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Abstract

The role of the Coriolis effect in the initial formation of bottom patterns in a tidal channel is studied by means of a linear

stability analysis. The key finding is that the mechanism generating oblique tidal sand ridges on the continental shelf is also

present in confined tidal channels. As a result, the Coriolis effect causes the fastest growing pattern to be a combination of

tidal bars and oblique tidal sand ridges. Similar as on the continental shelf, the Coriolis-induced torques cause anticyclonic

residual circulations around the ridges, which lead to the accumulation of sand above the ridges. Furthermore, an asymptotic

analysis indicates that the maximum growth rate of the bottom perturbation is slightly increased by the Coriolis effect, while

its preferred wavelength is hardly influenced.
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1 Introduction

Tidal bars are rhythmic bottom patterns that occur in many

tidal channels (e.g., the Western Scheldt in the Netherlands,

the Exe Estuary in England, the Ord River Estuary in

Australia, and the Venice Lagoon in Italy). These bars are

several meters high and have wavelengths of 1–15 km. Their

characteristics are determined by channel properties (depth,

width, tidal amplitude, etc.), which may change due to,

for example, dredging, sea level rise, and land reclamation.

Tidal bars are invaluable for many organisms that feed on

their rich grounds, but they also may hamper marine traffic.

For proper management of tidal channels, it is therefore

important to understand their behavior.

Seminara and Tubino (2001), Schramkowski et al.

(2002), and Hepkema et al. (2019), among others, studied

the physical mechanism that causes tidal bars to form,
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as well as the sensitivity of their wavelength to channel

properties. They explained that the initial formation of

tidal bars can be understood by analyzing the residual

currents generated by the topography (using arguments

similar to those by Zimmerman (1981)). Hibma et al. (2004)

showed that the results of the linear stability analysis of

Schramkowski et al. (2002) compare well with results of a

numerical morphodynamic model, Delft3D.

In these linear stability studies and in the study by

Hibma et al. (2004), the Coriolis effect was neglected.

However, tidal bars occur in natural systems (e.g., Western

Scheldt) where the Coriolis force is a first-order term in

the momentum balance. The importance of Coriolis on the

hydro-morphodynamics in tidal channels is supported by

several other studies, e.g., Valle-Levinson (2008), Winant

(2008), Xie et al. (2017), and Olabarrieta et al. (2018).

Furthermore, 2D morphological simulations similar (but

now with and without the Coriolis effect) with those

performed by Hibma et al. (2004) show clear differences

between the initial formation of bottom patterns with and

without the Coriolis effect taken into account (see Fig. 1

and supplementary information). In the left panel of Fig. 1,

perturbations have a braided tidal bar pattern, whereas

a ridge-like pattern emerges when the Coriolis effect is

neglected (right panel).

This motivates an investigation into the physical mecha-

nisms that explain how the initial formation of bottom pat-

terns in a tidal channel is affected by the Coriolis effect. To
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Fig. 1 Bottom perturbation patterns obtained after approximately 15

years of morphodynamic simulation in a section of a semi-enclosed

channel. In the left panel, the Coriolis effect is neglected, whereas

it is taken into account in the right panel. The simulations are done

with the numerical model Delft3D in its depth-averaged mode (see

supplementary information)

this end, a semi-analytical model is developed in Section 2

and investigated by means of a linear stability analysis. In

Section 3, the results of the linear stability analysis are pre-

sented and further analyzed with an asymptotic expansion

considering a weak Coriolis force. Section 3 is followed by

a discussion (Section 4) and the conclusions (Section 5).

2Model

2.1 Governing equations

The semi-analytical model developed in this section is

similar to those used by Schramkowski et al. (2002) and

Hepkema et al. (2019), which successfully explained the

emergence of tidal bars in confined channels. The main

extension here is that the Coriolis effect is taken into

account.

