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Abstract
In the interference scheduling problem, one is given a set of n communication requests described by pairs of
points from a metric space. The points correspond to devices in a wireless network. In the directed version
of the problem, each pair of points consists of a dedicated sending and a dedicated receiving device. In the
bidirectional version the devices within a pair shall be able to exchange signals in both directions. In both
versions, each pair must be assigned a power level and a color such that the pairs in each color class can
communicate simultaneously at the specified power levels. The feasibility of simultaneous communication
within a color class is defined in terms of the Signal to Interference Plus Noise Ratio (SINR) that compares
the strength of a signal at a receiver to the sum of the strengths of other signals. This is commonly referred
to as the “physical model” and is the established way of modelling interference in the engineering community.
The objective is to minimize the number of colors as this corresponds to the time needed to schedule all
requests.

We study oblivious power assignments in which the power value of a pair only depends on the distance
between the points of this pair. We prove that oblivious power assignments cannot yield approximation ratios
better than Ω(n) for the directed version of the problem, which is the worst possible performance guarantee
as there is a straightforward algorithm that achieves an O(n)-approximation. For the bidirectional version,
however, we can show the existence of a universally good oblivious power assignment: For any set of n
bidirectional communication requests, the so-called “square root assignment” admits a coloring with at most
polylog(n) times the minimal number of colors. The proof for the existence of this coloring is non-constructive.
We complement it by an approximation algorithm for the coloring problem under the square root assignment.
This way, we obtain the first polynomial time algorithm with approximation ratio polylog(n) for interference
scheduling in the physical model.
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1 Introduction
Signals sent by different sources in multipoint radio networks need to be coordinated as simultaneously transmitted
signals interfere with each other. If too many signals are sent at the same time in the same region of the network
then none of them might get through because the interference is too high. Signals might get scheduled
simultaneously, however, if they are exchanged in network regions that are sufficiently far apart so that the
interference is relatively low. In order to achieve a good throughput one needs to schedule the signals carefully.
The Media Access Control (MAC) layer is responsible for this important task in today’s wireless communication
networks. It provides single-hop full-duplex communication channels in multipoint networks to higher layers of
the protocol stack. In this paper, we study the task of the MAC layer from an algorithmic point of view. We
investigate scheduling algorithms that provide a set of channels between specified pairs of nodes in a wireless
network.

Most previous theoretical work (see, e.g., [11, 14, 8]) about scheduling signals or packets in radio networks
resort to graph based vicinity models of the following flavour. Two nodes in the radio network are connected by
an edge in a communication graph if and only if they are in mutual transmission range. Interference is modelled
through independence constraints: If a node u transmits a signal to an adjacent node v, then no other node
in the vicinity of v, e.g. in the one- or two-hop neighborhood, can transmit. The problem with this modelling
approach is that it ignores that neither radio signals nor interference ends abruptly at a boundary.

Some recent theoretical studies [12, 13, 2, 3] use a more realistic model, the so-called physical model, which
is well-accepted in the engineering community. It is assumed that the strength of a signal diminishes with the
distance from its source. More specifically, let δ(u, v) denote the distance between the nodes u and v. The loss
between u and v is defined as `(u, v) = δ(u, v)α, where α ≥ 1 is parameter of the model, the so-called path-loss
exponent.1 A signal sent with power p by node u is received by node v at a strength of p/`(u, v). Node u can
successfully decode this signal if its strength is relatively large in comparison to the strength of other signals
received at the same time. This constraint is described in terms of the Signal to Interference plus Noise Ratio
(SINR) being defined as the ratio between the strength of the signal that shall be received and the sum of the
strengths of signals simultaneously sent by other nodes (plus ambient noise). For successfully receiving a signal,
it is required that the SINR is at least β with β > 0 being the second parameter of the model, the so-called gain.

In a seminal work [12], Moscibroda and Wattenhofer posted the following problem regarding the physical
model: Assume that we are given a set of directed links between pairs of nodes that indicate communication
requests. How much time is required to schedule all these requests? In this paper, we extend their question
towards bidirectional communication requests. In fact, we believe that the bidirectional variant of this problem
might be of greater practical relevance as it is the theoretical analog of providing full-duplex communication
channels on the MAC layer.

In the interference scheduling problem one is given a set of n communication requests each consisting of a pair
of points in a metric space. Each pair shall be assigned a power level and a color such that the pairs in each color
class can communicate simultaneously at the specified power. The feasibility of simultaneous communication
within a color class is described by SINR constraints. We distinguish an unidirectional and a bidirectional version
of the problem, depending on whether each pair of nodes consists of a sending and a receiving device or both
nodes shall be able to exchange signals in both directions. The exact formulation of the SINR constraints for the
undirected and the bidirectional variant can be found in Section 1.1. The objective is to minimize the number
of colors, which corresponds to minimizing the time needed to schedule all communication requests. It can be
shown via a reduction from 3-Partition that both variants of this problem are strongly NP-hard. We thus seek
approximation algorithms.

The interference scheduling problem consists of two correlated subproblems: the power assignment and the
coloring. By far the most literature about MAC layer protocols focuses on scheduling with uniform power
assignment, in which all pairs send at the same power (see, e.g., [6, 15, 9]). In other studies, a linear power
assignment is considered, in which the power level for a pair (u, v) is chosen proportional to the loss `(u, v).
These are examples of oblivious power assignments which means the power level assigned to a pair is defined as a
function of the loss (or the distance) between the nodes of a pair. The advantage of oblivious power assignments
is their simplicity which allows for an immediate implementation in a distributed setting.

1.1 Formal description of the interference scheduling problem
Let the path loss exponent α ≥ 1 and the gain β > 0 be fixed. Let V be a set of nodes from a metric space. Let
δ(u, v) denote the distance between two nodes u and v. The loss between u and v is defined as `(u, v) = δ(u, v)α.

1Depending on the environment, it is usually assumed that α has a value between 2 and 5. Our analysis holds for any constant
α ≥ 1.
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One is given a set of n requests consisting of pairs (ui, vi) ∈ V 2. For every i ∈ [n] := {1, . . . , n}, one needs to
specify a power level pi > 0 and a color ci ∈ [k] := {1, . . . , k} such that the number of colors, k, is minimized and
the pairs in each color class satisfy the following SINR constraints that depend on the specific variant of the
problem.

In the directed variant, for every i ∈ [n], it must hold that

pi
`(ui, vi)

≥ β

 ∑
j∈[n]\{i}
cj=ci

pj
`(uj , vi)

+ ν

 ,

where ν ≥ 0 expresses ambient noise. In words, for every receiver vi the strength of the signal received from the
corresponding sender ui needs to be at least as large as β times the sum of the strengths of the signals received
from all other senders of the same color plus the noise.

In the bidirectional variant of the problem, for every i ∈ [n] and w ∈ {ui, vi}, it must hold that

pi
`(ui, vi)

≥ β

 ∑
j∈[n]\{i}
cj=ci

pj
min{`(uj , w), `(vj , w)} + ν

 .

In words, for each of the two nodes from a request (ui, vi) the strength of the signal received from the
communication partner needs to be as least as large as β times the sum of the strengths of the signals sent
between other communication partners plus the noise.

Note that this definition implicitly assumes that the communication within a pair follows some unknown
protocol ensuring that the signals within a pair do not overlap, as only one end-point of a pair contributes to the
interference at another node. Alternatively, one can assume that signals within a pair might overlap. This would
increase the interference at other nodes at most by a factor of two. Our results are robust against changes of the
interference by constant factors. The relevance of this model in comparison to the directed variant is discussed in
Section 6.

The above definition of the problem is derived from modelling interferences via SINR constraints which is the
established approach within the engineering community. For our analysis we neglect the ambient noise in the
above model, that is, we assume ν = 0 and satisfy the SINR constraints with “>” rather than “≥”. Observe that,
under this assumption, any feasible schedule remains feasible when all power levels are multiplied by the same
positive factor. Moreover, one can transform a schedule that is feasible under this assumption into a schedule
that is feasible for any ν > 0 by multiplying all power levels by a sufficiently large factor. Of course, this might
cause problems in practice as it might lead to a high energy requirement. However, this aspect is beyond our
analysis.

Finally, let us formally define that a power assignment is called oblivious if there is a function f : R>0 → R>0
such that, for every i ∈ [n], pi = f(`(ui, vi)).

1.2 Our contribution
The question that we study is whether oblivious power assignments are not only easy to implement but also
efficient with respect to the number of colors (time steps) that they require in comparison to an optimal schedule.
Our answer to this question is different depending on whether one considers the directed or bidirectional version
of the problem:

• For any oblivious power assignment p, there exists an instance with n directed communication requests
needing Ω(n) colors when using p, but only one color when using a different power assignment. That is,
oblivious power assignments cannot yield approximation ratios better than n for the directed interference
scheduling problem, which corresponds to the worst possible performance guarantee.

