Oblivious Polynomial Evaluation and Secure Set-Intersection from Algebraic PRFs

Carmit Hazay*
Faculty of Engineering, Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract

In this paper we study the two fundamental functionalities oblivious polynomial evaluation in the exponent and set-intersection, and introduce a new technique for designing efficient secure protocols for these problems (and others). Our starting point is the [6] technique (CRYPTO 2011) for verifiable delegation of polynomial evaluations, using algebraic PRFs. We use this tool, that is useful to achieve verifiability in the outsourced setting, in order to achieve privacy in the standard two-party setting. Our results imply new simple and efficient oblivious polynomial evaluation (OPE) protocols. We further show that our OPE protocols are readily used for secure set-intersection, implying much simpler protocols in the plain model. As a side result, we demonstrate the usefulness of algebraic PRFs for various search functionalities, such as keyword search and oblivious transfer with adaptive queries. Our protocols are secure under full simulationbased definitions in the presence of malicious adversaries.

Keywords: Efficient Secure Computation, Oblivious Polynomial Evaluation, Secure Set-Intersection, Committed Oblivious PRF.

1 Introduction

Efficient secure two-party computation. Secure two-party computation enables two parties to mutually run a protocol that computes some function f on their private inputs, while preserving a number of security properties. Two of the most important properties are privacy and correctness. The former implies data confidentiality, namely, nothing leaks by the protocol execution but the computed output. The latter requirement implies that the protocol enforces the integrity of the computations made by the parties, namely, honest parties learn the correct output. Feasibility results are well established [49|23|39|5], proving that any efficient functionality can be securely computed under full simulation-based definitions (following the ideal/real paradigm). Security is typically proven with respect to two adversarial models: the semi-honest model (where the adversary follows the instructions of the protocol but tries to learn more than it should from the protocol transcript), and the malicious model (where the adversary follows an arbitrary polynomial-time strategy), and feasibility holds in the presence of both types of attacks.

[^0]Following these works, many constructions focused on improving the efficiency of the computational and communication costs. Conceptually, this line of works can be split into two sub-lines: (1) Improved generic protocols that compute any boolean or arithmetic circuit; see [47|30|44|36|38/7|16|43] for just a few examples. (2) Protocols for concrete functionalities. In the latter approach attention is given to constructing efficient protocols for specific functions while exploiting their internal structure. This approach has been proven useful for many different functions in both the semi-honest and malicious settings. Notable examples are calculating the k th ranked element [1], pattern matching and related search problems [29]48], set-intersection [31|28] and oblivious pseudorandom function (PRF) evaluation [20].

In this paper we study the two fundamental functionalities oblivious polynomial evaluation in the exponent and set-intersection and introduce a new technique for designing efficient secure protocols for these problems in the presence of semi-honest and malicious attacks with simulation-based security proofs. We further demonstrate that our technique is useful for various search functionalities.

Algebraic PRFs. Informally, an algebraic pseudorandom function (PRF) is a PRF with a range that forms an Abelian group such that group operations are efficiently computable. In addition, certain algebraic operations on these outputs can be computed significantly more efficiently if one possesses the key of the pseudorandom function that was used to generate them. This property is denoted by closed form efficiency and allows to compute a batch of l PRF values much more efficiently than by computing the l values separately and then combing them. Algebraic PRFs were exploited in [6] to achieve faster verifiable polynomial evaluations (in the exponent). Specifically, in their setting, a client outsources a d-degree polynomial to an untrusted server together with some authenticating information, while the client stores a short secret key. Next, when the client provides an input for this polynomial the server computes the result and an authentication message that allows the client to verify this computation in sub-linear time in d.

More concretely, let $Q(\cdot)=\left(q_{0}, \ldots, q_{d}\right)$ be the polynomial stored on the server in the clear. Then the client additionally stores a vector of group elements $\left\{g^{a q_{i}+r_{i}}\right\}_{i=0}^{d}$ where $a \leftarrow \mathbb{Z}_{p}$ and p is a prime, and r_{i} is the i th coefficient of a polynomial $R(\cdot)$ of the same degree as $Q(\cdot)$. Then for every client's input t the server returns $y=Q(t)$ and $u=g^{a Q(t)+R(t)}$ and the client accepts u if and only if $u=g^{a y+R(t)}$. Interestingly, in case $g^{r_{i}}=\mathrm{PRF}_{K}(i)$, where PRF is an algebraic PRF, the closed form efficiency property enables the client to compute the value $g^{R(t)}$ in sub-linear time in d. Stated differently, verifiability is achieved by viewing $g^{a q_{i}+r_{i}}$ as a (one-time) message authentication code (MAC) for $g^{q_{i}}$ where batch verification of multiple MACs can be computed more efficiently than verifying each MAC separately.