The domain shape consists of an open section of a

straight channel distant from the seaward and landward

boundaries. The channel has a uniform width B∗, depth

H ∗, and a length which is small compared to the tidal

wavelength and the length scale of channel width variations

(Fig. 2). These choices imply that we consider a local

model, ignoring sloping background topography, and apply

the rigid-lid approximation (sea surface elevation only

appears in the pressure gradient force). The hydrodynamics

is governed by the depth-averaged shallow water equations,

including the Coriolis effect. The flow is driven by a

spatially uniform pressure gradient that oscillates with the

principal tidal frequency σ ∗. The dimensional (henceforth

denoted with an asterisk) continuity and momentum

equations read:

∇
∗

· ((H ∗ − h∗)u∗) = 0, (1)

∂u∗

∂t∗
+ (u∗

· ∇
∗)u∗ +

r∗u∗

H ∗ − h∗
+ F∗u∗ = −g∗

∇ζ ∗. (2)

Here, t∗ and x∗ = (x∗, y∗) are the time and space

coordinate. Furthermore, ∇
∗ = (∂/∂x∗, ∂/∂y∗), u∗ =

(u∗, v∗) is the depth-averaged current velocity, ζ ∗ the free

surface elevation, and h∗ the bottom elevation (with respect

to the undisturbed bed). In Eq. 2, the bottom stress is

linearized (see, e.g., Zimmerman 1982; Terra et al. 2005),

i.e., it is modelled as ρ∗r∗u∗, where ρ∗ is the water density

and r∗ = cdU
∗8/(3π), with cd the drag coefficient, and U∗

a typical amplitude of the tidal current along the channel

direction. The parameter g∗ is the gravitational acceleration

and

F∗ = f ∗

(

0 −1

1 0

)

,

with f ∗ the Coriolis parameter (here assumed constant).

The bed elevation h∗ evolves due to the divergence of

volumetric sediment transport q∗:

(1 − p⋆)
∂h∗

∂t∗
= −∇

∗
· q∗. (3)

Fig. 2 Model domain of semi-analytical model. Along-channel view

(left). Cross-channel view (right). Here, H ∗ is the undisturbed depth,

ζ ∗ the free surface elevation, h∗ the bottom height, and B∗ the channel

width. The x∗, y∗, and z∗ arrows denote the direction of the coordinate

axes (x∗ is along-channel and y∗ cross-channel)
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Here, p⋆ is a porosity parameter and

q∗ = s∗
1‖u∗‖b1u∗ − s∗

2‖u∗‖b2∇h∗, (4)

where ‖u∗‖2 = u∗2 + v∗2 and s∗
1 , s∗

2 , b1, and b2 are positive

real numbers. The first term in Eq. 4 represents the advective

transport of sediment and the second term accounts for bed

slope effects. Equation 4 corresponds, with different choices

for s∗
1 , s∗

2 , b1, and b2, to most bed load and total load

sediment transport formulations (Soulsby 1997).

The boundary conditions imposed at the sides of the

channel are:

v∗ = 0 and
∂h∗

∂y∗
= 0 at y∗ = 0, B∗. (5)

Equations 1–4 are made dimensionless (no asterisk) by

first scaling time t∗ and space x∗ as:

t = σ ∗t∗ and x =
x∗

B∗
.

Subsequently, the depth-averaged velocity u∗ = (u∗, v∗),

the free surface elevation ζ ∗, and the bottom elevation h∗

are scaled as:

u =
u∗

U∗
, ζ =

g∗

U∗2
ζ ∗ and h =

h∗

H ∗
.

The dimensionless continuity and momentum equations

read:

∇ · ((1 − h)u) = 0, (6)

σ
∂u

∂t
+ (u · ∇)u +

ru

1 − h
+ Fu + ∇ζ = 0, (7)

where ∇ = (∂/∂x, ∂/∂y), σ = σ ∗B∗/U∗, r =

r∗B∗/(U∗H ∗) and

F =
B∗

U∗
F∗ =

1

Ro

(

0 −1

1 0

)

,

with Ro = U∗/(f ∗B∗) the Rossby number.

The dimensionless bed elevation equation reads

∂h

∂t
= −ε∇ ·

(

‖u‖b1 u − Λ̃‖u‖b2∇h
)

.

