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Obliquity pacing of the western Pacific Intertropical
Convergence Zone over the past 282,000 years
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The Intertropical Convergence Zone (ITCZ) encompasses the heaviest rain belt on the Earth.

Few direct long-term records, especially in the Pacific, limit our understanding of long-term

natural variability for predicting future ITCZ migration. Here we present a tropical

precipitation record from the Southern Hemisphere covering the past 282,000 years, inferred

from a marine sedimentary sequence collected off the eastern coast of Papua New Guinea.

Unlike the precession paradigm expressed in its East Asian counterpart, our record shows

that the western Pacific ITCZ migration was influenced by combined precession and obliquity

changes. The obliquity forcing could be primarily delivered by a cross-hemispherical thermal/

pressure contrast, resulting from the asymmetric continental configuration between Asia and

Australia in a coupled East Asian–Australian circulation system. Our finding suggests that the

obliquity forcing may play a more important role in global hydroclimate cycles than previously

thought.
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T
he Intertropical Convergence Zone (ITCZ) migrates
meridionally with the seasonal angle of the sun1 and
circles the globe in the tropics, marking the Earth’s

meteorological equator (Fig. 1). The convergence of inter-
hemispheric trade winds leads to strong convective clouds,
heavy precipitation and intense latent-heat transfer, dominating
rainfall patterns worldwide. Owing to its intensive rainfall
gradient, a small displacement in the position of the ITCZ
can cause dramatic changes in hydrology and the frequency
of extreme weather events—such as droughts, floods and
tropical cyclones2. The collapse of the Mayan civilization
and several Chinese Dynasties has been attributed to persistent
droughts associated with ITCZ migrations3,4. The current
build-up of atmospheric greenhouse gases has the potential to
affect the future position of the ITCZ and corresponding climate5.
An in-depth reconstruction of the position, structure and
migration of the ITCZ is thus critical to our understanding
of global climate and sustainable human socioeconomic
development.

Lines of evidence from the past 210–220 kyr in Asian and
American monsoon records6,7 suggest that the ITCZ was
predominately driven by precessional forcing (B20 kyr). Within
the ITCZ territory, short-term terrestrial8–10 and marine11,12

proxy records have been reported. Few 100s-kyr records13 from
the meteorological core of the ITCZ in the low-latitude Pacific,
the southern counterpart of East Asia, severely hinders our
understanding of the natural ITCZ variability related to orbital
forcings in the Quaternary. Knowledge of the past variability of
western Pacific ITCZ has global significance because this region is
the largest heat and moisture source in the world.

Papua New Guinea (PNG), a mountainous terrain located at
the southern border of the ITCZ (Fig. 1 and Supplementary
Fig. 1), delivers a large amount of suspended sediments and
solutes to the adjacent oceans as a result of the prodigious
precipitation (42,000mmyr� 1) in the region14,15. This
transport occurs mostly in the wet season (490% annual load)
when the ITCZ is located over PNG16. Sediment archives from
nearby marine basins, therefore, reflect this fluvial delivery and
provide important information on precipitation related to the
ITCZ position.

Relatively high rare earth element (REE) contents (for example,
Nd B30 mg g� 1) are characteristic of solid crustal materials, as

compared with dissolved riverine (for example, B30 ng g� 1) or
seawater values (o1 pg g� 1)17. This feature has led to the study
of these elements and isotopes as terrestrial sediment tracers17–19

in the ocean.
Using inductively coupled plasma sector field mass spectro-

metric (ICP-SF-MS) techniques with 2s precision of ±2–6%
(ref. 20), we establish a 282-kyr-long record of REEs to calcium
(REE/Ca) ratios in the planktonic foraminifera Globigerinoides
ruber (Supplementary Fig. 2). The foraminiferal tests were
sampled from a marine sediment core MD05-2925 (9�210S,
151�280E; water depth 1,661m; Fig. 1 and Supplementary Fig. 1),
collected 50 km off southeastern PNG to reveal the orbital-scale
evolution of ITCZ precipitation intensity. Further, new calcula-
tions from a previous orbital-accelerated transient experi-
ment21,22 using a coupled fast ocean-atmosphere model
(FOAM) forced by variations in orbital parameters (see
Methods for details) are conducted to offer clues of possible
dynamical ITCZ migration processes in the western Pacific. Our
geochemical records and modelling results reveal an important
influence of obliquity forcing on the western Pacific ITCZ
variability.

