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Abstract 12 

The oblique reflection of an incident internal solitary wave is investigated using a fully-nonlinear 13 

and strongly-dispersive internal wave model. The 3rd order theoretical solution for an internal 14 

solitary wave in a two-layer system is used for the incident solitary wave. Two different incident 15 

wave amplitude cases are investigated, in which nine and eleven different incident angles are used 16 

for the small and large incident amplitude cases respectively. Under both amplitudes, at least for the 17 

cases investigated here, relatively smaller incident angles result in Mach reflection while relatively 18 

larger incident angles result in regular reflection. Under Mach-like reflection generation of a ‘stem’ 19 

is observed for a certain range of incident angles, in addition to the reflected wave. The stem is 20 



 

 2 

found to have, in a certain sense, the characteristics of an internal solitary wave, though the 21 

maximum stem wave amplitude is less than four times as large as the original incident internal 22 

solitary wave. The stem length is confirmed to increase faster for the larger incident wave amplitude. 23 

The maximum amplification factor for the small incident wave is the same as in previous studies. 24 

However, the maximum amplification factor for the large incident wave is less than that for the 25 

small wave. The results of these calculations are compared with those of the corresponding KP 26 

theory and it is found that a lower amplification factor may be a significant characteristic of internal 27 

solitary waves.  28 

 29 

Keywords: variational principle; solitary wave; interaction; Mach stem; two-layer system; KP 30 
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 32 
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1. Introduction 34 

The mechanism of occurrence of large amplitude surface waves in shallow water regions has 35 

been discussed [Kharif and Pelinovsky, 2003], along with similar kinds of problems related to 36 

“Freak waves” in deep water. Kharif and Pelinovsky [2003] suggested that one of the significant 37 

causals of “Freak waves” is soliton resonance, which occurs due to the interaction of two solitary 38 

waves. In contrast to surface waves, previous studies have revealed that large-amplitude internal 39 

solitary waves may exist in the ocean based on images taken from the aircraft and satellites [Wang 40 

and Pawlowicz, 2012] [Xue et al., 2013]. For instance, Helfrich and Melville [2006] provided 41 

images of the interaction of internal solitary waves. In a recent study, Shimizu and Nakayama [2017] 42 

provided the occurrence of large-amplitude internal solitary waves due to resonance in the Andaman 43 

Sea by using a three-dimensional MITgcm simulations [Marshall et al., 1997] [Adcroft et al., 1997]. 44 

Shimizu and Nakayama [2017] demonstrated that the theoretical and numerical studies are required 45 

to clarify how such a large-amplitude internal solitary wave occur. However, the interaction of 46 

internal solitary waves has not been adequately investigated in previous studies. For example, Yuan 47 

et al. [2018] demonstrated the importance of nonlinear interaction of soliton resonance of internal 48 

waves with the topographic effect. In particular, the study of internal solitary waves, as steady 49 

progressive nonlinear waves, should be a promising avenue for not only clarifying the phenomenon 50 

itself but also for understanding the behavior of nonlinear internal waves. Therefore, this study aims 51 

to investigate the two-dimensional interactions of internal solitary waves due to soliton resonance by 52 

using numerical simulation.  53 
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For surface waves, Miles [1977] theoretically proposed the concept of “resonance”, which is 54 

the interaction of three solitary waves with different incident angles in the two-dimensional weakly 55 

nonlinear interaction of shallow water solitary waves. Miles applied this concept to the phenomenon 56 

called Mach reflection in which the third solitary wave (stem), together with usual reflected wave, is 57 

generated around the wall during the reflection process. The theory insists that the stem amplitude is 58 

4 times the amplitude of the incident solitary wave at the critical incident angle defined as the angle 59 

when the maximum amplitude occurs and the angle between Mach and regular reflection under 60 

weakly nonlinear condition [Melville, 1980]. Mach reflection occurs when an incident angle is less 61 

than the critical incident angle. Funakoshi [1980] numerically computed the reflection problem using 62 

the Boussinesq equations for shallow water in which an incident solitary wave propagating along 63 

one straight wall was reflected due to another straight wall oblique to the straight wall, roughly 64 

supporting Miles’ results under weakly nonlinear conditions (Fig. 1). However, regarding the 65 

maximum amplitude, it seems that the critical incident angle in Funakoshi’s result was somewhat 66 

smaller than that of Miles. For an incident angle sufficiently larger than the critical incident angle, 67 

Funakoshi’s result is in better agreement with the other result of Miles (perturbation solutions in 68 

weak interaction) [Miles 1977]. However, Tanaka [1993] investigated the oblique reflection of a 69 

large amplitude solitary wave by numerically solving the inviscid water wave equations using a 70 

spectral method, finding that the maximum amplitude is about three times the amplitude of the 71 

incident solitary wave. The critical incident angle in Tanaka’s numerical result was much smaller 72 

than the value predicted by Miles’ theory. Yeh et al. [2010] and Li et al. [2011] analytically and 73 
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experimentally studied the reflection of an obliquely incident solitary wave, finding that the 74 

maximum fourfold amplification predicted by Miles was not realized in a laboratory experiment 75 

under strong nonlinear condition. Gidel et al. [2017] also showed the slightly small amplification 76 

factor compared to Miles. These studies suggest that there are some differences between the weakly 77 

nonlinear theory of Miles and other numerical and experimental results. Though Kodama [2010] and 78 