Here, Λ̃ = s∗
2U∗b2−(b1+1)H ∗/(s∗

1B∗) is a bed slope

parameter and ε the ratio of the tidal time scale 1/σ ∗

and the morphological time scale (1 − p⋆)H
∗B∗/Q∗, with

Q∗ = s∗
1U∗b1+1 a typical volumetric sediment transport

magnitude. Given that the bed evolves slowly and that the

sediment transport varies almost periodically (with the tidal

frequency), the bed evolution is approximated by the tidal

average of the divergence of the sediment transport:

∂h

∂τ
= −〈∇ · q〉 with q = ‖u‖b1u − Λ̃‖u‖b2∇h, (8)

where τ = εt and 〈·〉 denotes the average over one

dimensionless tidal period 2π .

The dimensionless boundary conditions read

v =
∂h

∂y
= 0 at y = 0, 1. (9)

2.2 Linear stability analysis

The bottom pattern that initially forms when a tidal current

flows over a horizontal sandy bed is analyzed with a linear

stability analysis. An equilibrium solution (u0, v0, ζ0, h0) to

the system of Eqs. 6–9 is described by a spatially uniform

symmetrical tidal current u0 = (u0, v0) = (cos(t), 0),

driven by a spatially uniform pressure gradient:

−∇ζ0 = σ
∂u0

∂t
+ ru0 + Fu0,

over a horizontal bed h0 = 0.

Small perturbations on the flat bed result in perturbations

of the flow variables and vice versa. Let ξ be small and

substitute:

h = h0 + ξh1 + O(ξ2),

u = u0 + ξu1 + O(ξ2),

ζ = ζ0 + ξζ1 + O(ξ2)

in Eqs. 6–8. At O(ξ), this results in a linear system of partial

differential equations:

∂u1

∂x
+

∂v1

∂y
− u0

∂h1

∂x
= 0, (10)

σ
∂u1

∂t
+ u0

∂u1

∂x
+ r(u1 + u0h1) −

v1

Ro
+

∂ζ1

∂x
= 0, (11)

σ
∂v1

∂t
+ u0

∂v1

∂x
+ rv1 +

u1

Ro
+

∂ζ1

∂y
= 0, (12)

∂h1

∂τ
+ b1〈|u0|

b1
∂u1

∂x
〉 − Λ∇2h1 = 0. (13)

Here, Λ = Λ̃〈|u0|
b2〉 is a bed slope parameter and u1 and

v1 are the components of u1 = (u1, v1). In the derivation

of Eq. 13, the continuity (10) and 〈|u0|
b1u0〉 = 0 are used

to simplify the expression. Combining the continuity and

momentum equations (substituting (10) in ∂/∂x (12)−∂/∂y

(11)) eliminates ζ1 and yields an equation for the vorticity

Ω1:

σ
∂Ω1

∂t
+ u0

∂Ω1

∂x
+ rΩ1 = u0

(

r
∂h1

∂y
−

1

Ro

∂h1

∂x

)

, (14)

with

Ω1 =
∂v1

∂x
−

∂u1

∂y
. (15)

The first term on the right-hand side of Eq. 14 is the torque

due to bottom friction. The second term on the right-hand

side is the Coriolis torque. The terms on the left-hand side

of Eq. 14 describe the vorticity’s inertia, its advection by

the equilibrium current u0, and its dissipation due to bottom

friction, respectively.
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Equations 10, 13, 14, and 15, together with the boundary

conditions, allow for solutions of the form:

(u1, v1, Ω1, h1) = (û, v̂, Ω̂, ĥ)eikx + c.c.. (16)

Here, c.c. stands for complex conjugate, û(t, y, k),

v̂(t, y, k), Ω̂(t, y, k), ĥ(τ, y, k) are complex valued func-

tions, and k is a dimensionless along-channel wavenumber,

which relates to a dimensional wavenumber k∗ = k/B∗.

Substituting (16) in the continuity (10) and the vorticity (14)

yields:

ikû +
∂v̂

∂y
= u0ikĥ, (17)

σ

r

∂Ω̂

∂t
+

(
u0ik

r
+ 1

)

Ω̂ = u0

(

∂ĥ

∂y
− γ ikĥ

)

. (18)

The parameter γ = (rRo)−1 denotes the relative

importance of the vorticity producing torque due to the

Coriolis effect and the torque due to the bottom friction.

Thus, when the Coriolis effect is neglected, γ = 0 and

only the torque due to bottom friction produces vorticity.