Results
Planktonic foraminiferal REE. Marine carbonates can record
seawater REE composition even though seawater REE contents
vary by an order of magnitude23,24. Planktonic foraminifera23

from the eastern Pacific and coral carbonates24 from the High
Island of the Great Barrier Reef (GBR) have typical seawater REE
patterns25, characterized by shale-normalized (SN)26 light (LREE,
La-Nd) and middle REE (MREE, Sm-Ho) depletions, and heavy
REE (HREE, Er-Lu) enrichments (Nd/YbSN¼ 0.17–0.28 and Gd/
YbSN¼ 0.41–0.70; Fig. 2c,f,g). Deviating from seawater25 and
marine carbonates23,24 from the open ocean, the REE
patterns for the foraminiferal carbonates at the study site
are characterized by enrichments of LREE and MREE
(average Nd/YbSN¼ 0.45±0.04 (1 s.d. of the mean, sm) and
Gd/YbSN¼ 0.88±0.06 (1sm)) and high REE concentrations
(Fig. 2a), resembling more like the composition of PNG coastal
seawater27 (Nd/YbSN¼ 0.31 and Gd/YbSN¼ 0.83; Fig. 2c). The
local MREE-enriched source17 (Fig. 2b) combined with the REE
fractionations in seawater28 produces the pattern illustrated in
Fig. 2a. These features are consistent with dominance of river
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Figure 1 | Precipitation map and study site. Map of mean annual precipitation (cm per year; 1988–2004; data source: http://jisao.washington.edu/data/

gpcp/). Solid and dashed white lines represent the mean positions of the ITCZ in July and January, respectively. Symbols denote locations of Chinese

caves6,30–32 (green circles), marine sediment cores MD05-2925 in this study (blue circle) and 54MC of ref. 23 (white circle), GBR coral24 (white triangle),

PNG coastal coral29 (green triangle), PNG coastal seawater27 (white diamond), surface seawater of the Coral Sea25 (black diamond) and Gregory Lakes38

(orange circle). Simulated precipitation results in sectors of PNG (5–12�S and 130–160�E, blue solid lines) and North Australia (12–20�S and 120–160�E,

blue dashed lines) are given in Fig. 3 and Supplementary Fig. 8.
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input to the upper water column as recorded in PNG coastal
corals from Misima Island29 (Fig. 2e), which is termed PNG
‘island-weathering signature’ supplied by precipitation-dependent
river runoff17. The observations of an oxidative state at this core
site, the absence of the formation of Mn-Fe oxides (see Methods)
and no correlation between foraminiferal Nd/Ca and Fe/Ca data
(Supplementary Figs 3 and 4), also support the assertion that the
cleaned planktonic foraminifer REE can reliably capture the sea
surface water condition.

There is no significant difference between REE patterns for
periods with low and high foraminiferal REE contents over the
entire MD05-2925 record (Supplementary Fig. 5). Only 10–20%
variation of Nd/YbSN and Gd/YbSN ratios shows stable LREE/
HREE and MREE/HREE ratios over the entire sequence
(Supplementary Figs 4 and 5). This temporally consistent REE
pattern shows that a terrestrial source is dominant in the record
(see Supplementary Note 1 for detailed evaluation of the controls
on foraminiferal REE/Ca). The implication is also supported by
Nd isotopic data (Supplementary Fig. 2 and Supplementary
Table 2) and a replicated record from an adjacent marine
sedimentary core, ODP-1115B (9�110S, 151�340E; water depth
1,149m) (Supplementary Note 1 and Supplementary Fig. 6).
Therefore, the down-core planktonic foraminiferal REE/Ca
sequence at MD05-2925 site can reflect the river runoff flux
and be used as a qualitative proxy record of past ITCZ-related
precipitation over PNG. All measured G. ruber REEs/Ca ratios
(Supplementary
Data 1) of core MD05-2925 consistently co-vary with a high
correlation coefficient of 40.97 (except for Ce) over the past
282 kyr (Supplementary Fig. 2). Here we use Nd/Ca time
series (Fig. 3c) to represent REE variability and to infer regional
ITCZ-related precipitation changes.