• In contrast, there exists a universally good oblivious power assignment for the bidirectional version of the
problem: The square root power assignment sets the power level for a pair (u, v) equal to

√
`(u, v). We

prove that this assignment admits a coloring with at most polylog(n) times the minimal number of colors,
for any set of n bidirectional communication requests.

The negative result for the directed variant is shown by specifying family of request pairs on the line. That is, this
result holds already for one-dimensional Euclidean space. In contrast, the positive result about the bidirectional
variant holds for request pairs from every metric space.
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Let us try to give some intuition about what is the secret behind the square root power assignment. Consider
n bidirectional communication requests on the line with ui = −2i and vi = 2i. It is not difficult to see that
the uniform assignment allows to execute only O(1) of these nested requests simultaneously as the signals sent
between outer pairs are drowned by the signals sent between inner pairs. (The exact number of requests that can
be scheduled at the same time depends on the choices for α and β.) Similarly, also the linear assignment allows
to schedule only O(1) requests simultaneously since now outer pairs disturb inner pairs. The same is true for any
superlinear power assignment, too. The square root assignment, however, allows to schedule a constant fraction
of the requests simultaneously as it balances the interference in the right way. Our analysis shows that this kind
of balancing effect does not only exist for the line but it is present in any metric space.

The proof for the existence of the coloring in the bidirectional case relies on simulating general metrics by
tree metrics and then, as a next step, decomposing tree metrics into star metrics in an hierarchical manner.
This existence proof is non-constructive. We make our result constructive by additionally giving an efficient
approximation algorithm for the coloring problem under the square root assignment. This way, we obtain the
first polynomial time algorithm with approximation ratio polylog(n) for interference scheduling in the physical
model.

1.3 Related Work
The first theoretical studies about interference scheduling in the physical model focus on topologies generated by
placing nodes randomly in two-dimensional Euclidean space, see, e.g., [7, 1, 10].

The study of interference scheduling with respect to arbitrary topologies has been initiated by Moscibroda
and Wattenhofer [12]. They present the first analysis of the directed interference scheduling problem. However,
they cannot handle general request sets but only specific kinds of sets. In particular, they study the question of
how many time slots (colors) are needed to schedule a set of communication requests ensuring strong connectivity
among n points placed arbitrarily in two-dimenisonal Euclidean space. On the one hand, they prove that there
are configurations requiring Ω(n) colors when using either uniform or linear power assignments. On the other
hand, they show that O(log4 n) colors are sufficient to ensure strong connectivity when choosing the right power
assignment. This assignment is quite involved and non-oblivious.

The first study for general request sets is presented by Moscibroda et al. in [13]. They prove that every
set of n directed requests can be scheduled using O(Iin · log2 n) colors, where Iin is a certain static interference
measure depending on the instance. This result enables them to improve the bound for strong connectivity from
O(log4 n) to O(log3 n). However, it does not give any approximation guarantee for general request sets since Iin
can deviate by a factor that is as large as Ω(n) from the optimal number of colors.

Chafekar et al. [2, 3] study a multi-hop version of the interference scheduling problem on two-dimensional
Euclidean instances, that is, they additionally consider the aspect of routing on top of the tasks power assignment
and coloring. The considered power assignment is restricted, that is, it is assumed that power levels must be
chosen from a specified interval [pmin, pmax]. The objective in [2] is to minimize the end-to-end latency, while
[3] aims at maximizing throughput. When breaking down the approach in [2] to the directed version of the
single-hop interference problem, it yields a schedule using O(opt′ · polylog(n,∆,Γ)) colors where opt′ denotes the
minimal number of colors needed for a schedule with slightly smaller power range [pmin, (1− ε)pmax], Γ denotes
the ratio between pmax and pmin, and ∆ denotes the aspect ratio, i.e., the ratio between maximum and minimum
distance over all pairs of nodes. In a recent work, Fanghänel et al. [4] improve on this result and achieve an
approximation factor of order O(logn log ∆). Let us remark that the dependence on the aspect ratio cannot be
avoided by both of these approaches as the presented algorithms employ the linear power assignment which,
without taking into account other parameters than n, cannot achieve an approximation ratio better than Ω(n).

2 Oblivious Power Assignments under Directed Constraints
We already stated in the unidirectional case any oblivious power assignment can have bad performance when
compared to an optimal scheme. To prove this we construct a family of instances for a given function f such
that using f requires at least Ω(n) colors or schedule steps while an optimum power assignment needs only O(1)
rounds.

Theorem 1. Let f : R>0 → R>0 be any oblivious power assignment function. For the unidirectional model there
exists a family of instances on a line that requires Ω(n) colors when scheduling with the powers defined by f
whereas an optimal schedule has constant length.
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Proof (sketch). We distinguish three cases. In the first case, we assume that f is asymptotically unbounded, that
is, for every c > 0 and every x0 > 0 there exists a value x > x0 with f(x) > c.

We consider the following family of instances as illustrated in Figure 1. They consist n pairs (ui, vi), with
distances xi between two nodes of a pair and χyi between neighboring pairs. Depending on β, we choose χ as a
suitable constant that is large enough to get along with different values of β.

Formally, this kind of instance can be defined by u1, v1, . . . , un, vn ∈ R such that

ui =
{

0 if i = 1
vi−1 + χyi otherwise

and vi = ui + xi.

We now define the distances xi and yi between the nodes recursively depending on the function f :

yi = 2(xi−1 + yi−1).

Given x1, . . . , xi−1 and yi, we choose xi such that xi ≥ yi and

f(xi) ≥ yαi
f(xj)
xαj

for all j < i.

This is always possible since f is asymptotically unbounded. By this construction it is ensured that a pair k is
exposed to high interference by pairs with larger indices. To show this, let S ⊆ [n] be a set of indices of pairs
that can be scheduled together in one step; k = minS.

For i ∈ S \ {k} it holds that

δ(ui, vk) =
i−1∑

j=k+1
xj +

i∑
j=k+1

χ · yj ≤ 2χ
i∑

j=k
yj ≤ 2χ

i∑
j=k

1
2i−j yi ≤ 4χyi.

Since all pairs in S can be scheduled in one step the SINR condition is satisfied for pair k:

β
∑

i∈S\{k}

pi
`(ui, vk)

≤ pk
`(uk, vk)

= f(xk)
xαk

.

Putting these facts together:

1
β

f(xk)
xαk

≥
∑

i∈S\{k}

pi
`(ui, vk)

≥
∑

i∈S\{k}

yαi
f(xk)
xα
k

(4χyi)α
= |S| − 1

(4χ)α
f(xk)
xαk

.

This implies |S| ≤ (4χ)α
β + 1, which means there are at least β

(4χ)α+βn = Ω(n) colors needed when using
pi = f(`(si, di)).

On the other hand for these instances there is a power assignment, pi =
√

2i, such that there is a coloring
using a constant number of colors. This is caused by the fact that for all instances described it holds that yi ≤ xi
and yi+1 ≥ 2xi. Thus for any link k the interference by the ones with higher index as well as the ones with lower
index form a geometric series. This means a constant fraction of all links may have the same color and therefore
there is a coloring using a constant number of colors.

In the second case, we assume that f is asymptotically bounded from above by some value c > 0 but does not
converge to 0. In this case, there exists a value b ∈ (0, c] such that for every x0 > 0 there exists a value x > x0
with f(x) ∈ [b, 2b]. Let χ > 1 be a suitable constant. We choose n numbers x1, . . . , xn satisfying the properties
a) f(xi) ∈ [b, 2b], for 1 ≤ i ≤ n, and b) xi ≥ χxi−1, for 2 ≤ i ≤ n. We set ui = −xi/2 and vi = xi/2. Observe
that this yields a sequence of nested pairs on the line, similar to the one described in Section 1.2. The power
assignment defined by f essentially corresponds to the uniform power assignment so that only a constant number
of requests can be scheduled simultaneously. In contrast, if χ is chosen sufficiently large then the square root

u1 v1 u2 v2 un vn
x1 χ · y2 x2 xn

Figure 1: A visualization of the instances of asymptotically unbounded f . xi and yi are chosen depending on f .
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power assignment can schedule all these requests simultaneously. Due to space limitations we skip the simple
calculations showing these properties.

Finally, in the third case, lim f(x) = 0, we again construct a sequence of nested pairs analogously to second
case but replacing condition a) by the condition f(xi) ≤ f(xi−1). Analogously to the second case, the power
assignment defined by f allows only for scheduling a constant number of pairs simultaneously while the square
root assignment can schedule all pairs simultaneously.

