 
self-similarity can be characterized by discrete interpolating filters. Discrete inter- 
polating filters have been described in’. We have the following result: 

Proposition 7. A homogeneous multiresolution { S(j)}jEm is self-similar if and 
only if 

(25) 

and 

(26) 

U(l)(O) = 1 

uC1)(2k) = 0 Vk E ZZ 
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5. OBLIQUE PROJECTIONS IN HOMOGENEOUS 
MULTIRESOLUTION SPACES OF l2 AND THE WAVELET 

TRANSFORM 

Let {S,,,(u) = Spj(u)}jem and {I/(j)(h) = Vpj(h)}jEm be two homogeneous 
multiresolutions, then using theorem 1 we obtain the following result for the oblique 
projection on S(j,(u) orthogonal to I$)(h): 

Theorem 8. The oblique projection of g E 12 on S(,,(u) in a direction perpendic- 
ular to I/(a)(h) exists if and only if the sequence 

(27) ipi [x;] =lp h* lp [x* Jp [x * . ..I]] (x repeated i times) 

has an 12 inverse (1,; [xi])-l;(x = u * h”). The projection is then given by 

(28) ‘S(i)lV(*)S =tp’ [Ipi [‘(i) *g]] * u(i) 

where 

(29) i(i) =fp’ [(lpi [x&l] * !A;, 

Because of the nested property of multiresolutions, we have the important prop- 
erty that the projection P~(~)lv~~)g can be obtained by the oblique projection of the 
vector Psci-,) l~,~-,,g into S(i). Thus, the projection of a vector g on S’(i) can be 
obtained by projecting on S’(i) any finer approximation Ps,,,lvcj,g, i > j. We have 

Theorem 9. 

(30) ‘S(i)lV(i) = pS(i)lV(i)pS(i-l)lV(i-l) 

Proof. we can decompose g uniquely as 

g = ‘S(;-,)IV(i-1)s + (I - pS(i-,)lV(i-l))S 

with Ps~,~l~~v~i~l~s in S(a-1~~ and (I - P~~i-I~~v~i-I~)g in Vctel,. By decomposing 

(I- Psci-l)~v(i-,,)g in S(a) and V$j, we can rewrite the above equation as: 

9 = ps~i~lV~i)pS~i-l)IV,,-,,9 + (I - pS(;)IV~i))pS(i-,~lV~;-,~9 + (I - pS(i-ljlV(i-l))9 

Since v(i) C I$-r), we have that yf-r, C Vc$. Thus the sum of the last two terms in 
the previous equation belong to V($, while the term Ps~~)Iv~~)Ps~~_~~~v~~_~~~ below 

to S(i). Therefore, the uniqueness of the decomposition by projection implies that 
Ps~i~Iv~;)Ps~;_l~Iv~;_,)g = Psci,lvci,g. Since g was arbitrary, the proof is complete. 
w 

Theorem 9 implies that the coefficients ci of the oblique projection 
ps(,)N(,)g =fp’ [Gil * U(i) can be obtained from the coefficients ci-r of the oblique 
projection Ps(~-,) Iv(,-,)g =fp'-' [Cd-l] * yi-1). If we iterate this procedure, we 
obtain coarser and coarser approximation of the signal g and we have the following 
algorithm: 
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The decomposition algorithm 

i 

cj =lp i(l) * Yj-1 3 
Yj-1 = Iij-1 * Cj-1 j 2 1 
co =g. 

where the operator Kj-1 is given by 

(32) Kj-1 =tp [(lpi [Xj])-’ * lp [xl] * lpj-1 [Xj-11 

Since the operator Kj-1 depends on j, the algorithm (31) depends on the level 
index j in general. If however, the algorithm is independent of the index j, then 
it consists of the repetitive application of a single procedure and we say that the 
algorithm is pyramidal. Clearly, if Kj-l(k) = S(k), Vj > 1, then the algorithm is 
pyramidal. We have the following theorem: 

Theorem 10. The following statements are equivalent 

(i): Kj-1 = S(k) Vj 1 1 . 
(ii): lp [xl (k) = h(k). 