Inferred precipitation records. The MD05-2925 Nd/Ca sequence
can be characterized by a sinusoidal-like curve with
low values of 0.2–0.3mmolmol� 1 and 10 s-kyr wide peaks of

0.4–1.2mmolmol� 1. G. ruber Nd/Ca cycles are generally aligned
with changes in precession-dominated Southern Hemisphere (SH)
summer insolation values (Fig. 3c,e and Supplementary Fig. 7a).
The agreement indicates that PNG precipitation variations are
broadly driven by precessional forcing. Intense PNG precipitation
results from the large temperature gradient between land and
ocean in response to high SH summer insolation.

Comparison of our Nd/Ca record with contemporaneous
stacked Chinese stalagmite d18O records6,30–32 over the past
282 kyr is illustrated in Fig. 3. The stalagmite d18O record has
been interpreted as a record of summer monsoon precipitation
and Asian summer monsoon (ASM) intensity; with more
negative (positive) stalagmite d18O values indicating higher
(lower) precipitation/stronger (weaker) ASM intensities30,31.
High foraminiferal Nd/Ca-inferred wet periods at PNG
generally match positive stalagmite d18O-derived dry conditions
in mainland China and vice versa (Fig. 3b,c). This
interhemispheric precipitation anti-phasing over the Asia–
Pacific realm can be attributed to latitudinal shifts of the ITCZ
and associated rain belts, driven by precession-dominated
changes in seasonal insolation (Supplementary Fig. 7a).

In China, cave record-inferred precession-dominated precipi-
tation intensity co-varies with solar radiation6 (Fig. 3a,b).
However, our planktonic foraminiferal REE/Ca series (Fig. 3c)
shows that precession is not the only orbital forcing mechanism
operating on the ITCZ in the southern low-latitude Pacific. In
PNG, there are six incompatible periods of low Nd/Ca-inferred
precipitation at about 45, 90, 140, 165, 210 and 250 kyr BP
(highlighted with grey bars in Fig. 3), when the Earth’s axial tilt
was high (Fig. 3c,f). Modelling results, synchronous with our
proxy sequence (Fig. 3d and Supplementary Figs 8 and 9), also
show consistent suppressed summer precipitation over PNG in
the SH tropics at high obliquity periods. Indeed, spectral power
analysis indicates that our foraminiferal Nd/Ca time series is
dominated by obliquity periodicity (Supplementary Fig. 7d),
highlighting the important role of Earth’s axial tilt in modulating
precipitation in the region of PNG.
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Figure 2 | REE patterns of waters and marine carbonates. (a) Averaged MD05-2925 G. ruber data with temporal variability range over the past 282 kyr in

this study (grey area). (b) PNG river17. (c) PNG coastal seawater (depth of 40 m at station EUC-Fe 27 from ref. 27, hollow diamonds) and open-ocean

surface seawater of the Coral Sea in the southwest Pacific (depth of 0–200m at station SA-7 from ref. 25, black diamonds). Comparison of REE patterns

from (d) MD05-2925 G. ruber in this study (blue circles), (e) PNG coastal coral29 (green triangles), (f) East Pacific core-top planktonic foraminifera

G. sacculifer (site 54MC of ref. 23; hollow circles), and (g) GBR coral24 (hollow triangles). Site locations are plotted in Fig. 1 and Supplementary Fig. 1.