In this work we demonstrate the usefulness of algebraic PRFs for various two-party problems by designing secure protocols based on this primitive. In particular, we modify the way [6] use algebraic PRFs so that instead of achieving verifiability in the outsourced setting, we achieve privacy in the standard two-party setting. It is worth noting that although the main focus of [6] is correctness, they do discuss how to achieve onesided privacy by encrypting the coefficients of the polynomial (since the polynomial must be specified explicitly). Nevertheless, it is not clear how to maintain the privacy
of the input to the polynomial in their protocol. In this work, we use algebraic PRFs to mask the polynomial in a different way that does not allow the verifiability of the polynomial evaluation but allows the extractability of the polynomial more easily, and demonstrate an alternative way to achieve correctness. We focus our attention on the plain model where no trusted setup is required.

Oblivious polynomial evaluation. The oblivious polynomial evaluation (OPE) functionality is an important functionality in the field of secure two-party computation. It considers a setting where party P_{0} holds a polynomial $Q(\cdot)$ and party P_{1} holds an element t, and the goal is that P_{1} obtains $Q(t)$ and nothing else while P_{0} learns nothing. OPE has proven to be a useful building block and can be used to solve numerous cryptographic problems; e.g., secure equality of strings, set-intersection, approximation of a Taylor series, RSA key generation, oblivious keyword search, set membership, data entanglement and more [22|37|21|20|41|3].

Despite its broad applicability the study of OPE was demonstrated using only few concrete secure protocols, initiated in [40] and further continued in [9|50|24]. In particular, the only protocol with a complete simulation-based proof in the presence of malicious attacks is the protocol in [24]. This protocol evaluates a d-degree polynomial over a composite order group \mathbb{Z}_{N} with $O(s d)$ modular exponentiations, where N is an RSA composite and s is a statistical security parameter.

The general (and currently the most practical) approach of [16|15] for arithmetic circuits follows the preprocessing model: in an offline phase some shared randomness is generated independently of the function and the inputs; in an online phase the actual secure computation is performed. One of the main advantages of these protocols is that the basic operations are almost as cheap as those used in the passively secure protocols. To get good performance, these protocols use the somewhat-homomorphic SIMD approach that handles many values in parallel in a single ciphertext, and thus more applicable for large degree polynomials. Similarly, protocols for Boolean circuits apply the cut-and-choose technique which requires to repeat the computation s times in order to prevent cheating except with probability 2^{-s} [35].

In some applications such as password-based authenticate key exchange protocols or when sampling an element from a d-wise independence space, the polynomial degree is typically small and even a constant. In these cases, our protocols have clear benefits since they are much simpler, efficient and easily implementable.

Secure set-intersection. In the set-intersection problem parties P_{0}, P_{1}, holding input sets X, Y of sizes m_{X} and m_{Y}, respectively, wish to compute $X \cap Y$. This problem has been intensively studied by researchers in the last few years mainly due to its potential applications for dating services, datamining, recommendation systems, law enforcement and more; see [21|34|13|31|32|25|28] for a few examples. For instance, consider two security agencies that wish to compare their lists of suspects without revealing their contents, or an airline company that would like to check its list of passengers against the list of people that are not allowed to go abroad.

Two common approaches are known to solve this problem securely in the plain model: (1) oblivious polynomial evaluation and (2) committed oblivious PRF evaluation. In the former approach party P_{0} computes a polynomial $Q(\cdot)$ such that $Q(x)=0$
for all $x \in X$. This polynomial is then encrypted using homomorphic encryption and sent to P_{1}, that computes the encryption of $r_{y} \cdot Q(y)+y$ for all $y \in Y$, and using fresh randomness r_{y}. This approach (or a variant of it) was taken in [21|34|13|28].

The second approach uses a secure implementation of oblivious pseudorandom function evaluation. Namely, P_{0} chooses a PRF key K and computes the set $\mathrm{PRF}_{X}=$ $\left\{\operatorname{PRF}_{K}(x)\right\}_{x \in X}$. The parties then execute an oblivious PRF protocol where P_{0} inputs K, whereas P_{1} inputs the set Y and learns the set $\operatorname{PRF}_{Y}=\left\{\operatorname{PRF}_{K}(y)\right\}_{y \in Y}$. Finally, P_{0} sends the set PRF_{X} to P_{1} that computes $\mathrm{PRF}_{X} \cap \mathrm{PRF}_{Y}$ and extracts the actual intersection. This idea was introduced in [20] and further used in [25|31|32]. Other solutions in the random oracle model such as [12|11|2] take a different approach by applying the random oracle on (one of) the sets members, or apply oblivious transfer extension [18].

In a recent result [45], the authors overview exiting solutions for set-intersection in the semi-honest setting and compare their efficiency. One of their conclusions is that OPE-based approaches are inferior to oblivious-transfer extension based approaches. It is an interesting question to test whether this conclusion also for the case for the malicious setting as well.