Substituting (16) in the bottom evolution (13) results in:

∂ĥ

∂τ
= −b1ik〈|u0|

b1 û〉 + Λ

(

∂2ĥ

∂y2
− k2ĥ

)

. (19)

Inspired by the boundary conditions and the fact that

without the Coriolis effect, ĥ ∼ cos(nπy) with n a natural

number (Schramkowski et al. 2002), we write ĥ as a cosine

series:

ĥ =

∞
∑

n=0

h̃n cos(nπy), (20)

with h̃n(τ, k) complex valued functions for every natural

number n. In the Appendix, the current û is expressed

in terms of the bottom elevation ĥ by solving (17)–(18).

Furthermore, it is shown in the Appendix that substituting

the cosine series (20) into the bottom evolution (19) and

truncating the summation at N results in:

∂h̃

∂τ
= (D + γ A) h̃. (21)

Here, h̃ = (h̃0, . . . , h̃N ), D = diag(ω0
0, . . . , ω

0
N ) is a

diagonal matrix and A is a matrix with elements amn, where

ω0
m = α

(mπ)2

k2 + (mπ)2
− Λ

(

(mπ)2 + k2
)

, (22)

amn =

{

0 if m + n is even,

4αikm2

(m2−n2)((mπ)2+k2)
otherwise,

(23)

with α = b1ik〈|u0|
b1ϕ〉 a positive real number, where ϕ(t) is

the time-dependent part of Ω̂ (see Appendix). Equation 21

admits solutions of the form:

h̃ = eωτ h, (24)

with ω an eigenvalue of D + γ A and h the corresponding

eigenvector. The superscript 0 of the elements in the

diagonal matrix D represents the fact that these are the

eigenvalues when γ = 0 (no Coriolis effect).

For every wavenumber k, we calculate the eigenvector

hj (k) corresponding to the j -th eigenvalue ωj (k). The

eigenvalues and corresponding eigenvectors are sorted such

that ω0 ≥ · · · ≥ ωN . The wavenumber k, for which

the largest growth rate ω0(k) is attained, is called the

preferred wavenumber kpref. The corresponding eigenvector

h0(kpref) = (p0, . . . , pN ) sets the spatial structure of the

fastest growing bottom pattern:

hpref =

N
∑

n=0

pn cos(nπy)eikprefx + c.c. (25)

The second and third largest eigenvalues are denoted by

ω1 and ω2, respectively. The dimensionless growth rates ω

relate to dimensional ones by ω∗ = ωεσ ∗ (since τ = εt =

εσ ∗t∗).

3 Results

In the following experiments, we chose model parameters

based on the Western Scheldt. The dimensionless model

parameters are summarized in Table 1. They correspond to

a channel width of B∗ = 5 km, channel depth of H ∗ =

Table 1 Model parameters and their default values. These values are representative for the Western Scheldt (values for the dimensional parameters

are given in the text)

Parameter Value Definition Description

σ 0.7 σ ∗B∗/U∗ Relative importance of inertia to advection

r 1 r∗B∗/(U∗H ∗) Relative importance of friction to advection

Ro−1 0.5 f ∗B∗/U∗ Relative importance of Coriolis effect to advection

Λ 0.005 Λ̃〈|u0|
b2 〉 Bed slope parameter

b1 2 Advective sediment transport parameter

b2 2 Bed slope effect parameter

N + 1 10 Number of terms in cosine series of ĥ

1508 Ocean Dynamics (2020) 70:1505–1513



10 m, and with a typical current velocity with amplitude

U∗ = 1 m s−1 and radian frequency σ ∗ = 1.4 · 10−4 s−1

(M2 tide). The gravitational constant is g∗ = 10 m s−2,

the friction parameter r∗ = 2 · 10−3 m s−1, and the

(default) Coriolis parameter f ∗ = 10−4 s−1. The sediment

transport parameters (following Schramkowski et al. (2002)

and Hepkema et al. (2019)) : s∗
1 = 3 · 10−4 m1−b1 sb1 ,

s∗
2 = 1.5 · 10−3 m2−b2 sb2−1, b1 = b2 = 2 (see Section 4.2)

and porosity p⋆ = 0.4.