Proof. (ii) implies (i): This follows from the expression (27) of &, [xj] (k) and equa- 
tion (32 > 
(i) implies (ii): From the expression (32) of Kj-1 we deduce that 

(33) lpi-1 [xj-11 =fp [Y] Vj > 2 

for some y E 12. From this equation and the expression (27), we can use a recurrence 
argument to show that for any n E IN, there exists a sequence yn such that 

(34 1P [xl =tzP [ml 
Thus, lP [x] = 6(t). n 

If the conditions of theorem 10 above hold, then it is straightforward to see that 
we have the recurrence relation 

i(j) =fp.i-1 F(l)] * i(j-1) = h;) V-i > 1 

5.1. Biorthogonal discrete wavelet spaces and the wavelet transform 

If in the previous section we let p = 2, we get two sets of homogeneous multires- 
olutions { Vcj, = IJ’~~}~~N and {S(j) = S2j}jEm. Under the condition of theorem 
10, the approximation error ej+r = sj - Pscj+lj~vcj+lj for a sequence sj E S’(j) can 
be obtained by an oblique projection. To see this we first define the two spaces T(j) 
and IV(,), j E IN+ by 

(35) w(j) = WI(~) := C d(n)o(j)(k - 2jn),=fzj [d* o(j) d E 1~ 
raElz, 

where 
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o(j+l) =tzj [61 * G&)] * Q) (36) 

(37) 

where 

(38) 

‘T(j) = t(k) I= C d(n)~(j)(k - 23’n),=tzj [dI * z(j) d E 12 

ndz 

z(j+i) =tzj [51 * &?I)] * u(j) 
Here 6, L are the modulation of U, h respectively as defined by (5) in section 2. 

It is not difficult to show that T(j) belongs to S(j-1) and is orthogonal to V(j): 
T(j) c S(j-1) n I’&. Similarly IV(j) c V(j-1) n 5’6 . We also have the following 
theorem which shows that the error ea+i = sd - b s(~+~)Lv(~+~)s~ is given by an 
oblique projection on the error space (or wavelet space) T(j) orthogonaly to W(j): 

Theorem 11. 

(39) ej+l = P~(j)Iw(j)Sj =f2j [djl * x(j) 

Moreover, the coefficients dj+l(k) can be obtained from the coefficients cj of 
sj =f2j [cj] + u(j) by the simple filtering algorithm 

(40) dj+l =k2 [&ml * ii * cj] 

There is a perfect analogy between our result and the biorthogonal formulation 
of Cohen-Daubecies-Feauveau for analog signals4. From theorem 11 and the decom- 
position algorithm (31), we have a biorthogonal wavelet decomposition on the two 
homogeneous multiresolutions V(j) and SC~J and the two wavelet spaces IV(j) and 
7’(j) associated with them, as long as the cross correlation 12 [(u * h”)(k)] = b(k). 
In fact we have that any function g E 1s can be decomposed as follows: 

(41) 

1 
g = ps (J).lV(.qQ + c Pq@qn)g 

n=J 

The decomposition/reconstruction algorithms which determine the coefficients 
of the projections at a given level from the knowledge of the coefficients at adjacent 
levels is depicted in Fig. 2. It should be noted that this is the biorthogonal perfect 
reconstruction filter bank used in the context of the wavelet transform for analog 
signals. Rioul has also studied a discrete multiresolution theory for discrete signals7 
. However, his theory does not rely on the explicit formulation of the oblique 
projection on specific discrete multiresolution and wavelet spaces. Instead, he uses 
down-scaling and up-scaling operators that are tied to filter banks. 
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6. CONCLUSION 

Our results on oblique projections in certain subspaces of 12 (homogeneous mul- 
tiresolutions, etc.), are equivalent to Perfect Reconstruction Filter Banks (PRFB). 
Given any PRFB, we can explicitly define the pair of multiresolutions and the as- 
sociated oblique projection that can be implemented by the chosen PRFB. Thus, 
we have the discrete analog of the Cohen-Deaubechies-Feauveau results for the 
continuous biorthogonal wavelets. 
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Figure 1: Linear filtering process corresponding to the oblique projection of the discrete signal 
g(k) on the space S&m) in a direction orthogonal to the space V(h,m). The whole projection 
procedure consists of a pre-filtering and down-sampling by a factor m , then an up-sampling by a 
factor m followed by a post-filtering. 
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Figure 2: The perfect reconstruction filter bank associated with the pair of homogeneous 
multiresolutions {S~j),~j)}jEN and corresponding wavelet spaces {~j,,WCjI}jFN+ generated by 

YS~ 41). 
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