Arrows depict the trend of the REE patterns. The REEs are shale normalized26.
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Discussion
The obliquity effect on SH tropical Pacific precipitation is most
likely associated with its control on the meridional thermal-
pressure contrast. Modelling results by FOAM suggest that high
obliquity is responsible for the establishment of a strong Siberian
high cell (Supplementary Fig. 8a) and East Asian winter monsoon
system22,33,34. In an experiment using the Geophysical Fluid
Dynamics Laboratory modelling, climate feedbacks and seasonal
response may outcompete the local radiative forcing of obliquity
and induce complicated response of northern high-latitude
climate35. However, FOAM-inferred atmospheric response
(Supplementary Fig. 8) is supported by other simulation results
using Community Climate System Model version 3 (ref. 36;
Supplementary Fig. 10) and Community Earth System version 1
(Supplementary Fig. 11).

Similar with the Siberian high, the Australian low, the
counterpart of the meridional circulation loop, is also affected
by obliquity (Supplementary Fig. 8c). Although, precessional
forcing dominates local land-ocean thermal contrasts and
influences the Australian low, the simulated Australian low does
not rigidly follow precession. Extreme low pressures are always
induced by high obliquity during the past 282 kyr and

distinguishably stronger than those induced by precession
(Supplementary Fig. 8). Obliquity-induced meridional circulation
can affect the intensity of the Australian summer monsoon, the
hemispheric counterpart of the Asian winter monsoon, through a
cross-equatorial ‘pressure-push’ process37. Specifically at high
obliquity, a strong pressure gradient between an intensified
Siberian high and Australian low enhances cross-equatorial flow
of northerly winds (Supplementary Fig. 8a–c). Similar with the
Australian low, the relative intensity of peak northerly winds at
high obliquity are significantly raised, although the precession
cycle is still obvious in the wind change, attributed to the effect of
local thermal contrast. The enlarged peak northerly winds
subsequently reinforce the southward shift of the ITCZ rain
belt to its southernmost position (Fig. 4a). This northward/
southward shift of the ITCZ leaves distinct rainfall patterns in
different locations. The net effect is to increase precipitation in
North Australia (Supplementary Fig. 8f) with compensated
amounts in PNG at the six periods tagged in Fig. 3. The
precipitation, thus, is relatively reduced at PNG despite high
seasonal insolation and presents a stronger obliquity component
(Supplementary Fig. 7). The intensified obliquity cycle in
modelling PNG precipitation is qualitatively in agreement
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with our reconstruction (Fig. 3c,d). Support for such a
strong southward migration of the ITCZ by high obliquity also
comes from a 100-kyr record at Gregory Lakes (20�150S,
127�300E), on the fringe of the desert in semi-arid northwestern
Australia38 (Figs 1 and 4). The occurrence of two past high lake
stands at 37–50 and 95–105 kyr BP (Fig. 4 of ref. 38) matches the
high-obliquity window and provides a SH terrestrial complement
to our marine record.

At low obliquity, the ‘pressure-push’ forcing37, strengthened by
the capacious Asian landmass, is weak and the northerly wind
intensity and ITCZ shift tends to follow precession-dominated
insolation. The peak northerly wind and Australian low occur
at high precession (B20, 70, 115, 185 and 230 kyr BP;
Supplementary Fig. 8). However, these precession-induced
changes are not more vigorous than ones at intervals with high
obliquity (Supplementary Fig. 8). For the scenario with low
obliquity and high precession, the northerly wind is not as strong
as relative to high-obliquity and high-precession cases and the
centre of the strong convergence rain belt stays relatively in the
north. As a result, PNG experiences enormous rainfall during
those times in response to precession-dominated local insolation.

In contrast, owing to the limited area of the Australian
continent, the low pressure near the warm Tibetan Plateau
(topographic forcing) in boreal summer is predominately driven
by local insolation changes34. This results in a precession-
controlled ITCZ shift in East Asia, as inferred from Chinese cave
records (Fig. 3). The northern and southern branches of the ITCZ
in the Asian-Pacific realm appear to respond differently to orbital
insolation. This interhemispheric asymmetry of ITCZ movements
is attributed to distinct land-sea configurations and topography.