Kodama et al. [2016] improve theoretical result by detailed analysis for the Kadomtsev-Petviashvili 79 

(KP) equation which is a horizontally two-dimensional version of the KdV equation, the reason for 80 

the quantitative differences of amplification in the neighborhood of the margin between regular and 81 

Mach reflection is still unclear. It has been suggested that fully-nonlinear and strongly-dispersive 82 

wave equations are needed for analyzing the deformations of solitary waves. 83 

For internal waves, Maxworthy [1980] carried out laboratory experiments that showed the 84 

occurrence of a Mach stem in the interaction of two internal solitary waves. However, there are few 85 

experimental studies regarding the occurrence of a Mach stem in stratified flow fields. Theoretically, 86 

Tsuji and Oikawa [2007] demonstrated that the importance of “critical depth” which may suppress 87 

amplification rate due to soliton resonance by using the Extended Kadomtsev-Petviashvili equation. 88 

Critical depth is obtained from weakly nonlinear analysis for a two-layer system where internal 89 

solitary waves do not exist and corresponds to a conjugate flow [Lamb, 1998] [Tsuji and Oikawa, 90 

2007] [Nakayama et al.,2012]. Oikawa and Tsuji [2006] showed that as the amplification of internal 91 

solitary waves in the region where two internal solitary waves propagate in different directions and 92 

cross each other decreases, the critical depth corresponds to the depth where a conjugate flow 93 
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appears. To analyze such a strongly nonlinear effect, higher order equations for internal waves are 94 

required. For example, Lamb [1998], Nakayama [2006] and Nakayama and Imberger [2010] 95 

demonstrated that a three-dimensional numerical model using a high-resolution mesh is useful for 96 

the deformation of internal solitary waves. However, the computational cost is too expensive to 97 

analyze the interaction of two internal solitary waves. Therefore, vertically integrated model may be 98 

applied to solve internal solitary wave interactions [Choi and Camassa, 1999] [Horn et al., 2000] 99 

[Horn et al., 2002]. For example, Choi and Camassa [1999] introduced higher order equations for 100 

internal waves, but it is needed to be extended to a horizontally two-dimensional system, such as a 101 

Kadomtsev-Petviashvili equation.  102 

Nakayama and Kakinuma [2010] developed the Fully-nonlinear and strongly-Dispersive 103 

Internal wave equations in a 2 layer system (FDI-2s equations), which can be applied to a 104 

horizontally two-dimensional system without assuming a week-nonlinearity along the perpendicular 105 

direction to the progress direction, such as a Kadomtsev-Petviashvili equation. Thus, we apply the 106 

FDI-2s equations to investigate the interaction of two internal solitary waves due to soliton 107 

resonance in a two-layer system. Firstly, we investigate the applicability of the FDI-2s equations for 108 

large amplitude internal solitary waves by comparing with laboratory experiments by Koop and 109 

Butler [1981]. Also, the FDI-2s equations are applied to reproduce deformation of internal waves by 110 

using laboratory experiments [Horn et al., 2001] [Horn et al., 2002]. Finally, we investigated the 111 

interaction of two internal solitary waves by giving the total 20 different conditions regarding an 112 

initial amplitude and an incident angle (Fig. 1 and Table 1).  113 
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 114 

2. Methods 115 

2.1 Fully-nonlinear and strongly-dispersive internal wave equations in a two-layer system  116 

We consider waves propagating in a stable two-layer inviscid fluid at rest as shown in Fig. 2 117 

where two-layers are indicated as i = 1 and i = 2 from top to bottom. The flow is assumed to be 118 

incompressible. The depth and density of each layer is indicated by hi and ri, respectively, with r1 < 119 

r2. By assuming irrotational flow, the velocity potential fi is introduced as;  120 

 and ,                     (1) 121 

,                    (2) 122 

where, ui is the horizontal velocity vector for the layer i, and wi is the vertical velocity for the layer i.  123 

The functional for the variational problem is obtained by adding terms for interfacial pressure 124 

into the variational method by Luke [1967] and disregarding vorticity terms 125 

,       (3) 126 

,                        (4) 127 

where g is the gravitational acceleration, A is the orthogonal projection of the volume occupied by 128 

the fluid onto the xy plane, and zi,1 and zi,0 are the interfacial displacement of the upper and lower 129 

interface for layer i.   130 
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In order to derive a set of two-dimensional horizontal equations, the velocity potential is 131 

expanded into the sum of Zi,a multiplied by their weightings fi,a by following Isobe [1995].  132 