To the best of our knowledge, the most efficient protocol in the malicious plain model that does not require a trusted setup or rely on non-standard assumptions is the protocol of [28] that incurs computation of $O\left(m_{X}+m_{Y} \log \left(m_{X}+m_{Y}\right)\right)$ modular exponentiations. A more efficient protocol with $O\left(m_{X}+m_{Y}\right)$ communication and computational costs was introduced by [31] in the common reference string (CRS) model (where the CRS includes a safe RSA composite that determines the group order and implies high overhead when mutually produced). Another drawback of this protocol is that its security proof runs an exhaustive search on the input domain of the PRF in order to extract P_{0} 's input. This implies that the proof works for small domain PRFs and that the complexity of the simulator grows linearly with the size of the PRF's input domain.

Committed oblivious PRF evaluation. The oblivious PRF evaluation functionality $\mathcal{F}_{\text {PRF }}$ that obliviously evaluates a PRF is defined by $(K, x) \mapsto\left(-, \operatorname{PRF}_{K}(x)\right)$. This functionality is very important in the context of secure computation since it essentially implements a random oracle. That is, the party with the PRF key, say P_{0}, mimics the random oracle role via interaction. Therefore, if the protocol that realizes $\mathcal{F}_{\mathrm{PRF}}$ is simulationbased secure then both desirable properties of a random oracle, programmability and observability, can be achieved by this protocol. First, since the simulator can force any output for a corrupted P_{1}, it essentially programs the function's output. In addition, it can also observe (via extraction) the input to the functionality. Nevertheless, the usefulness of oblivious PRF evaluation is reflected via an additional property of committed key that implies that the same key is used for multiple PRF evaluations.

Committed oblivious PRF (CPRF) evaluation has been used to compute secure setintersection [31|25], oblivious transfer with adaptive queries [20], keyword search [20], pattern matching [25|19] and more. It is therefore highly important to design efficient protocols for this functionality. Current implementations of the [42] algebraic PRF, discussed in this paper, employ an oblivious transfer protocol for each input bit [20|25] and are only secure for a single PRF evaluation. Consequently, the protocol of [25]
does not achieve full security against malicious adversaries. In addition, the protocol from [31] (that implements a variant of the [17] PRF) requires a trusted setup of a safe RSA composite and suffers from the drawbacks specified above.

1.1 Our Results

In this paper we use algebraic PRFs to design alternative simple and efficient protocols for polynomial evaluation, set-intersection, committed oblivious PRF evaluation and search problems. Below, we demonstrate the broad usefulness of our technique.

Oblivious polynomial evaluation (Section 3). We present secure protocols in the plain model for OPE in the exponent with simulation-based security against semi-honest and malicious attacks. We stress that evaluating a polynomial in the exponent has strong applicability in the context of set membership where the goal is to privately verify membership in some secret set, as well as achieving d-wise independence. We use algebraic PRFs to build simple two-phases OPE protocols as follows. In the first phase party P_{0}, holding the polynomial $g^{Q(\cdot)}$, publishes its masked polynomial $g^{Q(\cdot)+R(\cdot)}$ where the set $g^{R(\cdot)}$ is determined by an algebraic PRF. Next, P_{1} locally computes $g^{Q(t)+R(t)}$ and the parties run an unmasking secure computation for obliviously evaluating $g^{R(t)}$ for P_{1}.

The efficiency of the latter phase is dominated by the overhead of the closed form efficiency property of the specific PRF. In this work, we consider two PRF implementations used by [6]: (1) a PRF with security under the strong-DDH assumption. (2) The Naor-Reingold PRF [42] with security under the DDH assumption. More concretely, the efficiency of our protocols is only $d+1$ modular exponentiations for the first phase of sending the masked polynomial, and $d+1+O(1)$ (resp. $O(\log d)$) modular exponentiations for the second phase of obliviously evaluating the pseudorandom polynomial under the strong-DDH (resp. DDH) assumption. For simplicity, we only consider univariate polynomials. Our technique can be applied for multivariate polynomials as well (with total degree d or of degree d in each variable); see [6] for further details. To the best of our knowledge, our protocols are the first to obliviously evaluate both univariate and multivariate polynomials that efficiently.