Our planktonic foraminiferal REE record near PNG and
FOAM-simulated data reveal that obliquity can shift the position
of the ITCZ and operate in tandem with precessional forcing6,7.
Given that the obliquity signal is stronger relative to precession in

the Nd/Ca-inferred precipitation record than in the model
simulation (Supplementary Fig. 7), our proposed obliquity-
induced ‘pressure-push’ mechanism might be more significant
for both PNG and North Australia, which can further be clarified
by additional new low-latitude proxy records and advanced
model simulations. Understanding the dynamics of ITCZ
migration in the low-latitude Pacific through the Quaternary
glacial-interglacial oscillations is essential for deciphering the
dynamics of past global climate. The prevalence of the obliquity
signal in both ice volume39 and the low-latitude western Pacific as
implicated in our precipitation record highlights that this orbital
forcing plays an important role in global hydrologic cycles.

Methods
Core site. The selected marine sediment core, MD05-2925, is 2,843 cm in length
and was recovered in June 2005 during the IMAGES XIII-PECTEN (Past Equa-
torial Climate: Tracking El Niño) cruise on board the R.V. Marion Dufresne of the
French Polar Institute (IPEV). The core site is located at the southern margin of the
Western Pacific Warm Pool, 110 km to Fergusson Island, 50 km off southeastern
tip of PNG (Fig. 1 and Supplementary Fig. 1).

The core sediment is composed of a mixture of biogenic carbonate and silty
clay40. The chlorophyll level of 0.2mgm� 3 (ref. 41) for surrounding surface water
in eastern PNG suggests low regional productivity. The dissolved-oxygen
concentrations are high (43ml l� 1) through the whole water column including
bottom waters of eastern PNG42. The local benthic oxygen flux, reflecting organic
matter remineralization, is only 0.1molm� 2 per year (ref. 43). It is lower than the
values of 0.8molm� 2 per year for the reducing margins (notably in the eastern
boundary upwelling systems and North Indian Ocean)43. These data indicate an
oxidative condition at this study site. The upper 1,510 cm was used in this study.

Age model. The age model was established based on accelerator mass spectro-
metry (AMS) radiocarbon (14C) dates (Supplementary Table 1) and oxygen isotope
stratigraphy (Supplementary Fig. 12). A series of planktonic foraminiferal AMS 14C
dates at 19 different depths, including 200 individuals of Globigerinoides sacculifer
(4500mm) each, from the upper 292 cm of the core were measured. Dates were
calibrated to calendar ages (before 1950 AD) using CALIB 6.0.1 software44 with a
reservoir age difference (DR) estimated from the Marine Reservoir Correction
Database (http://calib.qub.ac.uk/marine/). The calculated weighted mean DR value
is 64±23 years for the selected four sites around the Solomon Sea45. The
chronology was based on linear interpolation between calibrated 14C dates
(Supplementary Table 1).

For the depths 4292 cm, the age model was developed by correlating the
composite benthic foraminiferal oxygen isotopic data of core MD05-2925 to the
LR04 stack record46 (Supplementary Fig. 12). Composite benthic foraminiferal
oxygen isotope data are established with benthic foraminifera (4250 mm, 2–4
individuals each depth), including the Uvigerina spp. (201 samples), Cibicidoides
wuellerstorfi (11 samples) and Bulimina spp. (7 samples) at core depths of
157–1,897 cm (Supplementary Fig. 13). Measurement of d18O data, relative to
Vienna Pee Dee Belemnite carbonate standard, was performed on a Micromass
IsoPrime isotope ratio mass spectrometer with 1s reproducibility of ±0.05%
(ref. 47). d18O offsets of C. wuellerstorfi (þ 0.64%)48 and Bulimina spp.
(� 0.11%)49 from Uvigerina spp. were corrected. This age model is supported
by the last occurrence of G. ruber (pink) occurred at depths of
830–835 cm, corresponding to 129.8 kyr BP (Supplementary Fig. 12), consistent
with the observation in the southern South China Sea50.