.                      (5) 133 

After substituting (5) into (3) and integrating (3) vertically, the Euler-Lagrange equations are 134 

obtained by applying the variational principle [Isobe, 1995]. For our study of internal waves, we 135 

assume the displacement of the water surface is zero which simplifies the model. Following Isobe 136 

[1995], the vertically distributed function, Zi,a, is determined by  137 

.                  (6) 138 

Finally, the equations for fully-nonlinear and strongly-dispersive internal wave equations are:  139 
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From now on, we call the Fully-nonlinear and strongly-Dispersive Internal wave equations (7) to 147 

(10), the FDI-2s equations. It should be noted that the FDI-2s can be extended to a multi-layer 148 

system based on the Euler-Lagrange equations, the Fully-nonlinear and strongly-Dispersive Internal 149 

wave equations in a multi-layer system (FDI-MLS equations) [Nakayama and Kakinuma, 2010].  150 

 151 

2.2 The 3rd order theoretical solution for an internal solitary wave and performance 152 

evaluation 153 

In the numerical simulations it was necessary to specify a large amplitude internal solitary wave, 154 

which progresses with little deformation, as an initial condition. When the KdV theoretical solution 155 

is used as an initial large amplitude internal solitary waves and the FDI-2s equations are used in the 156 

computation, small-amplitude high-frequency internal waves are likely to occur due to the 157 

adjustment of the initial approximate wave which results in a decrease in the amplitude of the 158 

internal solitary wave [Lamb, 2002] [Nakayama, 2006]. Therefore, as an initial condition we used a 159 

3rd order theoretical solution for the internal solitary wave in a two-layer fluid, which was obtained 160 

by simplifying the 9th order solution of Mirie and Pennell [1989] (see APPENDIX A).  161 

We investigated the characteristics of the 3rd order theoretical solutions and the FDI-2s 162 

equations for the analysis of internal solitary waves based on the laboratory experiments of Koop 163 

and Butler [1981], which showed the relationship between the amplitude, a0, and effective 164 

wavelength, lI, of internal solitary waves (Fig. 3). The amplitude and effective wavelength of the 165 
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FDI-2s equations were obtained by conducting numerical computations with the initial condition of 166 

the 3rd order theoretical solutions. We applied the two-layer shallow water configuration used by 167 

Koop and Butler which used h1 ＝ 0.06948 m, h2 ＝ 0.01366 m and r1 / r2 ＝ 0.63. The mesh 168 

grid interval, Dx = 0.004 m, the time step, Dt = 0.00005 s were used in the numerical computations. 169 

The thin solid lines envelope the measurement plots by Koop and Butler [1981] for the laboratory 170 

experiments of r1 / r2 ＝ 0.63 and h1 / h2 ＝ 5.09. The 3rd order theoretical solutions are found to 171 

agree better with the laboratory results than the KdV theoretical solutions. The FDI-2s equations 172 

agree with the 3rd order theoretical solutions up to a0 / h2 = 0.25, and then lI / h2 tends to be larger 173 

than the 3rd order theoretical solutions, which agrees with the fully-nonlinear solutions obtained 174 

using numerical computations by Grue et al. [1997] in FIGURE 5 of Choi and Camassa [1999].  175 

In order to demonstrate the applicability of the FDI-2s equations for the deformation of internal 176 

solitary waves, the FDI-2s equations were applied to the laboratory experiment of Horn et al. [2000] 177 

[2002]. The length, width and height of their tilting tank were 6.0 m, 0.30 m and 0.29 m, 178 

respectively. For the laboratory experiment, h1 ＝ 0.232 m, h2 ＝ 0.058 m, r2 - r1 ＝ 20.0 kg m-3, 179 

and a tilting angle = 0.5° were chosen (Fig. 4(a)). The interfacial thickness was less than 0.01 m, 180 

which provides a two-layer-like system. The total mechanical energy (kinetic + potential) due to a 181 

tilting density interface decreases during the deformation from the internal seiche to a train of 182 

internal solitary waves due to viscous losses [Horn et al., 2000 and 2002]. Therefore, energy 183 

dissipation due to viscous losses at the interface and the boundaries was added to the FDI-2s 184 

equations. As a result, the interfacial displacement from the FDI-2s equations agrees very well with 185 
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Horn et al.’s laboratory experiment, thereby confirming the robustness of the FDI-2s equations for 186 

analyzing the excitation of internal solitary waves (Fig. 4(b)).  187 

2.3 Boundary conditions 188 

To analyze the two-dimensional interaction of internal solitary waves, we adopt a finite 189 

difference method for a type of domain used by Funakoshi [1980] (Fig. 1). It is necessary to resolve 190 

the zero momentum boundary condition for the oblique boundary condition in the computational 191 

domain (Fig. 1). Simanjuntak et al. [2009] introduced a numerical computation technique whereby 192 

zero normal velocity boundary conditions can be successfully applied to reproduce internal wave 193 

reflections in a stratified flow field by comparing with analytical solutions. Since a velocity potential 194 

is used in this study, it is not possible to directly apply the zero normal velocity boundary condition. 195 