3.1 Sensitivity to Rossby number

To investigate the role of the Coriolis effect on the initial

formation of bars, the inverse Rossby number Ro−1 is

varied. All other parameters are kept fixed such that varying

Ro−1 corresponds to varying the Coriolis parameter f ∗.

The results are summarized in Fig. 3. The top panels of

the figure show the first three growth curves (i.e., ω0, ω1

and ω2 versus wavenumber k) for different values of the

inverse Rossby number Ro−1. The figure reveals that the

growth rate of the fastest growing pattern slightly increases

with increasing Ro−1. The wavenumber kpref for which the

growth rate attains its maximum value is hardly influenced

by the Coriolis effect.

The panels in the two middle rows in Fig. 3 illustrate

the patterns and the residual current that correspond to the

fastest growing patterns for different values of the inverse

Rossby number. When the Coriolis effect is neglected

(Ro−1 = 0), the patterns have a tidal bar structure of

cos(nπy) cos(kx), with n a natural number and k the

wavenumber. However, the pattern significantly changes

when the Coriolis effect is considered. In that case, the

fastest growing pattern seems a combination of tidal bars

and oblique tidal ridges. Moreover, when the Coriolis effect

is neglected or very weak, the cells of residual current are

in between troughs and bars, whereas the residual currents

go around the bars and troughs when the Coriolis effect is

taken into account.

The bottom row of panels in Fig. 3 shows, for different

values of the inverse Rossby number Ro−1, the components

pn of the eigenvector h0(kpref). The figure reveals that the

spectrum widens with increasing Ro−1. Moreover, looking

Fig. 3 Top row: dimensionless growth rates of the three fastest grow-

ing modes, ω0, ω1, and ω2, versus dimensionless along-channel

wavenumber k for different values of the inverse Rossby number

Ro−1. The dots in the top panels indicate the maximum growth rate

and correspond to the figures in the rows below. Second row: fastest

growing bottom pattern for different values of Ro−1. Third row: resid-

ual currents over the bottom pattern in the second row. Bottom row:

amplitudes and arguments of cosine series coefficients that correspond

to the the bottom patterns in the second and third rows (see Eq. 25). A

value Ro−1 = 0.5 is representative for the Western Scheldt. A dimen-

sionless growth rate ω = 0.5 corresponds to a dimensional growth rate

of approximately 0.16 yr−1 and a dimensionless wavelength 2π/k = 3

corresponds to a dimensional wavelength of 15 km
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at the phases of the components pn, it appears that, in all

cases considered, the patterns are a good approximation of

the form:

hpref ≈ 2|p1| cos(πy) sin(kprefx)

+2|p2| cos(2πy) cos(kprefx)

−2|p3| cos(3πy) sin(kprefx).

The fact that only a narrow part of the spectrum is involved

follows from expression (23). Since the coefficients amn

decrease when (m2 −n2) increases, the equation of ∂h̃m/∂τ

is mostly dependent on the coefficients h̃n for which n is

close to m.

3.2 Asymptotic analysis for weak Coriolis force

Above, it was shown that when the Coriolis effect is

considered, the maximum growth rate slightly increases

and the fastest growing pattern changes significantly. An

explanation for this is sought by analyzing the system for

small values of γ (while fixing r), which corresponds to

small values of the inverse Rossby number Ro−1 (i.e., weak

Coriolis force).

Let, as before, ωj and hj for j = 0, . . . N be eigenvalues

and eigenvectors of the (perturbed) eigenvalue problem:

ωh = (D + γ A)h (26)

and expand these eigenvalues and eigenvectors in powers of

γ :

ωj = ω0
j + γω1

j + γ 2ω2
j + O(γ 3),

hj = h0
j + γ h1

j + γ 2h2
j + O(γ 3),

for j = 0, . . . , N . The eigenvectors of the O(1) eigenvalue

problem are h0
j = ej with ej the standard basis vectors of

R
N+1 (i.e., the j -th entry of ej equals 1 and the others 0).

The eigenvalues ω0
j are given in Eq. 22.

At O(γ ), Eq. 26 reads:

ω0
j h1

j + ω1
j ej = Dh1

j + Aej . (27)

The O(γ ) correction to the eigenvalues is now computed by

taking the standard inner product of Eq. 27 with ej , resulting

in:

ω1
j = ajj .