Screening for diagenesis. Scanning electron microscopy images of 30 uncleaned
individuals of planktonic foraminifera G. ruber (white, s.s. 250–300 mm) at six
depths of 477 (50.1 kyr BP) and 617 cm (81.6 kyr BP) with low REE content, 527
(56.8 kyr BP) and 577 cm (73.2 kry BP) with high REE content and 877 (135.0 kyr
BP) and 917 cm (146.1 kyr BP) with moderate REE content (Supplementary
Fig. 14) were carefully screened. Thirty more uncleaned individuals picked from six
depths (87, 267, 787, 1,087, 1,317 and 1,477 cm), respectively, at marine isotope
stages 1, 2, 5, 6, 7 and 8 were also checked with scanning electron microscopy. No
nodules of Mn-Fe oxides were noticeable and all shell walls were intact and
primitive (Supplementary Fig. 14). Additional careful inspection under microscope
did not observe Mn-Fe oxides for 1,200 tests from the selected 12 depths. For
conservative consideration, we still applied a full cleaning procedure on all samples.

Measurement of foraminiferal trace elements. REE contents of down-core
planktonic foraminifera G. ruber (white, s.s. 250–300mm) were measured
(Supplementary Fig. 2). Although no Mn-Fe nodules were noticeable
(Supplementary Fig. 14), G. ruber tests were cleaned with a full cleaning procedure
for foraminiferal trace metal analysis, modified from refs 51,52. About 20
foraminiferal individuals were gently crushed, placed in a Teflon vial and washed
sequentially with the following reagents (all at pH 8.5–9.0): (i) ethanolþH2O,

Figure 4 | Illustration of the proposed pressure-push mechanism driving

the southern branch of the western Pacific ITCZ in the Asia-Pacific realm.

This illustration is based on the condition of high Southern Hemisphere

summer insolation (high precession). (a) High obliquity. A strong pressure

gradient between intensified SH and AL enhances cross-equatorial and flow

reinforces the southward shift of the ITCZ rain belt to the southernmost

position in boreal winter. The net effect is to increase precipitation in North

Australia, with compensated amounts in PNG. (b) Low obliquity. The cross-

equatorial ‘pressure-push’ forcing is weak at low-obliquity and the centre of

ITCZ rain belt stays in the north, relative to high-obliquity cases in boreal

winter. As a result, PNG experiences enormous rainfall while North

Australia receives less rainfall.AL, Australian low; SH, Siberian high; light

blue arrow, surface wind intensity; solid white line, core position of the

western Pacific ITCZ1; blue circle, marine sediment core MD05-2925 site;

brown circle, Gregory Lakes38.
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(ii) 1% H2O2, (iii) 0.56M NH4Cl and (iv) 0.43M NH2OH. Cleaned tests, polished
with 10� 3M HNO3 to dissolve a possible thin post-depositional magnesium-rich
surface layer51,52, were rinsed with ultrapure water three times to wash off the
residues of chemicals and then dissolved in 5% HNO3 for instrumental analyses.
All chemical procedures were performed on a class-100 laminar-flow bench in a
class-10,000 clean room in the High-precision Mass Spectrometry and
Environment Change Laboratory (HISPEC), Department of Geosciences, National
Taiwan University.

REE/Ca ratios were calculated using the ion beams of 46Ca, 139La, 140Ce, 141Pr,
146Nd, 147Sm, 153Eu, 160Gd, 159Tb, 163Dy, 165Ho, 166Er, 172Yb and 175Lu, detected
on an ICP-SF-MS, Thermo Fisher ELEMENT II, equipped with a dry introduction
Cetac ARIDUS20 system. Two-month 2s reproducibility is ±1.9–6.5%. Mg/Ca,
Mn/Ca and Fe/Ca ratios with respective 2s errors of ±0.23%, ±0.68% and
±2.7% were determined on the same ICP-SF-MS, equipped with a quartz Scott-
type double-pass spray chamber53.