For bounded, linear and superlinear functions f this proof can be adapted to the bidirectional model. For
sublinear functions, however, such an adaptation is not possible. In fact, we will show in the next section that
there exists a sublinear function, namely the square-root function, which allows to minimize the number of colors
up to a polylogarithmic factor for bidirectional communication.

3 Existence of a Good Coloring for the Square Root Assignment
In this section we consider the bidirectional version of the interference scheduling problem. Recall that the square
root power assignment sets the power level for a pair (u, v) equal to

√
`(u, v) where `(u, v) = δ(u, v)α denotes

the loss between u and v. In the following, this power assignment is denoted by p̄. We prove the following main
theorem.
Theorem 2. Let (u1, v1), . . . , (un, vn) be a set of request pairs from a metric space for which there is a power
assignment p1, . . . , pn satisfying the bidirectional SINR constraints with only one color. Then, for p̄, there exists
a coloring with O(log3.5+α n) colors satisfying the bidirectional SINR constraints.
Before starting the actual proof we present two main techniques. Section 3.1 shows, that if we are given a
valid coloring for gain β, scaling the gain by a constant factor changes the number of colors needed only by a
logarithmic factor. In Section 3.2 we simplify our problem by splitting the communication pairs into single nodes.
A so called loss parameter is used to keep track of the loss between the communication partners.

The proof of the main theorem consists of three parts: In Section 3.3 we show how to break the problem for
general metrics down to tree metrics. Section 3.4 then reduces the problem from tree metrics to star metrics. In
Section 4 we present our analysis for stars, finishing the proof of the theorem.

3.1 Scaling the gain
Consider an instance of the interference scheduling problem in the directed or bidirectional variant with n
requests. Suppose both the coloring c and the power assignment p are fixed such that the SINR constraints are
satisfied with gain β. We show the existence of a coloring c′ that for the same power assignment p satisfies the
SINR constraints with a more restrictive gain β′ > β and uses only O(β′/β logn) times the number of colors in c.
Our analysis focuses on the bidirectional variant. The analysis for the directed variant is analogous.

We present an existence proof based on the randomized rounding technique. It can be derandomized by
the method of pairwise independence. The difficulty in applying this technique to the interference scheduling
problem is the non-convex domain of this problem. We circumvent this difficulty by considering the requests from
a fixed color class of c for given power assignment p. We say that a set of requests satisfies the SINR constraints
if it satisfies them using only one color.
Proposition 3. Let S denote a set of requests with power assignment p satisfying the SINR constraints with
gain β. Then there exists a subset S′ of S with |S′| ≥ β/8β′|S| satisfying the SINR constraints with gain β′ > β
for the same power assignment.
Proof. Suppose every request from S is chosen with probability β/4β′. To simplify notation, we identify requests
(ui, vi) with their index i. For i ∈ S, let Xi be a random variable such that Xi = 1 if request i is chosen and 0,
otherwise. We assume that the Xi’s are pairwise independent. Let S′′ = {i ∈ S | Xi = 1}.

Consider a request i = (ui, vi). It holds Pr [Xi = 1] = β/4β′. Let us have a closer look at the interference at
ui conditioning on Xi = 1. For j 6= i, let

wj = pj
min{`(uj , ui), `(vj , ui)}

· `(ui, vi)
pi

,

that is, wj is the normalized strength of the signals from (uj , vj) received at ui. As S satisfies the SINR constraints
with gain β, it holds

∑
j∈S\{i} wj ≤ β−1. Let the normalized interference at ui under S′′ be defined by

W (ui) =
∑

j∈S′′\{i}

wj .
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By linearity of expectation,

E [W (ui) | Xi = 1] =
∑

j∈S\{i}

wj E [Xj | Xi = 1] .

Observe that E [Xj | Xi = 1] = Pr [Xj = 1 | Xi = 1] = β
4β′ because of pairwise independence. Consequently,

E [W (ui) | Xi = 1] = β

4β′
∑

j∈S\{i}

wj ≤
1

4β′ .

Now applying the Markov inequality gives

Pr
[
W (ui) ≥ β′−1 | Xi = 1

]
≤ 1

4 .

The same is true for W (vi). Thus, the probability that request i violates the SINR constraint with gain β′ is at
most

Pr
[
W (ui) ≥ β′−1 ∨W (vi) ≥ β′−1 | Xi = 1

]
≤ 1

2 .

Now let S′ be the set of those requests from S′′ that satisfy the SINR constraints with gain β′. Our analysis
above shows that the probability that a request i from S is contained in S′ is Pr [Xi = 1] ·Pr [i ∈ S′|Xi = 1] ≥
β/4β′ · 1/2 = β/8β′. Hence, by linearity of expectation, the expected cardinality of S′ is at least β/8β′|S|.

Let us remark that the randomized existence proof above can be made constructive by applying the
derandomization technique of pairwise independence. This yields a deterministic polynomial time algorithm for
computing a set of requests |S′| of cardinality, say, β/9β′|S| instead of β/8β′|S|.

We are now ready to prove the following

Proposition 4. Let S denote a set of requests with power assignment p satisfying the SINR constraints with
gain β. Then there exists a coloring c′ for S with O(β/β′ log |S|) colors such that c′ together with p satisfy the
SINR constraints with gain β′ > β.

Proof. Choose a subset S′ from S with |S′| ≥ |S|β/8β′ and assign the first color to the requests in S′. The
remaining subset of size at most |S| · (1 − β/8β′) is colored recursively. This yields a coloring with at most
− log |S|/ log(1− β/8β′) + 1 = O(β/β′ log |S|) colors.

3.2 Splitting pairs
For our analysis of the interference scheduling problem we use a slightly modified variant, the node-loss scheduling
problem. One is given a set of nodes [n] and each node i is associated with a loss parameter `i. For every
i ∈ [n] := {1, . . . , n}, one needs to specify a power level pi > 0 and a color ci ∈ [k] := {1, . . . , k} such that the
number of colors, k, is minimized and the pairs in each color class satisfy the following SINR constraints.

pi
`i
≥ β

 ∑
j∈[n]\{i}
cj=ci

pj
`(i, j) + ν


In words, for each node the ratio between the power pi and the loss `i needs to be at least β times larger than
the sum of the strengths of the signals sent by other nodes plus the noise. Again we neglect the ambient noise in
the model, i.e., ν = 0 and fulfil the SINR constraints with “>” rather than “≥”.

A power assignment specifies a power level for each node. The square root power assignment p̄ sets the power
level for node i ∈ [n] equal to

√
`i. For a power assignment p = p1, . . . , pn and a set of nodes U ⊆ [n], let

Ip(i | U) =
∑

j∈U\{i}

pj
`(i, j)

denote the interference at node i ∈ [n] induced by elements of U . We say that U is β-feasible for a power
assignment p if pi`i > βIp(i | U), for every i ∈ U .

On any given instance, feasible schedule steps for the interference scheduling and the node-loss scheduling
problem are related as follows: First, if we have a feasible schedule step S for the node-loss scheduling that
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schedules a fraction greater than one half of the nodes, we can give a feasible schedule step for a constant fraction
of the nodes in the interference scheduling setting by scheduling the pairs with both nodes in S.
Second, if we have a set of pairs U that we can schedule in the interference scheduling setting with gain β, the
set of all nodes from pairs in U is β/2+β-feasible for the node-loss scenario, as we show in the following. For a
node i let I ′(i) denote the interference at this node in the interference scheduling problem, and I(i) denote the
interference at this node in the node-loss scheduling problem. If now all nodes from pairs in U transmit, the
interference at a single node i is at most twice the interference from the interference scheduling problem plus the
interference from the other node of this pair, i.e., pi/`i, so

I(i) ≤ 2I ′(i) + pi
`i
≤ 2 + β

β
· pi
`i
,

as I ′(i) ≤ pi/β`i. As the results from Section 3.1 can be proven analogeously for the node-loss scheduling problem,
we can compute a schedule for the node-loss scheduling problem from a schedule for the interference scheduling
problem, that is longer by at most a logarithmic factor.

In Section 4 we prove for the node-loss scheduling problem the following result.

Lemma 5. Let β′ ≥ β > 0. Suppose S([n], δ, `) is a star for which there exists a power assignment p such that
[n] is β′-feasible under p. Then there is a subset U ⊆ [n] with |U | ≥ (1−O(( ββ′ )

2/3)))n that is β-feasible under
the square root assignment p̄.

There a star S([n], δ, `) is defined by a set [n] of nodes placed around a center c, the distances of the nodes δ
and their loss parameters ` (see Section 4 for details). Using this lemma we now turn to the proof for Theorem 2.

3.3 From general metrics to trees
For this part we utilize the following lemma, which is suitably adapted from a lemma in [5].