Therefore, in this study we propose a new technique for zero normal velocity boundary conditions 196 

by following Simanjuntak et al. [2009]. The intersection point of the oblique boundary line and the 197 

perpendicular line to the oblique boundary from a node outside of the computational domain is 198 

defined as (x’, y’) (Fig. 5). The unknown velocity potential, fi,j, is determined by applying the 199 

Galerkin method using the known velocity potentials, fi-1,j, fi,j+1 and fi-1,j+1, so as to satisfy the zero 200 

normal velocity boundary conditions shown in (11) on the oblique boundary (see APPENDIX B).  201 

.             (11) 202 

 203 

∂φ '
i, j

∂n
= 0
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3. Results 204 

3.1 Computational conditions and critical incident angle of an internal solitary wave  205 

Two different amplitudes of initial internal solitary waves A and B were used in the simulations. 206 

The common computational conditions of the numerical analysis were that the upper layer depth was 207 

0.20 m, the lower layer depth was 0.80 m, and the ratio of the density between the upper and lower 208 

layers was 0.5 (h2 / h1 ＝ 4.00), which is a similar set up to that of Koop and Butler [1981], (r1 / r2 209 

＝ 0.63 and h1 / h2 ＝ 5.09), though the depth of the layers is reversed. The small and large 210 

normalized amplitudes of the initial internal solitary waves, a0 / h2, were 0.01 and 0.05, are 4 % and 211 

20 % of the upper layer depth, respectively (Fig. 6). In the large 0.04 m (a0 / h2 = 0.05) amplitude 212 

case, the 3rd order internal solitary wave solution was confirmed to have wider wavelength compared 213 

to the KdV theory, which has been confirmed in a previous study [Nakayama, 2006] (also see Fig. 214 

3).  215 

To predict an amplification factor, the definition of parameter k comes from Yeh et al. [2010] 216 

who modified Miles’ result.  217 

                   (12)  218 

where a0 is the amplitude of incident internal solitary wave (see APPENDIX C for details, including 219 

the definition of parameter, p, (C2)) and jc is the critical incident angle by Miles [1977]. 220 

κ =
tan ϕ( )

3p
a
0

h
2

cos ϕ( )
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tan ϕ( )

tan ϕ
c( )cos ϕ( )
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Finally, the amplification factor, af, can be obtained as 221 

    (13) 222 

where af is the ratio of the amplitude at the oblique boundary to the amplitude of the incident internal 223 

solitary wave.  224 

The critical incident angle, jc, corresponds to the boundary between Mach and regular reflection. 225 

According to Miles [1977], the ratio of the maximum amplitude to the amplitude of the incident 226 

internal solitary wave (we call this the maximum amplification factor) occurs when the angle of the 227 

incident internal solitary wave is equal to jc. As the critical incident angle obtained from the 228 

numerical computations, jc, is expected to be different from the modified Miles prediction, the 229 

critical incident angle obtained from the modified Miles prediction, jc_kp, is given by  230 

.            (14) 231 

In the small amplitude case, jc_kp obtained from (14) was 14.4 degrees, while it was 27.7 232 

degrees for the large amplitude case. Therefore, for the small amplitude case, nine different incident 233 

angles were given corresponding to cases A1 to A9: 10, 11, 12, 12.5, 13, 14, 15, 20 and 30 degrees 234 

(Table 1). On the other hand, for the large amplitude case eleven different incident angles were 235 

given corresponding to cases B1 to B11: 10, 12, 14, 16, 18, 20, 23, 26, 28, 30 and 40 degrees (Table 236 

a
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1). Since the very small time step is required due to the use of the variational principle, linear theory 237 

shows that the celerity corresponds to the Courant-Friedrichs-Lewy condition, 0.00221. Although 238 

parallel computation was conducted using 12 CPUs using openMP, it took about 2500 s for the 239 

amplitude of a stem to reach the maximum amplitude in case A4, which was the most expensive 240 

runtime cost case, and it is necessary to prepare 7,200 x 1,500 = 10,800,000 meshes in the direction 241 

of progress, leading to a runtime cost that was too expensive. Therefore, we carried out actual 242 

computations only in the effective computational domains in order to reduce the runtime cost (Fig. 243 