Here, it is used that ω0
j h1

j · ej = Dh1
j · ej . Given that

ajj = 0, it follows that there is no O(γ ) correction to the

eigenvalues. However, there is an O(γ ) correction to the

eigenvectors. To see this, take the inner product of Eq. 27

with em (m �= j ) to obtain the m-th component of h1
j :

h1
j · em =

amj

ω0
j − ω0

m

.

Figure 4 shows that the the superposition of the tidal bar

pattern (colors) and the perturbation induced by the Coriolis

Fig. 4 The O(1) (as γ ↓ 0) bottom pattern (colors). The white contour

lines denote the O(γ ) correction due to the Coriolis effect. Solid lines

denote positive values (bar) and dashed lines negative ones (troughs)

effect (white contour lines) result in the tidal sand ridges by

connecting the bars and troughs. Since the perturbation due

to the Coriolis effect is anti-symmetric with respect to the

channel axes, it breaks the reflective symmetry of the tidal

bar pattern (with respect to the middle of the channel).

Lastly, we show that the correction to the largest

eigenvalue is positive by considering the O(γ 2) problem:

ω0
j h2

j + ω1
j h1

j + ω2
j ej = Dh2

j + Ah1
j . (28)

Taking the inner product with ej and substituting ω1
j = 0

results in:

ω2
j = Ah1

j · ej =
N∑

m=1

(h1
j · em)(Aem · ej )

=
N∑

m=1

amj ajm

ω0
j −ω0

m

,

where again, it is used that ω0
j h2

j · ej = Dh2
j · ej . For all

m, amjajm > 0 and if ω0
j is the largest eigenvalue of the

unperturbed system, ω0
j − ω0

m > 0. Hence, a weak Coriolis

effect increases the maximum growth rate of the bottom

perturbations, which is consistent with the findings in Fig. 3.

4 Discussion

4.1 Oblique tidal ridges versus tidal bars

The differences in patterns when the Coriolis effect is

taken into account or not follow from the additional torque

exerted by the Coriolis effect on water motion over the

longitudinally sloping bed. When the Coriolis effect is

neglected and only the frictional torque due to lateral bottom

slopes is considered, the fastest growing bottom patterns

consist of tidal bar patterns, identical to those obtained by

Seminara and Tubino (2001), among others. An elaborate

explanation of the physical mechanism of the formation of

tidal bars is given by Hepkema et al. (2019). When the

Coriolis torque is taken into account, the joint action of the

two torques results in the formation of oblique tidal sand

ridges. This mechanism is the same as the one responsible

for the initial formation of offshore tidal sand ridges,

1510 Ocean Dynamics (2020) 70:1505–1513



as explained by Huthnance (1982). For completeness, we

summarize the two mechanisms below.

Both the morphodynamic instability leading to tidal bars

and the instability leading to tidal sand ridges result from

the fact that perturbations of the flat bottom in the form of

tidal bars or tidal sand ridges alter the tidal currents flowing

over them (or vice versa). This tide-topography interaction

results in residual currents, such that both during the ebb

and flood phase, the currents become stronger upstream of

the bars/ridges, whereas they are weakened downstream of

the bars/ridges (and vice versa for the troughs) (Zimmerman

1981). This results in sediment transport converging at

the bars or ridges and diverging at the troughs, hence the

instability.

Figure 5 illustrates the tide-topography interaction. In

the top panels, a tidal bar pattern is considered with a

tidal current flowing over it. Due to lateral gradients in

the bottom, a frictional torque generates vorticity at the

principal tidal frequency, between the bars and troughs

(green round arrows in the figure). The M2 vorticity is

transported by the background M2 current, resulting in a

residual tidal vorticity as indicated by the light blue arrows

in the figure. Adding the background current to the residual

current results in higher velocities upstream of a bar and

lower velocities downstream of the bar (and vice versa for

the troughs).

In the bottom panels of Fig. 5, a tidal sand ridge pattern is

shown with the same background current. Also here, due to

lateral bottom slopes, a frictional torque generates vorticity

at the M2 frequency. Now, in addition, the longitudinal

bottom slopes result in a Coriolis torque. On the Northern

Hemisphere, the Coriolis and frictional torque are in the

same direction when the ridges are rotated anti-clockwise

with respect to the background current. Also, in this case,

the background M2 current transports the M2 vorticity,

resulting in residual vorticity as indicated by the light blue

arrows in the figure. Again, when the residual current is

added to the background current, the velocities are higher

upstream of the ridge than downstream and vice versa for

the troughs.