Lemma 6. Given a finite metric space ([n], δ) there exist r = O(logn) edge-weighted trees T1, . . . , Tr with
node-set [n] such that the following holds

1. For every pair (u, v) ∈ [n]2 and for every tree Ti: δ(u, v) ≤ δTi(u, v) where δTi denotes the shortest path
metric induced by tree Ti.

2. For every node v ∈ [n] there exists a subset Tv ⊆ {T1, . . . , Tr} with |Tv| ≥ 9
10r such that the pairwise distances

involving v are only stretched by a logarithmic factor, i.e., ∀T ∈ Tv : ∀u ∈ [n] : δT (u, v) ≤ O(logn) · δ(u, v).

For a tree Ti in the above lemma we call the set of nodes whose distances are at most stretched by the logarithmic
factor the core of Ti, and denote it with Ci. Suppose that we are given an instance of the node-loss scheduling
problem in a metric space ([n], δ). With every tree Ti from the decomposition of Lemma 6 we associate a
corresponding node-loss scheduling instance that only includes nodes in the core of Ti (the loss parameters stay
the same).

Proposition 7. Suppose there exists a β′-feasible set U ⊆ [n] for the node-loss scheduling problem on ([n], δ).
Then there exists a tree Ti with a β′-feasible set of size at least 9

10 · |U | in its core Ci.

Proof. Since the distances in a tree increase, any set that is β′-feasible w.r.t. the original metric is still feasible in
a tree. Let j∗ := arg maxj |U ∩ Cj | and define U ′ := U ∩ Cj∗ . Note that

∑
i |U ∩ Ci| ≥

9
10 |U |r as every node in

U is in the core of at least 9
10r trees. Hence, |U ′| ≥ 9

10 |U | and Tj∗ is the desired tree.

Lemma 8. Suppose there is a β′-feasible subset U of core nodes for the node-loss scheduling instance in a
tree Ti (for some power assignment p). Then, this set U is β′′-feasible with respect to the original metric for
β′′ = Ω( β′

logα n ).

Proof. For nodes in the core the distances to other nodes decrease by at most a logarithmic factor f = O(logn),
when going from the tree distance to the original distance. This in turn can only increase the interference
at a node by a factor of fα. This means that for every node i ∈ U , the inequality pi/`i > β′Ip(i | U) implies
pi/`i >

β′

fα I
′
p(i | U), where Ip(i | U) and I ′p(i | U) denote the interference in the tree metric and the original

metric, respectively.
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3.4 From trees to stars
In this section we extend Lemma 5 to tree metrics.

Lemma 9. Suppose we are given an instance T ([n], δ, `) of the node-loss scheduling problem on a tree metric for
which there exists a power assignment p such that a subset U ⊆ [n] is β′-feasible under p. Then, there exists a
subset U ′ ⊆ U with |U ′| ≥ 9

10 |U | that is β-feasible under p̄ for β = Ω( β′

log2.5 n
).

Proof. In order to show the result we repeatedly make use of Lemma 5, and remove nodes from the set U that
cannot be scheduled by the square root power assignment in one round. In the end we show that we did not
remove too many nodes from U . For the first round we choose a node c in the tree such that the removal of c
partitions the tree into disjoint sub-trees with size at most n/2. Such a node can be found in any tree. Now we
consider the node-loss scheduling problem on the star metric obtained by selecting c as center and setting the
distance δv of a node v to the center as the tree-distance δ(v, c). Note that distances in this star-metric are not
smaller than distances in the original tree and that therefore the set U is β′-feasible in this metric.

When applying Lemma 5 with a suitable parameter β′′ = β/O(log3/2 n) we obtain a subset U ′1 ⊂ U , |U ′1| ≥
(1 − 1

10 logn )|U | that is β′′-feasible for the square-root power assignment p̄. Here the constant 10 comes from
suitably balancing the hidden constant in the O-notation of Lemma 5 and the hidden constant in the O-notation
of β′′. Of course, this subset may not be feasible for the square root power assignment in the original tree metric
([n], δ), because some nodes of U ′1 are closer in ([n], δ) and hence induce more interference between each other.
In order to compensate for this we re-run the algorithm on the forest obtained after splitting the graph at c, i.e.,
we delete all but one edge incident to c. In each of the trees of this forest we run the above algorithm recursively.
For each level i of the recursion, the algorithm returns a set U ′i , |U ′i | ≥ (1− 1

10 logn )|U | that is β′′-feasible in the
corresponding forest. There are at most logn recursion levels as the size of a tree reduces by at least a factor of
2 in each iteration. Let U ′ :=

⋂
i U
′
i . Then we have |U ′| ≥ 9|U |/10.

Note that a pair (u, v) ∈ U ′×U ′ has the correct distance in at least one of the recursions. Therefore, the total
interference induced at a node u ∈ U ′ (from all the other nodes of U ′) when using the square-root assignment
in the tree metric ([n], δ) is at most the sum of the interferences generated at u in all iterations which is at
most logn · 1

β′′
√
`u
, since u is β′′-feasible in each iteration. This means that the set U ′ is β = β′′

logn = Ω( β′

log2.5 n
)-

feasible.

3.5 Putting the pieces together
In this section we prove Theorem 2.

• We are given a set S of request pairs from a metric space ([n], δ) for which there is a power assignment that
satisfies the bidirectional SINR constraints with only one color. Let U denote the set of terminal nodes
of pairs from S. Following the discussion in Section 3.2 this set is β′-feasible for the node-loss scheduling
problem with β′ ≥ β

2+β (on the same metric ([n], δ)).

• We apply Proposition 7 to this set U , and obtain a subset U ′ ⊂ U , |U ′| ≥ 9
10 |U | that is β′-feasible and is

contained in the core Ci of a tree Ti.

• We apply Lemma 9 to this set and obtain a subset U ′′, |U ′′| ≥ 9
10 |U

′| that is β′′-feasible for the square-root
assignment p̄, where β′′ = Ω(β′/log2.5 n).

• Lemma 8 gives that this set is also β′′′-feasible for p̄ in the original metric, where β′′′ = Ω(β′′/logα n).

• Note that the subset U ′′ contains at least 9
10 ·

9
10 |U | >

8
10 |U | nodes. This means that for at least a 6

10 -fraction
of pairs from the original set S, both end-points are contained in U ′′. Let S′ ⊂ S denote a set that contains
only these pairs. The pairs in S′ fulfill the bidirectional SINR constraints with gain β′′′ for the power
assignment p̄.

• Rescaling the gain with Proposition 3, we obtain a subset S′′ with |S′′| ≥ β′′′/8β that fulfills the SINR
constraints with gain β.

• Observe that the size of S′′ is Ω(1/β log2.5+α n)|S|. Coloring the requests from S′′ with a single color and
repeating the process for the remaining request gives that we only need O(log3.5+α n) colors to color all
requests.

This completes the proof of the theorem.
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4 Analysis for star metrics
In this Section, we prove Lemma 5. Let β′ ≥ β > 0. We are given a set {(1, `1), . . . , (n, `n)} of node-loss pairs
(requests) being β′-feasible under some power assignment p. The nodes 1, . . . , n form a star centered around
an additional node c. The distance between c and i is denoted by δi. Let di = δαi , that is, di corresponds to
the loss between c and i. In the following, this parameter is called decay in order to distinguish it from the loss
parameter `i. W.l.o.g., we assume d1 ≤ d2 ≤ · · · ≤ dn. Let ai = `i/di. We have to show that there exists a subset
U ⊆ [n] with |U | ≥ (1−O(( ββ′ )

2/3)))n being β-feasible under the square root power assignment p̄.
We will first prove some helpful properties. These properties will show that the lemma follows relatively easy

for the special case in which the loss parameter is relatively large in comparison to the decay, i.e., ai > 2α+1
/β′,

for every i ∈ [n]. We then turn our attention to the case in which the loss parameter is relatively small, i.e.,
ai ≤ 2α+1

/β′, for every i ∈ [n]. Finally, we will combine the results for these special cases in order to prove the
lemma for stars with both small and large loss parameters.

4.1 Helpful properties
Consider two nodes i and i′ with i′ < i. As there exists a power scheme p with a β′-feasible schedule, it holds
that

pi′

`i′
> β′

pi
(δi + δi′)α

and pi
`i
> β′

pi′

(δi + δi′)α
.