7). The left boundary of the effective computational domain had a sponge layer to reduce the internal 244 

wave energy, and perfect reflection conditions were specified at the top boundary in order to sustain 245 

the internal solitary wave energy during its progression. Fig. 7 demonstrates that the stem was 246 

formed due to reflection from the oblique boundary. 247 

 248 

3.2 Stem length and wave amplitude  249 

Stem formation was investigated for all cases in order to clarify the influence of the incident 250 

angle on the development of the stem length (Fig. 8). Since jc_kp were 14.4 and 27.7 degrees for 251 

case A and case B, it was expected that a stem would be formed in cases A1 to A6 (incident angles 252 

between 10 and 14 degrees) and in cases B1 to B8 (incident angles between 10 and 26 degrees). A 253 

stem was formed in cases A1 to A6 and cases B1 to B8. However, the stem length reached a steady 254 

state in cases A5, A6, B7 and B8, although the stem length should keep increasing if the stem is due 255 
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to Mach reflection. Therefore, the crests in cases A5, A6, B7 and B8 are considered to occur due to 256 

regular reflection. In contrast, the cases from A1 to A4 and cases from B1 to B6 are considered to 257 

have a ‘stem’ due to Mach reflection because the stem length increased linearly in time.  258 

Previous studies have found that the larger the amplitude of an incident internal solitary wave, 259 

the faster the stem extends, which was investigated here by comparison of the same incident angle 260 

between cases A1 and B1, and cases A3 and B2. The extension speed of a stem under case B1 with 261 

an incident angle of 10 degrees was 2.52 times as fast as under case A1 when t / (h2 / c0) = 553. The 262 

stem extension speed under case B2 was 2.91 times as fast as under case A3 for an incident angle of 263 

12 degrees over t / (h2 / c0) = 553. Therefore, we confirmed that the stem extension speed increases 264 

with increasing amplitude of the incident internal solitary wave when other conditions are the same.  265 

The time taken to reach the maximum amplitude due to the internal solitary wave interaction 266 

was plotted against each incident angle of the internal solitary wave (Fig. 9). The duration for the 267 

large amplitude case was shorter than the small amplitude case. The maximum duration for each 268 

small and large amplitude case appeared in case A4 and B6 when jc was less than jc_kp shown in 269 

(14). Interestingly, when a stem exists, cases A4 and B6 correspond to the maximum incident angle 270 

cases, and the smaller the incident angle, the faster the stem extension speed. In contrast, when 271 

incident angles are closer to jc, amplification factors and durations become larger and longer until 272 

the stem reaches a stationary state. Therefore, cases A4 and B6 took the longest to reach the 273 

maximum amplitude for the small and large amplitude cases, respectively.  274 
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The amplification factor obtained from numerical simulations were investigated using the KP 275 

theory ((14) and Fig. 10). The small amplitude case showed a maximum amplification factor of 276 

about 3.4, which agrees with previous studies [Funakoshi, 1980] and is smaller than the maximum 277 

value (= 4.0). For the large amplitude case the maximum amplification was found to be about 3.0, 278 

which is similar to previous studies [Tanaka, 1993] [Yeh et al., 2010] related to the interaction of 279 

large amplitude surface solitary waves. For smaller incident angles the amplification factor agrees 280 

well with the predictions of KP theory (Fig. 10). Interestingly, cases A5, A6, B7 and B8, in which 281 

the crest reaches steady state, are found to be located between the maximum amplification factor 282 

case and jc_kp, which is categorized as a regular reflection. From Figs. 8-10, it can be seen that the 283 

maximum amplification occurred when the incident angles were less than jc_kp (cases A4 and B6) 284 

and when the time taken to reach the maximum amplitude was longest for the small and large 285 

amplitude cases, respectively.  286 

 287 

4. Discussion 288 

4.1 Limiting wave amplitude of soliton resonance 289 

Li et al. [2011] and Tanaka [1993] found from experimental and numerical results for surface 290 

waves that amplification was suppressed when the amplitude of an initial surface wave was 291 

relatively large, which corresponds to a large jc_kp. In particular, when the amplitude of an incident 292 

surface wave is large, the maximum amplification factor has been found to be less than 3.0, based on 293 
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numerical computations by Tanaka [1993]. Therefore, although this suppression close to jc_kp has 294 

been seen in surface waves in previous studies, the effect of large amplitudes may also be inherent to 295 

internal waves. 296 

There may be another possible explanation for the suppression of amplification. Weakly 297 

nonlinear analysis for a two-layer system yields a critical depth where internal solitary waves do not 298 

exist because the nonlinearity vanishes and dispersion prevails [Lamb, 1998] [Tsuji and Oikawa, 299 

2007] [Nakayama et al., 2012]. Therefore, in a two-layer system, the critical depth from the water 300 

surface is given by (15).  301 

.           (15) 302 

where hC is the critical depth from the water surface, and aC is the maximum possible wave 303 

amplitude.  304 

Tsuji and Oikawa [2007] demonstrated that resonance is suppressed when the initial density 305 

interfacial level is close to the critical depth by using the Extended Kadomtsev-Petviashvili equation. 306 