Secure set-intersection (Section 4). In this work we demonstrate that algebraic PRFs are useful for both approaches of OPE and committed oblivious PRF that enable to design set-intersection protocols. We first show that our protocols for OPE readily induce secure protocols for set-intersection. That is, first P_{0} encodes the set X by a polynomial $g^{Q(\cdot)}$ as specified above, and masks it. Next, for each $y \in Y$ party P_{1} verifies whether the masked polynomial evaluation of y equals the evaluation $g^{R(y)}$, and concludes whether the element is in the intersection. We stress that this naive approach requires a multiplicative overhead (in the sets sizes) since for each element in its input Y, P_{1} needs to evaluate a polynomial of degree m_{X}. To reduce the computational overhead, Freedman et al. [21] introduced a balanced allocation scheme [4] into their protocol that splits the elements into $\mathcal{B}=\frac{m_{X}}{\log \log m_{X}}$ bins, with maximum number of $\mathcal{M}=O\left(m_{X} / \mathcal{B}+\log \log \mathcal{B}\right)=O\left(\log \log m_{X}\right)$ elements in each bin. In that case, the elements mapped by P_{0} to a certain bin must only be compared to those mapped by P_{1} to the same bin. Therefore, P_{1} should only evaluate an M-degree polynomial for
each $y \in Y$, rather than a polynomial of degree m_{X}. Nevertheless, their solution with hash functions is only applicable in the semi-honest setting. Following that, Hazay and Nissim [28] introduced a maliciously secure protocol which implies the computation of $O\left(m_{X}+m_{Y} \log \left(m_{X}+m_{Y}\right)\right)$ modular exponentiations. Their construction is fairly complicated and combines both approaches of OPE and oblivious PRF evaluation.

We introduce the hashing technique into our constructions and provide a generic description that can be instantiated with different hash functions. Our protocols are far less complicated and maintain a modular description. Specifically, we devise an alternative zero-knowledge proof for verifying the correctness of the hashed polynomials while exploiting the algebraic properties of the PRF. Under the strong-DDH assumption our protocol matches the communication overhead of the protocol from [31] (that also relies on a dynamic hardness assumption) and implies the computation of $O\left(m_{X}+m_{Y} \log \log m_{X}\right)$ exponentiations, with the benefits that it operates over prime order groups, it does not require a trusted setup and the proof complexity does not depend on the PRF's input domain size. Under the DDH assumption our protocol, using hash functions, implies the computation of $O\left(m_{X}+m_{Y} \log m_{X}\right)$ exponentiations which improves the overhead of the [28] protocol. Next we show that algebraic PRFs are useful for applications that rely on committed oblivious PRF evaluation. Our results for set-intersection are summarized in Table 1.

Committed oblivious PRF evaluation (Section (5). Observing that the batch computation for $l \operatorname{PRF}$ values $\operatorname{PRF}_{K}^{\prime}(x)=\prod_{i=0}^{l}\left[\mathrm{PRF}_{K}(i)\right]^{x^{i}}$ is a PRF as well (by fixing l properly), we derive new PRF constructions in prime order groups and more interestingly, simple committed oblivious PRF evaluation protocols. Our strong-DDH based PRF requires constant overhead, and our DDH-based protocol is the first committed oblivious PRF implementation for the [42] function. Our protocols using committed oblivious PRF imply set-intersection protocols with $O\left(m_{X}+m_{Y}\right)$ costs under the strong-DDH assumption and $\left(\left(m_{X}+m_{Y}\right) \log \left(m_{X}+m_{Y}\right)\right)$ communication and computation costs under the DDH assumption, where the former analysis matches the overhead from [31]. In particular, plugging-in our protocols for committed oblivious PRF evaluation in the protocols cited above implies malicious security fairly immediately. Finally, we note that committed oblivious PRF evaluation is also useful for search functionalities that support database search and data retrievals, such as in keyword search and oblivious transfer with adaptive queries.

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by n. We say that a function $\mu: \mathbb{N} \rightarrow \mathbb{N}$ is negligible if for every positive polynomial $p(\cdot)$ and all sufficiently large n it holds that $\mu(n)<\frac{1}{p(n)}$. We use the abbreviation PPT to denote probabilistic polynomial-time. We further denote by $a \leftarrow A$ the random sampling of a from a distribution A, by $[d]$ the set of elements $(1, \ldots, d)$ and by $[0, d]$ the set of elements $(0, \ldots, d)$.

We define a d-degree polynomial $Q(\cdot)$ by its set of coefficients $\left(q_{0}, \ldots, q_{d}\right)$, or simply write $Q(x)=q_{0}+q_{1} x+\ldots q_{d} x^{d}$. Typically, these coefficients will be picked

Table 1. Comparisons with secure set-intersection constructions. We highlight the constructions with the best performance under each assumption.

Reference	Modeling	Hardness Assumption	Overhead (Number of Exp.)
$[31]$	CRS of a safe prime	Decisional d-DHI	$O\left(m_{X}+m_{Y}\right)$
$[28]$	plain model	DDH	$O\left(m_{X}+m_{Y} \log \left(m_{X}+m_{Y}\right)\right)$
$[18]$	random oracle	random oracle	$O(n)$, where n is sec. parameter
This Work - OPE	plain model	d-strong DDH	$O\left(m_{X}+m_{Y} \log \log m_{X}\right)$
This Work - OPE	plain model	DDH	$\mathbf{O}\left(\mathbf{m}_{\mathbf{X}}+\mathbf{m}_{\mathbf{Y}} \log \mathbf{m}_{\mathbf{X}}\right)$
This Work - CPRF	plain model	d-strong DDH	$\mathbf{O}\left(\mathbf{m}_{\mathbf{X}}+\mathbf{m}_{\mathbf{Y}}\right)$
This Work - CPRF	plain model	DDH	$O\left(\left(m_{X}+m_{Y}\right) \log \left(m_{X}+m_{Y}\right)\right)$

from \mathbb{Z}_{p} for a prime p. We further write $g^{Q(\cdot)}$ to denote the coefficients of $Q(\cdot)$ in the exponent of a generator g of a multiplicative group \mathbb{G} of prime order p.