Multiplying these equations we obtain (δi + δi′)2α > β′2 · `i · `i′ . As i′ < i we have (2δi)2α ≥ (δi + δi′)2α and thus

d2
i = δ2αi >

β′2

4α · `i · `i
′ . (1)

It follows

di ≥ ai ·
β′2

4α · `i
′ , (2)

di ≥ ai · ai′ ·
β′2

4α · di
′ , (3)

`i ≥ a2
i ·
β′2

4α · `i
′ . (4)

4.2 Stars with large loss parameters
In this section, we assume ai > 2α+1

/β′, for every i ∈ [n]. We apply Equation 4 with `i′ = `i−1 and repeat this
for i− j times deriving the following lower bound relating `i to `j , for i > j,

`i ≥ a2
i · . . . · a2

j+1 · `j ·
(
β′

2α

)2(i−j)

> a2
i ·
(

2α+1

β′

)2(i−j−1)

· `j ·
(
β′

2α

)2(i−j)

= a2
i ·
(

β′

2α+1

)2
· `j · 22(i−j) . (5)

Now we solve the equation above for `j and exchange the indices i and j. This way, for i < j,

`i < a−2
j ·

(
2α+1

β′

)2

· `j · 22(i−j) . (6)

These inequalities enable us to prove the following result for stars with large loss parameters.

Lemma 10. Suppose ai > 2α+1
/β′, for every i ∈ [n]. If there exists a power scheme p such that [n] is β′-feasible

under p then [n] is β-feasible under the square root power assignment p̄ with β ≤ β′/2α+2.

Proof. At node j the received interference is

Ip̄(j) ≤
j−1∑
i=1

√
`i
dj

+
n∑

i=j+1

√
`i
di

=
j−1∑
i=1

√
`i
dj

+
n∑

i=j+1

ai√
`i

.
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Now applying Equation 6 and Equation 5 gives

Ip̄(j) <
√
`j

ajdj
· 2

α+1

β′
·
j−1∑
i=1

2i−j + 1√
`j
· 2

α+1

β′
·

n∑
i=j+1

2j−i < 2√
`j
· 2

α+1

β′
.

The SINR constraint at j is satisfied if Ip̄(j) < 1/β
√
`i. For β ≤ β′/2α+2 this condition is satisfied.

4.3 Stars with small loss parameters
Now we assume that all loss paramters are relatively large in comparison to the decay. In this case, given a
β′-feasible power assignment p, we can ensure that the square root power assignment is β-fasible for any β < β′

if a small fraction of the nodes that depends on the ratio between β and β′ can be dropped.

Lemma 11. Suppose ai ≤ 2α+1
/β′, for every i ∈ [n]. If there exists a power scheme p such that [n] is β′-feasible

under p then there exists a subset U ⊆ [n] that is β-feasible under p̄ with |U | = (1−O(( ββ′ )
2/3))n.

Proof. We partition the nodes into classes depending on their distance/decay to the center c. W.l.o.g., assume
du > 1, for every u ∈ [n]. Let Dj = {u | 2j−1 < du ≤ 2j}, |Dj | = kj and let m denote the largest index for which
Dm is not empty.

Claim 12. Let 0 < µ < 1. For a (1 − µ)-fraction of the nodes in class Dj, the loss parameter `u fulfils
`u ≤ 2α+j+2

µβ′kj
.

Proof. In the given power assignment p, a node v from class Dj induces an interference on node u ∈ Dj of

pv
(δu + δv)α

≥ pv
(2 · 2j/α)α = pv

2α+j .

The interference at node u is upper-bounded by pu/β′`u because p satisfies the SINR constraint. Thus, it follows∑
v∈Dj\{u}

pv
2α+j ≤

∑
v∈[n]\{u}

pv
`(u, v) ≤

pu
β′`u

.

For nodes u that fulfil pu ≤
∑
v∈Dj\{u} pv, we thus get

`u ≤
2α+j

β′
· pu∑

v∈Dj\{u} pv
≤ 2α+j+1

β′
· pu∑

v∈Dj pv
.

For the other nodes,

`u ≤ au · du ≤
2α+j+1

β′
≤ 2α+j+2

β′
· pu∑

v∈Dj pv

since pu >
∑
v∈Dj\{u} pv implies 2pu >

∑
v∈Dj pv. Summing the above inequality over all nodes in the class Dj

gives ∑
u∈Dj

`u ≤
2α+j+2

β′
.

This means that, on average, a node has a loss parameter of only 2α+j+2
/(β′kj). Using the Markov inequality, we

get that a fraction of at most µ of the nodes have a loss parameter larger than 2α+j+2
/(µβ′kj).

Claim 12 is based on properties of p. In the rest of the proof of Lemma 11, we will not consider other properties
of p than the one given by the claim. For the time being, let us ignore a µ-fraction of the nodes such that all
remaining nodes fulfil the bound in the claim. The µ-fraction dropped will be taken into account at the end of
the proof of the lemma.

When using the square root power assignment, the interference induced at a node u ∈ Dj by a node v ∈ Di,
i ≤ j is at most

√
`v

2j−1 ≤
1

2j−1

√
2α+i+2

µβ′ki
= 1

2j

√
2α+i+4

µβ′ki
.
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Summing this over all nodes in the class and then over all classes gives the following bound on the interference
generated at u by nodes from classes with lower or equal index:

Ip̄(u | D1 ∪ . . . ∪Dj) ≤

√
2α+4

µβ′

j∑
i=1

√
ki2i
2j .

The interference generated by nodes from higher classes can be estimated as

Ip̄(u | Dj+1 ∪ . . . ∪Dm) ≤

√
2α+4

µβ′

m∑
i=j+1

√
ki2i
2i .

We now select all nodes for which, both, the interference from classes with lower index and the interference from
classes with higher index, is no more than 1/2β times the strength of the received signal.

We first count the number of nodes that are not selected this way because the interference from classes with
lower or equal index is too high, that is, the number of nodes u ∈ Dj satisfying

Ip̄(u | D1 ∪ . . . ∪Dj) ≥
1
2β

1√
`u
≥ 1

2β

√
µβ′kj
2α+j+2

as the received signal strength at a node u in class Dj is
√
`u
`u
≥
√

µβ′kj
2α+j+2 . Together with the above bound on the

interference we obtain

kj ≤

(
2α+4β

µβ′

)2( j∑
i=1

√
ki

2j−i

)2

=
(

2α+4β

µβ′

)2( j∑
i=1

√
ki√
2j−i

·

√
1√
2j−i

)2

≤

(
2α+4β

µβ′

)2( j∑
i=1

ki√
2j−i

)
·

(
j∑
i=1

1√
2j−i

)
≤

(
2α+6β

µβ′

)2 j∑
i=1

ki√
2j−i

.

Here the third inequality uses Cauchy-Schwarz ((
∑
aibi)2 ≤

∑
a2
i ·
∑
b2i ). Now the number of nodes lost because

of too much interference from classes with lower or equal index can be estimated by

∑
j : class Dj

not scheduled

kj ≤
m∑
j=1

(
2α+6β

µβ′

)2 j∑
i=1

ki√
2j−i

=
(

2α+6β

µβ′

)2 m∑
i=1

ki

m∑
j=i

1√
2j−i

≤

(
2α+8β

µβ′

)2 m∑
i=1

ki .

Analogously the number of nodes lost because of too much interference from classes with higher index is at most

∑
j: class Dj

not scheduled

kj ≤
m−1∑
j=1

(
2α+6β

µβ′

)2 m∑
i=j+1

ki√
2i−j

≤

(
2α+6β

µβ′

)2 m∑
i=2

i−1∑
j=1

ki√
2i−j

≤

(
2α+8β

µβ′

)2 m∑
i=2

ki .

So in total we only lose O(( β
µβ′ )2 + µ)n nodes. Choosing µ = ( ββ′ )

2/3 gives the bound in Lemma 11.

4.4 Stars with arbitrary combinations of loss parameters
In the following, we use the results for the special cases given in Lemma 10 and Lemma 11 to prove Lemma 5 for
stars without any restrictions on the ratio ai between `i and di.

W.l.o.g., assume that β′ ≥ 2c0β and choose β′′ = 2c1β, for suitable large positive constant terms c0 and c1
as specified at the end of the proof. We will show that there is a way to remove a subset of Θ((β′′/β′)2/3)n =
Θ((β/β′)2/3)nmany nodes such that the interference at any remaining node i is at most (c0/β′+c1/β′′)·1/√`i ≤ 1/β

√
`i,

that is, the set of the remaining nodes is β-feasible.
Suppose we hypothetically reduce the loss `i, for every i ∈ [n] with `i > di · 2α+1

/β′, to di · 2α+1
/β′. Under this

hypothesis, all nodes have small loss parameters so that Lemma 11 shows the existence of a subset U ⊆ [n] that
is β′′-feasible (wrt the hypthetical loss parameters) under p̄ with |U | = (1−O((β

′′

β′ )
2/3))n. In the following, we

will study the interference caused by the square root power assignment applied to the nodes in U with respect to
the original loss paramters.
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Define the set L ⊆ U of large loss nodes by L := {i ∈ [n] | ai > 2α+1
/β′}. For a node i ∈ U , we use

pred(i) := max{j ∈ L | j < i} and succ(i) := min{j ∈ L | j > i} to denote the predecessor and successor,
respectively, of i in L. The nodes in L partition the remaining nodes into subsets as follows. For i ∈ L we define
the set Si := {j ∈ U | pred(i) < j < i}.