An essential difference between the residual currents due

to tidal bars and those due to tidal ridges is that in the later

case the residual currents are around the crests, whereas in

the former case they are directed toward the crests. Note

that pure tidal ridges as in the figure can not form in a

confined channel because they violate the lateral boundary

conditions, but a similar pattern is possible.

4.2 Sediment transport formulation

In the sediment transport formulation q in Eq. 8, we chose

b1 = b2 = 2. This corresponds to advective bed load

transport as in Bailard (1981) and a bed slope effect due

to eddy diffusivity, which is larger than the bed load bed

slope effect as in the Bailard formulation (Hepkema et al.

2019). Following the later study, the bed slope parameter s∗
2

is calculated as:

s∗
2 =

μ∗w∗
s α

∗

κ∗
v γ ∗

(

1 − e
−

w∗
s

κ∗
v H∗

)−1

≈ 0.0015 s,

where μ∗ (≈ 5 m2 s−1) is the horizontal eddy diffusion

coefficient, w∗
s (≈ 0.013 m s−1) the sediment settling

velocity, κ∗
v (≈ 0.01 m2 s−1) the vertical eddy diffusivity

coefficient, α∗ (≈ 4 ·10−6 s m−1) an erosion parameter, and

γ ∗ (≈ 0.017 s−1) a deposition parameter.

When b1 = 2 and b2 = 3, the transport is the same as

for the Bailard formulation for bed load sediment transport

(Bailard 1981). When b1 = 4, advective transport is

similar to the Engelund Hansen parametrization for total

load transport (Engelund and Hansen 1967).

Fig. 5 The effect of bottom perturbations in the form of tidal bars (top

panels) and of tidal sand ridges (bottom panels) on the tidal current.

The left panel depicts the situation during flood (fat green arrow) and

the right panel the one during ebb (fat orange arrow). The green arrows

and orange round arrows denote the vorticity at the principle tidal fre-

quency M2. The light blue arrows depict the residual tidal vorticity

(after Zimmerman (1981) and Hepkema et al. (2019))
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Fig. 6 Dimensionless growth rates of the fastest growing mode ω0,

versus dimensionless along-channel wavenumber k for different values

of the sediment transport parameters b1 and b2. Here, Ro−1 = 0.5 and

the values of s∗
1 and s∗

2 are their default values ±10% (shaded area)

The magnitude of the dimensionless growth rate depends

on the choice of b1 and b2 (see Fig. 6), but the shape

of the fastest growing patterns is hardly affected by this

choice (see supplementary information). When b1 = 4,

the growth rates increase. When b2 = 3, the differences

are minimal for k ≈ kpref. For larger wavenumbers, the

growth rate is smaller when b2 = 3 compared with b2 = 2,

due to an increased bed slope effect. However, for those

wavenumbers, advection of suspended sediment becomes

relevant and the total load sediment transport formulation

(4) is no longer valid (Hepkema et al. 2019).

4.3 Comparison with a numerical model

The results of Section 3, obtained with the semi-analytical

model, correspond qualitatively with those of the numerical

model that has a similar setup as the one from Hibma et al.

(2004), but includes the Coriolis effect (see SI). When the

Coriolis effect is taken into account, oblique sand ridges

also form in this numerical model. Moreover, their growth

rate is larger than that of the tidal bars that form in the

absence of Coriolis (see the color bars in Fig. 1), while their

wavelength is hardly affected.

The wavelengths of the tidal bars in Fig. 1 produced

with the numerical model are approximately 5–7 km. The

average depth in the area considered is 6.5 m and the current

velocity amplitudes are close to 1.0 m s−1. In the semi-

analytical model, when H ∗ = 6.5 m and U∗ = 1 m s−1,

the preferred wavenumber is kpref ≈ 3.6, corresponding to

dimensional wavelengths of approximately 8.7 km. Hence,

the wavelength of the semi-analytical model is slightly

larger, but in the same order of magnitude as those simulated

by the numerical model. The similarities between the

two different models confirm robustness of the discussed

mechanism.