2.2 Zero-Knowledge Proofs

To prevent malicious behavior, the parties must demonstrate that they are well-behaved. To achieve this, our protocols utilize zero-knowledge (ZK) proofs of knowledge. Our proofs are Σ-protocols with a constant overhead. A generic efficient technique that enables to transform any Σ-protocol into a zero-knowledge proof of knowledge can be found in [26]. This transformation requires additional 6 exponentiations.

1. π_{DL}, for demonstrating the knowledge of a solution x to a discrete logarithm problem [46].

$$
\mathcal{R}_{\mathrm{DL}}=\left\{((\mathbb{G}, g, h), x) \mid h=g^{x}\right\} .
$$

2. π_{DDH}, for demonstrating that an El Gamal ciphertext is an encryption of zero [10].

$$
\mathcal{R}_{\mathrm{DDH}}=\left\{\left(\left(\mathbb{G}, g, h, g_{1}, h_{1}\right), x\right) \mid g_{1}=g^{x} \wedge h_{1}=h^{x}\right\} .
$$

3. $\pi_{\text {MULT }}$, for proving that a ciphertext c_{2} encrypts a product of two plaintexts values. Namely,
where multiplication is performed in the corresponding plaintext group. A zeroknowledge proof for the El Gamal PKE, that is based on the Damgård and Jurik technique [14], can be found in [28].
4. π_{Eq}, for demonstrating equality of two exponentiations. Namely,

$$
\mathcal{R}_{\mathrm{Eq}}=\left\{\left(\left(\mathrm{PK}, c_{1}, c_{1}^{\prime}, c_{2}, c_{2}^{\prime}\right),\left(m, r_{1}, r_{2}\right)\right) \left\lvert\, \begin{array}{l}
c_{1}^{\prime}=c_{1}^{m} \cdot \operatorname{Enc}_{\mathrm{PK}}\left(0 ; r_{1}\right) \\
\wedge c_{2}^{\prime}=c_{2}^{m} \cdot \operatorname{Enc}_{\mathrm{PK}}\left(0 ; r_{2}\right)
\end{array}\right.\right\}
$$

where exponentiation, as well as multiplication with an encryption of zero, are computed componentwise. A variant of this zero-knowledge proof was presented and discussed in [27] for Paillier encryption scheme and can be easily extended for this relation as well. We leave the details of this proof to the full version.

3 Protocols for Oblivious Polynomial Evaluation

In this section we introduce our new constructions for oblivious polynomial evaluation (OPE) in the exponent, implementing functionality $\mathcal{F}_{\text {OPE }}:\left(g^{Q(\cdot)}, t\right) \mapsto\left(-, g^{Q(t)}\right)$ for $Q(\cdot)=\left(q_{0}, \ldots, q_{d}\right)$. In particular, we assume common knowledge of the public parameters: a multiplicative group \mathbb{G} of order p and a generator g for \mathbb{G}, and that the polynomial coefficients are in \mathbb{Z}_{p}. In our solution, party P_{0} generates these parameters and publishes its masked polynomial $g^{Q(\cdot)+R(\cdot)}$, where the set of values $g^{R(\cdot)}$ is determined by an algebraic PRF that has a closed form efficient computation for univariate polynomials (see Section 3.1). Next, P_{1} computes $g^{Q(t)+R(t)}$ and the parties run an unmasking secure computation for obliviously evaluating $g^{R(t)}$ for P_{1}. Importantly, the closed form efficiency property of the PRF allows the parties to mutually compute $g^{R(t)}$ in sub-linear time in d. Before presenting our OPE constructions we formally define algebraic pseudorandom functions.

3.1 Algebraic Pseudorandom Functions [6]

Algebraic PRFs are PRFs with two additional algebraic properties. First, they map their inputs into some Abelian group, where certain algebraic operations on these outputs can be computed signicantly faster if one possesses the PRF key. These properties were exploited in [6] to achieve faster polynomial evaluations (in the exponent), where the coefficients of these polynomials lie in the PRF range. Several constructions, implying different overheads, were introduced in [6]; we focus our attention on their constructions for univariate polynomials. Our protocols can be applied for multivariate polynomials as well (with total degree d or of degree d in each variable). We begin with the formal definition of algebraic PRFs.