The interference that is induced by large-loss nodes (nodes in L) onto other large-loss nodes can be handled
by applying Lemma 10. Similarly, the interference that is induced by low-loss nodes (nodes not in L) onto
other low-loss nodes can be handled by Lemma 11. In the following two lemmas we will derive bounds for the
interference that is induced by small-loss nodes onto large-loss nodes and vice versa.

Lemma 13. For every node i ∈ L, ∑
j∈L\{i,succ(i)}

Ip̄(i | Sj) <
2α

β′′
√
`i

.

In words, for a node i ∈ L, the interference generated at i by the small-loss nodes in the sets Sj (with
exception of Si and Ssucc(i)), is less than 1/

√
`i, the strength of the signal received at node i, times 2α/β′′.

Proof. To show the lemma, we split the interference at i from classes Sj into two parts, the interference from
classes Sj , j ∈ L, j < i, and interference from classes Sj , j ∈ L, j > succ(i). We will show that each of these terms
is upper-bounded by 2α/2β′′

√
`i, which proves the lemma.

The interference at node i due to the classes Sj , j ∈ L, j < i can be bounded as follows. We first prove an
upper bound on the interference at node pred(i) and then we show that this bound translates to the desired
upper bound for the interference at node i. Let L<i := {j ∈ L | j < i}. The interference at node pred(i) from
sets Sj , j ∈ L<i is at least∑

j∈L<i

∑
k∈Sj

√
`k

(δk + δpred(i))α
≥
∑
j∈L<i

∑
k∈Sj

√
`k

(2 · δpred(i))α
=
∑
j∈L<i

∑
k∈Sj

√
`k

2αdpred(i)
.

For every j ∈ U , let `′j = dj · a′j with a′j = min{aj , 2α+1
/β′}, that is, we decrease the large loss parameters so that

all loss parameters `′j , j ∈ U , are small. On the one hand, due to the construction of the set U , the interference
at node pred(i) caused by the nodes from U wrt to the loss parameters `′j is upper-bounded by 1/β′′

√
`′pred(i)

because the nodes in U are β′′-feasible wrt modified loss parameters. On the other hand, the lower bound on the
interference at pred(i) is valid also for the modified loss parameters as it only sums over the strengths of signals
received from nodes with small loss parameters. Consequently,

∑
j∈L<i

∑
k∈Sj

√
`k

2αdpred(i)
≤ 1
β′′
√
`′pred(i)

= 1
β′′
√
a′pred(i)dpred(i)

.

By multiplying with dpred(i)2α/di, we get

∑
j∈L<i

∑
k∈Sj

√
`k
di
≤

2α
√
dpred(i)

β′′di
√
a′pred(i)

<
4α

β′β′′a′pred(i)
√
aidi

= 2α

2β′′
√
`i

,

where we used dpred(i) ≤ 4α
β′2

di
aiapred(i)

< 4α
β′2

di
aia′pred(i)

(Equation 3) for the second step and the identities a′pred(i) =
2α+1

/β′ and aidi = `i for the last one. Now observe that the left hand term of this equation is an upper bound
on the interference at node i due to the classes Sj , j ∈ L<i such that the desired bound on this interference is
shown.

Next we show that the interference at node i due to the classes Sj , j ∈ L, j < i can be bounded by a similar
approach studying the interference at succ(i) instead of pred(i). Let L>succ(i) := {j ∈ L | j > succ(i)}. The
interference at node succ(i) from sets Sj , j ∈ L>succ(i) is

∑
j∈L>succ(i)

∑
k∈Sj

√
`k

(δk + δsucc(i))α
≥

∑
j∈L>succ(i)

∑
k∈Sj

√
`k

(2 · δk)α
=

∑
j∈L>succ(i)

∑
k∈Sj

√
`k

2αdk
.
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Analogously to the case above, the interference at node succ(i) due to the nodes from U wrt to the loss parameters
`′j is upper-bounded by 1/β′′

√
`′pred(i) so that

∑
j∈L>succ(i)

∑
k∈Sj

√
`k

2αdk
≤ 1
β′′
√
`′succ(i)

= 1
β′′
√
a′succ(i)dsucc(i)

.

By multiplying with 2α, we get

∑
j∈L<i

∑
k∈Sj

√
`k
dk
≤ 2α

β′′
√
a′succ(i)dsucc(i)

<
4α

β′β′′a′succ(i)
√
aidi

= 2α

2β′′
√
`i

,

where we used dsucc(i) ≥ asucc(i)aiβ
′24−α > a′succ(i)aiβ

′24−α (Equation 3) for the second step and the identities
a′succ(i) = 2α+1

/β′ and `i = aidi for the last one. Finally, observe that the left hand term of this equation is an
upper bound on the interference at node i due to the classes Sj , j ∈ L>succ(i) such that the desired bound is
shown, which completes the proof of Lemma 13.

Next we show a bound on the interference induced by the large-loss nodes onto the small-loss nodes.

Lemma 14. For every i ∈ U and j ∈ Si,

Ip̄(j | L \ {pred(i), i}) ≤ 22α+2

β′
√
`j

.

Proof. The proof of this lemma is based on an approach similar to the proof of Lemma 13. We hence adopt the
notation of this proof. The interference when using p̄ induced by the nodes from L<pred(i) on the node pred(i)
can be estimated by

∑
k∈L<pred(i)

√
`k

2αdpred(i)
≤

∑
k∈L<pred(i)

√
`k

(δk + δpred(i))α
= Ip̄(pred(i) | L<pred(i)) ≤ 2α+2

β′
√
`pred(i)

.

The first bound follows from (δk + δpred(i))α ≤ (2 · δpred(i))α = 2αdpred(i). The second bound follows from
Lemma 10 since all nodes in L have a large loss parameter.
Multiplying the above equation with 2αdpred(i)/dj

Ip̄(j | L<pred(i)) ≤
∑

k∈L<pred(i)

√
`k
dj
≤

22α+2 dpred(i)

β′dj
√
`pred(i)

=
22α+2√dpred(i)

β′dj
√
apred(i)

≤ 23α+2

β′2apred(i)
√
ajdj

≤ 22α+1

β′2
√
`j

,

where we used dpred(i) ≤
4αdj

β′2ajapred(i)
(Equation 3) in the fourth step and apred(i) ≥ 2α+1/β′ in the last one.

Using the same kind of arguments, we can bound the interference from nodes in L>i on node i by

∑
k∈L>i

√
`k

2αdk
≤ Ip̄(i | L>i) ≤

2α+2

β′
√
`i

.

Multiplying with 2α gives

Ip̄(j | L>i) ≤
∑
k∈L>i

√
`k
dk
≤ 22α+2

β′
√
`i
≤ 23α+2

β′2ai
√
`j
≤ 22α+1

β′
√
`j

,

where we used `i ≥ a2
i
β′2

4α `j (Equation 4) and ai ≥ 2α+1/β′.
Adding the bounds for Ip̄(j | L<pred(i)) and Ip̄(j | L>i) gives the lemma.

It remains to show how combining the Lemmas 10 to 14 gives Lemma 5.
The interference at a node j ∈ Si for i ∈ L can be bounded as follows. The interference caused by other nodes

with small loss parameter is at most 1/(β′′
√
`j) due to Lemma 11. The interference caused by nodes L\{pred(i), i}
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is at most 22α+2
/(β′
√
`j) due to Lemma 14. Finally, the interference caused by nodes i and pred(i) at node j is at

most √
`pred(i)

(δpred(i) + δj)α
+

√
`i

(δi + δj)α
≤

√
`pred(i)

β′
√
`pred(i)`j

+
√
`i

β′
√
`i`j

= 2
β′
√
`j

.