An insignificant correlation between Mg/Ca and Fe/Ca data (Supplementary
Fig. 3a) indicates the effectiveness of the cleaning techniques. Moreover, the
measured REE/Ca patterns (Fig. 2) are different from shale-like patterns for
uncleaned foraminifera with greater light REE (LREE) contents enrichment and
unclear Ce anomalies54. We also tested our cleaning procedure/analytical technique
by an interlaboratory comparison for analysing REE/Ca ratios of benthic
foraminifera C. wuellerstorfi sample from core GGC-15 (ref. 20). The results
showed that our REE data replicate measurements using a REE cleaning method at
the University of Cambridge (Fig. 5 of ref. 20). Detailed instrumentation and
fidelity of our methodology for foraminiferal test REE/Ca determination are
described in ref. 20.

Nd isotopic measurement. Planktonic foraminifera G. ruber and sediment
(o63 mm) samples were collected from two depth intervals of 472–477 cm
(49.5–50.1 kyr BP, 580 individuals, 4250 mm) and 537–542 cm (58.8–60.6 kyr BP,
250 individuals, 4250mm) of core MD05-2925 (Supplementary Fig. 2). The picked
planktonic foraminifera samples were cleaned with the same protocol for REE/Ca
ratio analysis and then dissolved in 2M HNO3. The sediment samples were first
cleaned with 10% CH3COOH to remove carbonate, and subsequently cleaned with
a reductive reagent (1M NH2OH �HCl in 25% CH3COOH) to remove possible
Fe-Mn phases on the sample surface55. The cleaned sediment samples were
decomposed in a mixed solution of HF, HClO4 and HNO3, and then dissolved
in 2M HNO3.

Neodymium in the 2M HNO3 dissolved samples was extracted by a two-stage
column separation56. The REE fraction in the solution was purified from the
remaining major and trace elements using Eichrom RE resin. Neodymium was
subsequently separated from the other REE with Eichrom Ln resin.

Neodymium isotopic compositions were measured by a multi-collector
ICP-MS, Thermo Fisher Neptune, in the HISPEC. The measured 143Nd/144Nd
ratios were normalized to 146Nd/144Nd¼ 0.7219 using an exponential law.
La Jolla standard was measured at 0.511811±0.000014 (or ±0.27 e; 2s, n¼ 13).
All 143Nd/144Nd ratios were calibrated to the reported value relative to the
La Jolla standard value of 0.511858 (ref. 57). Sample 143Nd/144Nd ratios
[(143Nd/144Nd)sample] are expressed as e notation defined by an equation
of eNd¼ [(143Nd/144Nd)sample/(

143Nd/144Nd)CHUR� 1]� 104, where the
143Nd/144Nd ratio of CHUR standard for Chondritic Uniform Reservoir
[(143Nd/144Nd)CHUR] is 0.512638 (ref. 58).

Modelling simulation. The simulated precipitation and climatological records
used in this study are from an orbital-accelerated transient run using FOAM
conducted by Kutzbach et al.21 and re-analysed by Shi et al.22. FOAM, a fully
coupled, mixed-resolution, and high-throughput general circulation model,
provides a good simulation of mean condition and variability59. With a factor of
100, FOAM was integrated for 2,820 years under orbital forcing only to obtain
climate evolution over the past 282 kyr. Changes in global ice volume/sea level and
greenhouse gases were not considered. The spatial resolution is set to 4�� 7.5� for
atmosphere and 1.4�� 2.8� for ocean. Because of the limitation of orbital
acceleration, it is difficult for the deep ocean to reach equilibrium so that the full
potential of the deep ocean feedback cannot be achieved. However, in previous
studies21,22,60, the responses of monsoon precipitation, mostly considered as a
response to the changes in the atmosphere-surface ocean system, to the orbital
insolation can be successfully retrieved in the annual variability. A detailed
description on the transient experiment is available in ref. 21.
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