Definition 3.1 (Algebraic PRFs). We say that $\mathcal{P} \mathcal{R} \mathcal{F}=($ KeyGen, PRF, CFEval), is an algebraic PRF if KeyGen, PRF are polynomial-time algorithms specified as follows:

- KeyGen, given a security parameter 1^{n}, and a parameter $m \in \mathbb{N}$ that determines the domain size of the PRF, outputs a pair $(K$, param $) \leftarrow \mathcal{K}_{n}$, where \mathcal{K}_{n} is the key space for a security parameter $n . K$ is the secret key of the PRF, and param encodes the public parameters.
- PRF, given a key K, public parameters param, and an input $x \in\{0,1\}^{m}$, outputs a value $y \in Y$, where Y is some set determined by param.
- In addition, the following properties hold:
 sary \mathcal{A}, and every polynomial $m=m(n)$, there exists a negligible function negl such that

$$
\mid \operatorname{Pr}\left[\mathcal{A}^{\operatorname{PRF}_{K}(\cdot)}\left(1^{n}, \text { param }\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f_{n}(\cdot)}\left(1^{n}, \operatorname{param}\right)=1\right] \mid \leq \operatorname{negl}(n)
$$

where $(K$, param $) \leftarrow \operatorname{KeyGen}\left(1^{n}, m\right)$ and $f_{n}:\{0,1\}^{m} \mapsto Y$ is a random function.
Algebraic. We say that $\mathcal{P} \mathcal{R} \mathcal{F}$ is algebraic if the range Y of $\mathrm{PRF}_{K}(\cdot)$ for every $n \in \mathbb{N}$ and $(K$, param $) \leftarrow \mathcal{K}_{n}$ forms an Abelian multiplicative group. We require that the group operation on Y be efficiently computable given param.
Closed form efficiency. Let N be the order of the range sets of PRF for security parameter n. Let $z=\left(z_{1}, \ldots, z_{l}\right) \in\left(\{0,1\}^{m}\right)^{l}, k \in \mathbb{N}$, and efficiently computable $h: \mathbb{Z}_{N}^{k} \mapsto \mathbb{Z}_{N}^{l}$ with $h(x)=\left\langle h_{1}(x), \ldots, h_{l}(x)\right\rangle$. We say that (h, z) is closed form efficient for PRF if there exists an algorithm CFEval ${ }_{h, z}$ such that for every $x \in \mathbb{Z}_{N}^{k}$,

$$
\operatorname{CFEval}_{h, z}(x, K)=\prod_{i=1}^{l}\left[\operatorname{PRF}_{K}\left(z_{i}\right)\right]^{h_{i}(x)}
$$

and the running time of CFEval is polynomial in n, m, k but sublinear in l.
The last property is very important for our purposes since it allows to run certain computations very fast when the secret key is known. We next describe two implementations for algebraic PRFs introduced in [6].

Algebraic PRFs from Strong DDH. Let \mathcal{G} be a computational group scheme. The following construction $\mathcal{P} \mathcal{R} \mathcal{F}_{1}$ is an algebraic PRF with polynomial sized domains.
$\operatorname{KeyGen}\left(1^{n}, m\right)$: Generate a group description $(\mathbb{G}, p, g) \leftarrow \mathcal{G}\left(1^{n}\right)$. Choose $k_{0}, k_{1} \leftarrow$ \mathbb{Z}_{p}. Output param $=(m, p, g, \mathbb{G}), K=\left(k_{0}, k_{1}\right)$.
$\operatorname{PRF}_{K}(x)$: Interpret x as an integer in $\left\{0, \ldots, D=2^{m}\right\}$ where D is polynomial in n. Compute and output $g^{k_{0} k_{1}^{x}}$.

Closed form efficiency for polynomials of degree d. We now show an efficient closed form for $\mathcal{P} \mathcal{R} \mathcal{F}_{1}$ for polynomials of the form (where evaluation is computed in the exponent)

$$
Q(x)=\operatorname{PRF}_{K}(0) \cdot \operatorname{PRF}_{K}(1)^{x} \cdot \ldots \cdot \operatorname{PRF}_{K}(d)^{x^{d}}=\prod_{i=0}^{d} \operatorname{PRF}_{K}(i)^{x^{i}}
$$

where $d \leq D$. Let $h: \mathbb{Z}_{p} \mapsto \mathbb{Z}_{p}^{d+1}$, be defined as $h(x) \stackrel{\text { def }}{=}\left(1, x, \ldots, x^{d}\right)$ and $\left(z_{0}, \ldots, z_{d}\right)=(0, \ldots, d)$. Then, we can define

$$
\operatorname{CFEval}_{h}(x, K) \stackrel{\text { def }}{=} g^{\frac{k_{0}\left(k_{1}^{d+1} x^{d+1}-1\right)}{k_{1} x-1}}
$$

Specifically, we write

$$
\prod_{1=0}^{d}\left[\operatorname{PRF}_{K}\left(z_{i}\right)\right]^{h_{i}(x)}=\prod_{i=0}^{d}\left[g^{k_{0} k_{1}^{i}}\right]^{x^{i}}=g^{k_{0} \sum_{i=0}^{d} k_{1}^{i} x^{i}}
$$

Correctness of CFEval follows by the identity $\sum_{i=0}^{d} k_{0} k_{1}^{i} x^{i}=\frac{k_{0}\left(\left(k_{1} x\right)^{d+1}-1\right)}{k_{1} x-1}$.
Theorem 3.2 ([6]). Suppose that the D-Strong DDH assumption holds. Then, $\mathcal{P} \mathcal{R} \mathcal{F}_{1}$ is a pseudorandom function.