Here, the second step follows because (δi + δj)2α ≥ β′2`i`j due to Equation 1. In total the interference at j is at
most ((22α+2 + 2) 1

β′ + 1
β′′ )

1√
`j
. Hence, the nodes with small loss parameters are β-feasible if the constant terms

c0 and c1 relating β′ and β′′, respectively, to β satisfy the conditions c0 ≥ 22α+2 + 2 and c1 ≥ 1.
A slightly more involved argument is required to estimate the interference at a node i ∈ L. The interference

due to other nodes in L is at most 2α+2
/(β′
√
`i) by Lemma 10. The interference caused by nodes in the sets

Sj , j /∈ {i, succ(i)} is at most 2α/(β′′
√
`i) by Lemma 13. The sets Si and Spred(i), however, may cause large

interference at node i. We use the following trick to deal with this problem: If |Si ∪ {i} ∪ Ssucc(i)| > β′

β′′ then we
do not choose the node i for the set U in Lemma 5. We can effort this because only O(β

′′

β′ )n = O( ββ′ )n satisfy
this condition. Now suppose |Si ∪ {i} ∪ Ssucc(i)| ≤ β′

β′′ . Then the interference at i due to these nodes is bounded
by ∑

j∈Si∪Ssucc(i)

√
`j

(δi + δj)α
≤

∑
j∈Si∪Ssucc(i)

√
`j

β′
√
`i`j
≤ 1
β′′
√
`i

.

Thus, if i is chosen, then the interference at node i is at most ((2α+2 + 2) 1
β′ + (2α + 1) 1

β′′ )
1√
`j
. Hence, the nodes

with large loss parameters are β-feasible if c0 ≥ 2α+2 + 2 and c1 ≥ 2α + 1. This completes the proof of Lemma 5.

5 A Coloring Algorithm for the Square Root Power Assignment
In the coloring problem for the square root power assignment, we are given n bidirectional requests and we seek
for a coloring satisfying the SINR constraints with a minimal number of colors.

Theorem 15. There exists a randomized polynomial time approximation algorithm solving the coloring problem
for the square root power assignment with approximation factor O(logn).

Let µ denote the maximal number of requests that can be scheduled with the same color. We will devise
an algorithm A that computes a subset S ⊆ [n] of size Ω(µ) with the property that the requests in S can be
scheduled with the same color. In order to compute a coloring, algorithm A is called and the requests in the set
S are assigned to the first color class. This procedure is repeated recursively on the remaining requests until all
requests have been colored. It is easy to see that such a greedy approach yields an O(logn) approximation for
the optimal number of colors.

We now devise an algorithm A that has the property described above. In the following, when saying that the
SINR constraints are satisfied for a set of requests we mean that they are satisfied when all requests in the set are
assigned the same color. The algorithm partitions the set of communication pairs into disjoint classes. W.l.o.g.,
let us assume minj∈[n] δ(uj , vj) = 1 and let k be the smallest integer such that maxj∈[n] δ(uj , vj) < 4k+1. For
0 ≤ i ≤ k, class Ci contains the pairs j ∈ [n] with 4i ≤ δ(uj , vj) < 4i+1. This implies that the loss in this class is
in [4αi, 4α(i+1)). For the time being, let us assume that all requests in class Ci have loss 4αi so that the square
root power assignment sets the power level to 2αi. We discuss the consequences of this simplifying assumption at
the end of the proof.

The algorithm proceeds as follows. For i = 0 to k, it chooses a set Si of sufficiently many (as defined
later) requests from Ci taking into account interference caused by the previously selected sets S0, . . . , Si−1. In
particular, Si satisfies the SINR constraints with gain β/2 on top of S0, . . . , Si−1, i.e., the interference constraints
for every pair in Si are satisfied with gain β/2 taking into account the interference caused by the previously
inserted pairs in S0, . . . , Si−1 and the other pairs in Si. Observe that we relaxed the interference constraints
by using the gain β/2 instead of β. Furthermore, choosing Si might violate the interference constraints of the
previously chosen pairs in S0, . . . , Si−1. We come back to this aspect later.

Let us first take care that the algorithm chooses sufficiently many pairs. Let s∗i be the maximal size of a
subset of requests from Ci such that the SINR constraints at the nodes from Si are satisfied with original gain β
on top of the pairs in S0, . . . , Si−1.

Lemma 16. There is a polynomial time algorithm choosing Si such that |Si| ≥ s∗i/k0, for a suitable constant
k0 ≥ 1.
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Proof. Let V denote the set of all nodes of the metric. For a node w ∈ V and a set of requests S, let

I(w | S) =
∑
j∈S

√
`(uj , vj)

min{`(uj , w), `(vj , w)}

be the interference at w caused by the pairs in the set S.
Let S0 ∪ . . . ∪ Si−1 be fixed. For simplicity of notation, we scale all distances such that the requests in class

Ci have distance 1. Let V ′ ⊆ V denote the subset of nodes with I(w | S1 ∪ . . . Si−1) < 1/β. Let C ′i denote the
subset of requests from Ci only using nodes from V ′. S∗i can take only requests from C ′i as the other pairs exceed
the interference threshold. Hence, we only need to take into account nodes from V ′ and requests from C ′i

We have to choose a subset Si ⊆ C ′i of cardinality at least s∗i/k0 = |S∗i |/k0, for a suitable constant k0. We will
choose Si such that I(w | Si) < 1/β, for every node w from any pair of Si. This implies I(w | S1∪. . . Si−1∪Si) < 2/β
as required in the description of the algorithm. The following claim gives a necessary condition that Si needs to
satisfy.

Claim 17. Let T be any subset of C ′i satisfying the SINR constraints with gain β, then for every node in w ∈ V ′
it holds I(w | T ) < 2αβ−1.

Proof. If w = uk or w = vk, for some k ∈ T , then the condition is met directly by the definition of T . Otherwise,
let nk be the node closest to w from (uk, vk). Now let j ∈ arg mink∈T δ(nk, w), i. e., nj is the node from T
that is closest to w. By the triangle inequality it holds that δ(ni, nj) ≤ δ(ni, w) + δ(nj , w) ≤ 2δ(ni, w) so that
`(ni, nj) ≤ 2α`(ni, w). As a consequence,

I(w | T ) ≤
∑
i∈T

1
`(ni, w) ≤ 2α

∑
i∈T

1
`(ni, nj)

< 2αβ−1.

The interference constraints from the claim can be described by an ILP with binary variables xj ∈ {0, 1}, for
j ∈ C ′i, and a linear SINR constraint for every node w ∈ V ′. The objective is to maximize |T | =

∑
j∈C′

i
xj . We

relax the integrality requirement and obtain an LP with variables xj ∈ [0, 1]. This LP is solved to optimality. Let
x′ be the optimal fractional solution and opt′ its value. The claim above yields that opt′ is an upper bound on s∗i .

Now we show how to compute a feasible set Si from x′ of cardinality Ω(opt′). We use the randomized rounding
technique similar to Proposition 3. Each request j ∈ Ci is chosen with probability x′j/4·2α. We assume that the
probabilities to be chosen are independent for every pair of distinct requests, that is, the corresponding events
are pairwise independent.

Let S′ denote the set of chosen requests. This way, for every node w ∈ V ′, the expected value of I(w | S′) is
at most 1/4β. Applying the Markov inequality, we observe that w violates the SINR constraint with probability
at most 1/4. Hence, the probability that one of the two nodes of a request from S′ violates its SINR constraint is
at most 1/2.

Next we drop those pairs from S′ that violate an SINR constraint. Si is defined to contain the remaining
requests. By linearity of expectation, the expected cardinality of Si is at least opt′/8·2α. Hence, the existence of a
set Si of cardinality opt′/8·2α satisfying the SINR constraints is shown.

Analogous to Proposition 3, this existence proof can be derandomized using the method of pairwise indepen-
dence, which yields a polynomial time algorithm for computing a set Si with the properties described in the
lemma.

The following lemma shows that we have selected Ω(µ) requests.

Lemma 18.
∣∣∣∣∣
k⋃
i=0

Si

∣∣∣∣∣ ≥ µ

k0 + 2 .

Proof. In the following let S∗ denote a maximum feasible set of requests, that is, |S∗| = µ. Let S∗i denote the set
of those requests in S∗ that belong to class Ci. Let S>i = Si+1 ∪ . . . ∪ Sk and similar indices analogous. Further,
for a given subset of pairs S′, let S∗≥i | S′ denote a maximum subset of C≥i being feasible on top of S′. We claim∣∣S∗≥i+1 | S<i+1

∣∣ ≥ ∣∣S∗≥i+1 | S<i
∣∣− 2 |Si| . (7)

The claim can be shown by considering the following process. Initially, let S′ = S∗≥i+1 | S<i and S̄ = S<i. One
after the other, we add the pairs from Si to S̄, each time removing pairs from S′ in order to keep the invariant
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that S′ is feasible on top of S̄. We will show that it is sufficient to remove at most two pairs from S′ for every
added pair from Si. The resulting set S′ has thus cardinality at least |S∗≥i+1 | S<i| − 2|Si|. It is feasible on top
of S<i ∪ Si = S<i+1 such that the claim follows.