If the height of the stem of resonance is equal to the distance between the critical depth and the 307 

interface at rest, the corresponding amplification factors are 26.75 and 5.35 for the small and large 308 

amplitude cases, respectively. Therefore, since the density interface of the amplified internal solitary 309 

wave was closer to the critical depth for the large amplitude case compared to the small amplitude 310 
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case, the amplification due to resonance of two internal solitary waves may be suppressed for the 311 

large amplitude case.  312 

 313 

4.2 Characteristics of stem  314 

In previous studies, the stem induced by resonance was investigated by assuming that the stem is 315 

an internal solitary wave. To confirm whether the stem is an internal solitary wave or not, the shape 316 

of the stem was compared to the 3rd order theoretical solutions (Fig. 11). The largest amplitude case, 317 

case B6, was selected and compared to the 3rd order theoretical solutions, showing very good 318 

agreement with slightly larger effective wavelength of the FDI-2s equations, which shows the same 319 

tendency when a0 / h2 is about 0.6 in Fig. 3. The normalized celerity by linear theory was 1.573 320 

while the celerity of the incident internal solitary wave was 1.356. Therefore, a stem has the 321 

potential to be an internal solitary wave from the perspective of the shape of the density interface. If 322 

a stem is an internal solitary wave, it progresses without having any decay or deformation. We thus 323 

made an attempt to carry out one-dimensional numerical computations using the FDI-2s equations 324 

specifying the shape of the density interface displacement and the velocity potential of the stem from 325 

cases A1, A5, B1 and B6 (Fig. 12). For case B6 there was a slight decrease in amplitude due to the 326 

formation of high-frequency internal waves, which follow the stem. However, the decrease in 327 

amplitude was negligible, and all cases kept the shape of the original stem and waves propagated 328 
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with speeds of an internal solitary wave, which demonstrates that stems induced by the resonance of 329 

internal solitary waves have the characteristics of an internal solitary wave.  330 

 331 

5. Conclusion 332 

The oblique reflection of an internal solitary wave in a two-layer system has been studied using 333 

the FDI-2s equations. For the small amplitude case: a0 / h2 = 0.01, the maximum amplification factor 334 

was found to be about 3.4. The amplification factor followed (14) in the region where a Mach stem 335 

occurred and the amplification factor was less than the Miles prediction, 4. The critical incident 336 

angle obtained from the numerical computations was confirmed to be equal to the critical incident 337 

angle obtained from the modified Miles prediction, jc_kp. The maximum amplification factor 338 

reached about 3.0 when the amplitude of the initial internal solitary wave was large (large amplitude 339 

case: a0 / h2 = 0.05). It may thus be expected that the larger jc_kp is, the smaller the amplification 340 

factor, which is expected based on the experimental and numerical results by Li et al. [2011] and 341 

Tanaka [1993] for surface waves. However, there is the possibility that a maximum possible wave 342 

amplitude exists when the density interfacial level is close to the critical depth.  343 

 344 
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APPENDIX A 358 

The 3rd order equations for an internal solitary wave are obtained by using the 9th order internal 359 

solitary wave equations [Mirie and Pennell, 1989].  360 

                         (A1) 361 

       (A2) 362 

                          (A3) 363 

                    (A4) 364 
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              (A8) 368 
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  372 

   (A11) 373 

 374 

 375 

        (A12) 376 

 377 

                 (A13) 378 

              (A14) 379 

               (A15) 380 

        (A16) 381 

 382 

     (A17) 383 

where, a0 is the amplitude of incident internal wave.  384 
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APPENDIX B 386 

Velocity potential inside of a mesh is given by (B1) using the Galerkin method.  387 

 388 

.    (B1) 389 

Zero normal velocity boundary condition is given as (B2).  390 

,           (B2) 391 

,  (B3) 392 

.  (B4) 393 

Therefore, zero normal velocity boundary condition (B2) is rewritten as (B5).  394 

 395 

.(B5) 396 

Finally, the unknown velocity potential, fi,j, is determined from the known velocity potentials, 397 

fi-1,j, fi,j+1 and fi-1,j+1.  398 
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APPENDIX C 403 

Here we describe the results of the KP equation and their modification for comparison to our 404 

numerical results for internal waves in a two-layer fluid system with a rigid lid shown in Fig. 2. It is 405 

also assumed that the interface is not near the critical depth. Details of derivation of the equations are 406 

omitted and only the results are described.  407 

The KdV equation for waves propagating in the direction n = (cos j, sin j) in this system is 408 

written in the physical coordinates as  409 

                       (C1) 410 

where, z is the displacement of the interface, c = n ∙ x = x cos j + y cos j (x = (x, y) the position 411 

vector in a horizontal plane), t the time. The constants p and q are given by  412 

                         (C2) 413 

                         (C3) 414 

                         (C4) 415 
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The solitary wave solution of the KdV equation (C1) is given by  417 
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where, c0 is an arbitrary constant and we consider the case p > 0.  420 