Algebraic PRFs From DDH. Let \mathcal{G} be a computational group scheme. Define $\mathcal{P} \mathcal{R} \mathcal{F}_{2}$ as follows.
$\operatorname{KeyGen}\left(1^{n}, m\right)$: Generate a group description $(p, g, \mathbb{G}) \leftarrow \mathcal{G}\left(1^{n}\right)$. Choose $k_{0}, k_{1}, \ldots, k_{m} \leftarrow \mathbb{Z}_{p}$. Output param $=(m, p, g, \mathbb{G}), K=\left(k_{0}, k_{1}, \ldots k_{m}\right)$.
$\mathrm{PRF}_{K}(x)$: Interpret $x=\left(x_{1}, \ldots, x_{m}\right)$ as an m-bit string. Compute and output $g^{k_{0} \prod_{i=1}^{m} k_{i}^{x_{i}}}$.

This function is known by the Naor-Reingold function [42].

Closed form for polynomials of degree d. We describe an efficient closed form for $\mathcal{P} \mathcal{R} \mathcal{F}_{2}$ for computing polynomials of the same form as above. That is,

$$
Q(x)=\operatorname{PRF}_{K}(0) \cdot \operatorname{PRF}_{K}(1)^{x} \cdot \ldots \cdot \operatorname{PRF}_{K}(d)^{x^{d}}=\prod_{i=0}^{d} \operatorname{PRF}_{K}(i)^{x^{i}}
$$

Let $h: \mathbb{Z}_{p} \mapsto \mathbb{Z}_{p}^{d+1}$, defined as $h(x)=\left(1, x, \ldots, x^{d}\right)$ and let $z=\left(z_{1}, \ldots, z_{l}\right)=$ $(0, \ldots, d)$ then

$$
\text { CFEval }_{h, z}(x, K) \stackrel{\text { def }}{=} g^{k_{0}\left(1+k_{1} x\right)\left(1+k_{2} x^{2}\right) \ldots\left(1+k_{m} x^{2^{m}}\right)}
$$

with $m=\lceil\log d\rceil$ (clearly, d must be a power of 2).
Theorem 3.3 ([42]). Suppose that the DDH assumption holds. Then, $\mathcal{P} \mathcal{R} \mathcal{F}_{2}$ is a pseudorandom function.

To this end, we only consider $z=(0, \ldots, d)$ and omit z from the subscript, writing CFEval ${ }_{h}(x, K)$ instead.

3.2 Our OPE Constructions

We describe our protocol for oblivious polynomial evaluation in the $\mathcal{F}_{\text {MaskPoly }}$-hybrid setting, where the parties have access to a trusted party that computes functionality $\mathcal{F}_{\text {MaskPoly }}:(K, t) \mapsto\left(-, g^{R(t)}\right)$ relative to some prime order group \mathbb{G} and generator g that are picked by P_{0}, for $g^{R(\cdot)}=\left(g^{r_{0}}, \ldots, g^{r_{d}}\right)$ and $g^{r_{i}}=\operatorname{PRF}_{K}(i)$ for all i. For simplicity, we first describe a semi-honest variant of our protocol and then show how to enhance its security into the malicious setting. Formally, let $\mathcal{P} \mathcal{R} \mathcal{F}=$ \langle KeyGen, PRF, CFEval〉 denote an algebraic PRF with a range group \mathbb{G} (cf. Definition 3.1), then our semi-honest protocol follows.

Protocol 1 (Protocol $\pi_{\text {OPE }}$ with Semi-Honest Security.)

- Input: Party P_{0} is given a d-degree polynomial $g^{Q(\cdot)}=\left(g^{q_{0}}, \ldots, g^{q_{d}}\right)$ with coefficients q_{i} 's from \mathbb{Z}_{p} with respect to prime order group \mathbb{G} and generator g. Party P_{1} is given an element t from \mathbb{Z}_{p}. Both parties are given a security parameter 1^{n}, group description \mathbb{G}, p and g.