Consider adding any pair from Si to S̄. We add the two nodes of this pair one after the other and show that
the addition of each of them can be compensated by removing at most one pair from S′. Let u be any of the two
nodes from the considered pair. Let v be the node from a pair in S′ that is closest to u. Then, for every w ∈ S′,
it holds δ(v, w) ≤ δ(v, u) + δ(u,w) ≤ 2δ(u,w) so that `(v, w) ≤ 2α`(u,w). As a consequence,

Ip̄(w | v) ≥
√

4α(i+1)

`(v, w) ≥
√

4α(i+1)

2α`(u,w) =
√

4αi
`(u,w) = Ip̄(w | u) .

(W.l.o.g., we assumed `(v, w) > 0 and, hence, `(u,w) > 0. Observe that `(v, w) = 0 would imply that S′ is not
feasible on top of S̄, which contradicts our invariant.) Hence, when adding u and removing v the interference at
any node w from S′ does not increase. Consequently, the addition of a pair can be compensated by removing at
most two pairs, one for each node of the pair. This proves Equation 7.

With the help of this equation, we will now prove the following claim. For 0 ≤ i ≤ k, it holds

|S≥i| ≥
1

k0 + 2
∣∣S∗≥i | S<i∣∣ . (8)

Observe that this claim yields the lemma when setting i = 0.
The claim is shown by a downward induction. For i = k its correctness follows from Lemma 16. Now assume

the claim holds for i+ 1. Then

|S≥i| = |Si|+ |S≥i+1| ≥ |Si|+
1

k0 + 2
∣∣S∗≥i+1 | S<i+1

∣∣ .
Applying Equation 7 gives

|S≥i| ≥ |Si|+
1

k0 + 2
(∣∣S∗≥i+1 | S<i

∣∣− 2 |Si|
)

= 1
k0 + 2

(∣∣S∗≥i+1 | S<i
∣∣+ k0 |Si|

)
.

Finally, applying Lemma 16 gives

|S≥i| ≥
1

k0 + 2
(
|S∗i | S<i|+

∣∣S∗≥i+1 | S<i
∣∣) ≥ 1

k0 + 2
∣∣S∗≥i | S<i∣∣

Thus Equation 8 is shown, which completes the proof of Lemma 18.

Notice, when the algorithm computes Si, it ensures that the interference constraints for Si on top of
S0, . . . , Si−1 are satisfied with gain β/2. The algorithm does not explicitly take care for the additional interference
caused by adding the pairs in Si at the pairs from S0, . . . , Si−1. The following lemma, however, shows that this
increase is bounded by a constant factor.

Lemma 19. There is constant k1 ≥ 1 such that
⋃k
i=0 Si satisfies the SINR constraints with gain at most β/k1.

Proof. Let us first make the following useful observation: The distance between a node u of a pair from set Si
and a node v of a pair from set Sj , j ≥ i, is at least 2α(i+j)−1β as, otherwise, the strength the signals received by
v from u would be larger than the interference threshold (2αj−1β)−1 that the algorithm enforces for the pairs in
Sj .

W.l.o.g., let us consider a node u0 of a request from the set S0. The proof for other classes is analogous. We
need to show that the sum of the signals due to the requests in S1 ∪ . . . Sk received by u0 is at most k1β

−1.
Fix i ∈ {1, . . . , k}. Let (u1, v1), . . . , (ut, vt) denote the requests in Si. For the ease of notation, let uj be the

node located closer to u0, for each pair (uj , vj). Let, furthermore, `(u1, u0) ≤ `(u2, u0) ≤ · · · ≤ `(ut, u0). From the
triangle inequality we can conclude δ(uj , u1) ≤ δ(uj , u0) + δ(u0, u1) ≤ 2δ(uj , u0) so that `(uj , u1) ≤ 2α`(uj , u0).
Hence, the sum of the signals received by u0 from the pairs in Si \ {(u1, v1)} can be bounded from above by

t∑
j=2

√
4αi

`(uj , u0)
≤ 2α

t∑
j=2

√
4αi

`(uj , u1)
<

2α+1

2−αiβ ≤
4

2−iβ ,

where the second inequality follows from the fact that the interference threshold at u1 is 2−αi+1/β. Summing
the above bound over all sets S1, . . . , Sk gives an upper bound of O(β−1) on the interference caused by those
pairs not being the closest pair to u0 in their class.
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It remains to take care for the interference caused by those pairs from each class that are closest to u0. Let
(u1, v1) ∈ S1, . . . , (uk, vk) ∈ Sk denote pairs such that ui is the closest node to u0 over all nodes from pairs in Si.
We need to show that the sum of signals received from these nodes at u0 is bounded by O(β−1) as well. Let

i(1) = arg min
i∈{1,...,k}

`(u0, ui) ,

i(2) = arg min
i∈{i(1),...,k}

`(u0, ui) ,

i(3) = arg min
i∈{i(2),...,k}

`(u0, ui) ,

and so on until one reaches an index i(q) with i(q) = k. To extend our notation, let i(0) = 0.
By our observation from above, for 1 ≤ r ≤ q, it holds `(ui(r−1), ui(r)) ≥ 2α(i(r)+i(r−1))−1β. Let γ =

2−1−1/αβ1/α. Then

δ(ui(r−1), ui(r)) = `(ui(r−1), ui(r))1/α ≥ γ2i(r)+i(r−1)+1 ≥ γ2i(r)+r

since i(r − 1) ≥ r − 1. From this lower bound for δ(ui(r−1), ui(r)), we derive now a lower bound for δ(ui(r), u0).
For the purpose of a contradiction, assume δ(ui(r), u0) < γ2i(r)+r−1, for some 1 ≤ r ≤ q. Then, as the distance
from ui(r−1) to u0 is not larger than the distance from ui(r), it follows δ(ui(r−1), u0) < γ2i(r)+r−1, too. As a
consequence,

δ(ui(r), u0) ≥ δ(ui(r), ui(r−1))− δ(ui(r−1), u0) ≥ γ2i(r)+r − γ2i(r)+r−1 ≥ γ2i(r)+r−1 .

This way, the strength of the signals received at u0 can be bounded from above by

q∑
r=1

i(r)∑
j=i(r−1)+1

2αj
δ(ui(r), u0)α

≤
q∑
r=1

i(r)∑
j=i(r−1)+1

2αj
2α(i(r)+r−1) γ

−α ≤
q∑
r=1

2αi(r)+1

2α(i(r)+r−1) γ
−α = O(γ−α) = O(β−1) ,

which completes the proof of Lemma 19.

Lemma 16 and 18 show that the algorithm chooses Ω(µ) requests. However, these requests might violate the
interference constraints with gain β because of the following reasons: a) We assumed that the loss in class Ci is
exactly 4−αi rather than from the interval [4αi, 4α(i+1)). b) The pairs in each set Si are chosen with respect to a
relaxed gain β/2 instead of β. c) The SINR constraints for the sets in S0, . . . , Si−1 are not explicitly considered
when choosing Si. (a) and (b) obviously increase the interference at most by a constant factor. Lemma 19 shows
that the same is true for (c). Hence, the SINR constraints are violated at most by a constant factor so that they
can be thinned out by applying Proposition 3. This way, one obtains a feasible set S of cardinality Ω(µ). Thus,
Theorem 15 is shown.

6 Discussion and Open Problems
Oblivious power assignments allow for an immediate implementation in a distributed setting. We have investigated
the efficiency of this approach and obtained different results depending on the model. On the one hand, we have
shown that oblivious power assignments cannot achieve sub-linear approximations when using directed SINR
constraints. On the other hand, the square root power assignment achieves polylogarithmic approximation ratios
for bidirectional SINR constraints.

One should remark that the bidirectional model can be simulated by the directed one using twice the number
of steps (colors). Our analysis, hence, reveals that solutions with oblivious power assignments cannot compete
with solutions using possibly different power levels and colors within a pair. However, they are capable of
achieving nearly the same performance as solutions restricted to symmetric power assignments and colorings.
Observe that oblivious power assignments use symmetric power assignments by definition. It is thus an interesting
question that is left open by our analysis how they compare with solutions using symmetric power levels but
asymmetric colorings.

In our analysis, we neglected some aspects that leave room for future research. For example, the presented
coloring algorithm for the square root power assignment is centralized. It is an open question, whether there is a
distributed coloring procedure that achieves the same kind of performance guarantee.

Another aspect that we did not take into account in this manuscript is energy efficiency. In comparison to
the linear power assignment, the square root power assignment uses increased power levels for pairs of nodes of
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small distance with the objective to increase the performance. In [4], we study linear and, hence, energy efficient
power assignments. We prove upper and lower bounds showing that linear power assignments lose a factor that
is logarithmic in the aspect ratio but linear in n against optimal power assignments. A study of the tradeoff
between performance and energy efficiency is left for future work.
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