The KP equation for waves propagating almost in the x direction is in the physical 421 

coordinates 422 

                      (C8) 423 

 The solitary wave solution to this equation is 424 

                     (C9) 425 

where a1 is an amplitude and x0 is an arbitrary constant.  426 

 Now, transformation of the variables yields 427 

                         (C10) 428 
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The KP equation (C8) is written as 432 

                       (C14) 433 
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that the amplification factor [29] can be given by 438 

amplification factor             (C15) 439 

                        (C16) 440 

For shallow water waves, the equations corresponding to (C14) and (C15) may be called the 441 

Miles’ prediction. The Miles’ prediction does not agree with the numerical computations of 442 

Funakoshi [1980] and Tanaka [1993], or the experiments of Li et al. [2011]. However, Yeh, Li, and 443 

Kodama [2010] [2016] considered an explanation as follows: the KP equation is derived under the 444 

assumption of quasi-two-dimensionality, in which a = O(∊1/2) and ∊ = O(a0/h2) ≪ 1. The solution 445 

(C9) of the KP equation (C8) is rewritten as follows by the use of c:  446 

                    (C17) 447 

If a = O(∊1/2), cos a = 1 - (1/2) tan2 j + O(∊2) and the velocity of the above solitary wave 448 

solution becomes 449 

                      (C18) 450 

Thus, if we define (C19), the solution (C17) approximates to the KdV solution as (C20) 451 

                       (C19) 452 

                      (C20) 453 

=

1+ κ( )
2

κ <1

4

1+ 1− κ−2
κ >1

#

$

%
%

&

%
%

 

κ =
tan ϕ( )

3p
a
0

h
2

=
tan ϕ( )
tan ϕ

c( )

ζ = −a
1
sech

2 3pa
1

4qh
2

3
cos

2ϕ
χ−V cosϕ 1+

pa
1

2h
2

+
1

2
tan

2ϕ
%

&
''

(

)
**t − χ0

+

,
-
-

.

/
0
0

1
2
3

43

5
6
3

73

V cosϕ 1+
pa
1

2h
2

+
1

2
tan

2ϕ
"

#
$$

%

&
''=V 1+

pa
1

2h
2

+O ε2( )
"

#
$$

%

&
''

a
0
=

a
1

cos
2ϕ

= a
1
1+ tan

2ϕ( ) = a1 1+O ε( )( )

ζ = −a
0
sech

2 3pa
0

4qh
2

3
χ−V 1+

pa
0

2h
2

$

%
&&

'

(
))t − χ0

*

+
,
,

-

.
/
/

0
1
2

32

4
5
2

62
+O ε( )



 

 27 

Therefore, the simulations and experiments should be compared with the Miles’ prediction 454 

(C15) with  455 

                         (C21) 456 

Let us call the Miles’ prediction (C15) with (C21) as the modified Miles’ prediction. The 457 

modified Miles’ prediction for the shallow water waves agrees well with the numerical computations 458 

and experiments except near the critical incident angle.  459 
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Figure captions 541 

 542 

Fig. 1.  Schematic horizontal plane view of a computation corresponding to the occurrence of Mach 543 

and regular reflection of a soliton with an incident angle of j. q indicates the reflection angle.  544 

 545 

Fig. 2.  Schematic diagram of a two-layer system. Upper and lower boundaries are considered as 546 

rigid walls.  547 

 548 

Fig. 3 Comparisons with the laboratory experiments by Koop and Butler [22]. Thin solid lines 549 

indicate the region of the experiments’ plots. Dashed and thick solid lines indicate the KdV 550 

theoretical solutions and the 3rd order theoretical solutions, respectively. Circles indicate numerical 551 

computation results by using the FDI-2s equations.  552 

 553 

Fig. 4 Comparisons with the laboratory experiments by Horn et al. [17] [46] [47]. (a) Initial set up.  554 

(b) Comparisons of interfacial displacement at the Wavegauge B between the laboratory experiments 555 

and the FDI-2s equations.  556 

 557 

Fig. 5.  Schematic diagram for satisfying boundary conditions of momentum.  Normal velocity to 558 

an oblique boundary should be zero.  559 

 560 
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Fig. 6.  Initial waves. The solid lines shows the 3rd order theoretical solution and dashed line shows the 561 

KdV solution. (a) case A. (b) case B.  562 

 563 

Fig. 7.  Interfacial displacement of case B5. Each solid line square in the bottom figure indicates the 564 

computational region at the times indicated. Top three figures show enlarged progress of internal solitary 565 

wave at t / (h2 / c0) = 0, 277 and 498.  566 

 567 

Fig. 8.  Time series of the length of a stem for case A and case B. Length is normalized by the 568 

lower layer depth. (a) cases A1 to A6. (b) cases B1 to B8.  569 

 570 

Fig. 9.  Time taken to reach the maximum amplitude due to the internal soliton resonance for small 571 

amplitude case (circles) and large amplitude case (stars).  572 

 573 

Fig. 10.  Comparisons with (13). Circles and stars denote case A and B from the FDI-2s equations. (a) 574 