5 Conclusions

To study the role of the Coriolis effect in the initial

formation of bottom patterns in a tidal channel, a semi-

analytical model is extended to include the Coriolis effect.

It was shown that the Coriolis effect breaks the (anti-)

symmetry of the bottom pattern that initially forms. The

fastest growing bed perturbation can be characterized as

a combination of tidal bars and oblique ridges, unlike the

case without Coriolis effect where only tidal bars form. The

Coriolis effect also modifies the residual current so that

it drives anticyclonic circulations around the ridges. The

mechanism behind these modifications is the same as the

one causing the formation of oblique tidal sand ridges on

the continental shelf. Compared with the case where the

Coriolis effect is neglected, the preferred wavenumber is

similar, while the maximum growth rate slightly increases.
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Appendix : Derivation of bed evolution
equation

The current û in Eq. 19 is eliminated by first solving

the vorticity (18). Homogeneous solutions decay due to

the bottom friction. Therefore, a non-transient particular

solution reads:

Ω̂ = ikv̂ −
∂û

∂y
= ϕ

(

∂ĥ

∂y
− γ ikĥ

)

. (29)
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Here, ϕ(t) is the time-dependent part of Ω̂ , which is found

by solving:

σ

r

∂ϕ

∂t
+

(
u0ik

r
+ 1

)

ϕ = u0

for each harmonic component by means of a truncated

Fourier series. Multiplying (29) by ik and adding it to the

∂/∂y of Eq. 17 result in a differential equation for v̂:

∂2v̂

∂y2
− k2v̂ = ik

(

(ϕ + u0)
∂ĥ

∂y
− γ ϕikĥ

)

︸ ︷︷ ︸

F

, (30)

with boundary conditions v̂ = 0 at y = 0 and y = 1.

Variation of parameters yields a solution for v̂ and ∂v̂/∂y:

v̂ =

∫ 1

0

G(y, s)F (t, s) ds and
∂v̂

∂y
=

∫ 1

0

∂G

∂y
(y, s)F (t, s) ds,

with F(t, y) the right-hand side of Eq. 30 and Green’s

function:

G(y, s) =

{
− sinh(k(1−y)) sinh(ks)

k sinh(k)
if s < y,

− sinh(ky) sinh(k(1−s))
k sinh(k)

if s > y.

The current û in terms of ĥ now follows from the continuity

(17). Multiplying û by |u0|
b1 , taking the tidal average and

substituting this in Eq. 19, results in the bed evolution

equation:

∂ĥ

∂τ
= α

∫ 1

0

∂G

∂y

(

∂ĥ

∂s
− γ ikĥ

)

ds + Λ

(

∂ĥ

∂y2
− k2ĥ

)

,

(31)

with α = b1ik〈|u0|
b1ϕ〉. Substituting the cosine series (20)

for ĥ results in:
∫ 1

0

∂G

∂y

∂ĥ

∂s
ds =

∞
∑

n=1

P 1
n h̃n and

∫ 1

0

∂G

∂y
ĥ ds =

∞
∑

n=1

P 2
n h̃n,

with

P 1
n =

(nπ)2 cos(nπy)

(nπ)2 + k2
,

P 2
n =

k((−1)n − cos(k))
cosh(ky)
sinh(k)

+ k sinh(ky) + nπ sin(nπy)

(nπ)2 + k2
.

The inner products of P 1
n and P 2

n with 2 cos(mπy) read:

∫ 1

0

2 cos(mπy)P 1
n dy =

{
(mπ)2

(mπ)2+k2 if m = n,

0 otherwise,

∫ 1

0

2 cos(mπy)P 2
n dy =

{

0 if m + n is even,
−4m2

(m2−n2)((mπ)2+k2)
otherwise.

Therefore, substituting the cosine series in the bed evolution

equation and taking the inner product with 2 cos(mπy) yield:

∂h̃m

∂τ
= ω0

mh̃m + γ

∞
∑

n=1

amnh̃n,

with ω0
m and amn as in Eqs. 22 and 23. Truncating the sums

at N results in Eq. 21.
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