Normalized amplification factor vs k for case A and B. Solid lines show (13) [27] [30] [31]. (b) 575 

Incident angle and amplification factor vs incident angle.  576 

 577 

Fig. 11.  Interfacial displacement of case B6. The dashed lines show the compu tational condition. The 578 

thick solid lines show the interfacial displacement of a stem. The thin solid lines show the 3rd order 579 

theoretical solution.  580 
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 581 

Fig. 12.  Progress of internal solitary waves by using the interfacial displacement and velocity 582 

potential around a stem. (a) case A1. (b) case A5. (c) case B1. (d) case B6.  583 

 584 

 585 

 586 

  587 
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Table captions 588 

 589 

Table 1. Computational conditions for small and large amplitude cases. 590 

 591 

 592 

  593 
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 594 

Fig. 1. Schematic horizontal plane view of a computation corresponding to the occurrence of Mach and 595 

regular reflection of a soliton with an incident angle of j. q indicates the reflection angle.   596 
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 599 

Fig. 2.  Schematic diagram of a two-layer system. Upper and lower boundaries are considered as 600 

rigid walls.  601 
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 604 

Fig. 3 Comparisons with the laboratory experiments by Koop and Butler [22]. Thin solid lines 605 

indicate the region of the experiments’ plots. Dashed and thick solid lines indicate the KdV 606 

theoretical solutions and the 3rd order theoretical solutions, respectively. Circles indicate numerical 607 

computation results by using the FDI-2s equations.  608 
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 611 

Fig. 4  Comparisons with the laboratory experiments by Horn et al. [17] [46] [47]. (a) Initial set up.  612 

(b) Comparisons of interfacial displacement at the Wavegauge B between the laboratory experiments 613 

and the FDI-2s equations.  614 
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 617 

Fig. 5.  Schematic diagram for satisfying boundary conditions of momentum.  Normal velocity to 618 

an oblique boundary should be zero.  619 
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 622 

Fig. 6.  Initial waves. The solid lines shows the 3rd order theoretical solution and dashed line shows 623 

the KdV solution. (a) case A. (b) case B.  624 
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 627 

Fig. 7.  Interfacial displacement of case B5. Each solid line square in the bottom figure indicates the 628 

computational region at the times indicated. Top three figures show enlarged progress of internal 629 

solitary wave at t = 0 s, t = 250 and t = 450 s.  630 
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 633 

Fig. 8.  Time series of the length of a stem for case A and case B. Length is normalized by the lower 634 

layer depth. (a) cases A1 to A6. (b) cases B1 to B8.   635 
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 638 

Fig. 9.  Time taken to reach the maximum amplitude due to the internal soliton resonance for small 639 

amplitude case (circles) and large amplitude case (stars).  640 
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 643 

Fig. 10.  Comparisons with (13). Circles and stars denote case A and B from the FDI-2s equations. (a) 644 

Normalized amplification factor vs k for case A and B. Solid lines show (13) [27] [30] [31]. (b) Incident 645 

angle and amplification factor vs incident angle.   646 
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 649 

Fig. 11.  Interfacial displacement of case B6. The dashed lines show the computational condition. 650 

The thick solid lines show the interfacial displacement of a stem. The thin solid lines show the 3rd 651 

order theoretical solution.  652 
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 655 

Fig. 12.  Progress of internal solitary waves by using the interfacial displacement and velocity 656 

potential around a stem. (a) case A1. (b) case A5. (c) case B1. (d) case B6.  657 
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Table 1. Computational conditions for small and large amplitude cases.  660 

 661 

 662 

case  a0 / h2  α (degree) ϕ
c_kp

 (degree) κ    amplification factor

A1  0.01  10  14.4  0.68    2.81

A2  0.01  11  14.4  0.75    3.05

A3  0.01  12  14.4  0.82    3.27

A4  0.01  12.5  14.4  0.86    3.43

A5  0.01  13  14.4  0.90    3.23

A6  0.01  14  14.4  0.97    2.92

A7  0.01  15  14.4  1.05    2.72

A8  0.01  20  14.4  1.46    2.26

A9  0.01  30  14.4  2.52    2.08

B1  0.05  10  27.7  0.32    1.79

B2  0.05  12  27.7  0.39    2.01

B3  0.05  14  27.7  0.46    2.27

B4  0.05  16  27.7  0.53    2.50

B5  0.05  18  27.7  0.61    2.74

B6  0.05  20  27.7  0.69    2.94

B7  0.05  23  27.7  0.82    2.65

B8  0.05  26  27.7  0.97    2.46

B9  0.05  28  27.7  1.07    2.35

B10  0.05  30  27.7  1.19    2.29

B11  0.05  40  27.7  1.95    2.08

For all cases, h1 = 0.2 m, h2 = 0.8 m, and ρ1/ρ2 = 1.0/2.0, respectively. 