- The protocol:

1. Masking the Polynomial. P_{0} invokes $(K$, param $) \leftarrow \operatorname{KeyGen}\left(1^{n},\lceil\log d\rceil\right)$ where param includes a group description \mathbb{G} of prime order p and a generator g. It next defines a sequence of d elements $\widetilde{R}(\cdot)=\left(\tilde{r}_{0}, \ldots, \tilde{r}_{d}\right)$ over \mathbb{G} where $\tilde{r}_{i}=\operatorname{PRF}_{K}(i)$ for all i.
P_{0} sends P_{1} param and the masked polynomial $C(\cdot)=\left(g^{q_{0}} \tilde{r}_{0}, \ldots, g^{q_{d}} \tilde{r}_{d}\right)$, where multiplication is implemented (componentwise) in \mathbb{G}.
2. Unmasking the Result. Upon receiving the masked polynomial $C(\cdot)=\left(c_{0}, \ldots, c_{d}\right)$, party P_{1} computes the polynomial evaluation $C(t)=\prod_{i=0}^{d}\left(c_{i}\right)^{t^{i}}$. I.e., $C(\cdot)$ is evaluated in the exponent. Next, the parties invoke an ideal execution of $\mathcal{F}_{\text {MaskPoly }}$ where the input of P_{0} is K and the input of P_{1} is t. Let Z denote the output of P_{1} from this ideal call, then P_{1} 's output is $C(t) / Z$ where division in implemented in \mathbb{G}.

Note that correctness holds since party P_{1} computes in Step 2 the polynomial evaluation

$$
C(t)=\prod_{i=0}^{d}\left(c_{i}\right)^{t^{i}}=\prod_{i=0}^{d}\left(g^{q_{i}} \tilde{r}_{i}\right)^{t^{i}}=\prod_{i=0}^{d}\left(g^{q_{i}} g^{r_{i}^{\prime}}\right)^{t^{i}}=g^{Q(t)+R(t)}
$$

and then "fixes" its computation by dividing out $Z=g^{R(t)}$. In addition, privacy holds due to the pseudorandomness of $\mathcal{P} \mathcal{R} \mathcal{F}$ that hides the coefficients of $Q(\cdot)$. Next, we prove the following theorem. The proof is straightforward and is left for the full version.

Theorem 3.4. Assume $\mathcal{P} \mathcal{R} \mathcal{F}=\langle$ KeyGen, PRF, CFEval〉 is an algebraic PRF, then Protocol 1 securely realizes functionality $\mathcal{F}_{\mathrm{OPE}}$ in the presence of semi-honest adversaries in the $\mathcal{F}_{\text {MaskPoly }}$-hybrid model.

Efficiency. In the first phase P_{0} computes $d+1$ modular exponentiations as it can first compute the PRF evaluations in \mathbb{Z}_{p} (using the PRF key K) and then raise the outcomes to the power of g. Next, P_{0} multiplies each PRF evaluation $\mathrm{PRF}_{K}(i)$ with $g^{q_{i}}$ (where these computations can be combined into a single exponentiation per index i). Efficiency of the second phase is dominated by the degree of $Q(\cdot)$ and the implementation of functionality $\mathcal{F}_{\text {MaskPoly }}$. In Section 3.3 we discuss several ways to realize $\mathcal{F}_{\text {MaskPoly }}$. (1) Assuming the strong-DDH assumption, our protocol requires a constant number of modular exponentiations. (2) Assuming the DDH assumption our protocol requires $O(\log d)$ modular exponentiations. Therefore, the overall cost is $2(d+1)+O(1)$ (resp. $O(\log d)$ exponentiations.

Security in the Presence of Malicious Adversaries. We next prove the security of Protocol 1 in the presence of malicious attacks. We observe that if the protocol that implements $\mathcal{F}_{\text {MaskPoly }}$ is secure in the presence of malicious corruptions then the entire protocol is secure against malicious attacks as well. Intuitively, security against a corrupted P_{1} is immediately implied since a corrupted P_{1} does not learn anything beyond $g^{R\left(t^{\prime}\right)}$, where t^{\prime} is P_{1} 's input to $\mathcal{F}_{\text {MaskPoly }}$. More concretely, in the security proof the simulator publishes a random polynomial $\widetilde{S}(\cdot)=g^{S(\cdot)}$ first, and then extracts P_{1} 's input t^{\prime} to $\pi_{\text {MaskPoly }}$. Finally, the simulator forces P_{1} 's output within $\pi_{\text {MaskPoly }}$ to be
$g^{S\left(t^{\prime}\right)} / g^{Q\left(t^{\prime}\right)}$. In case P_{0} is corrupted we need to demonstrate how to extract the coefficients of $g^{Q(\cdot)}$. This is achieved by the fact that P_{0} is committed to the PRF key K within $\mathcal{F}_{\text {MaskPoly }}$.

To conclude, in order to obtain malicious security the only modification we need to consider with respect to $\pi_{\text {OPE }}$ is to employ a maliciously secure implementation of functionality $\mathcal{F}_{\text {MaskPoly }}$. In the hybrid setting this does not make a difference for the protocol description. In Section 3.3 we discuss secure implementations of functionality $\mathcal{F}_{\text {MaskPoly }}$. The proof for the following theorem is simple and left for the full version.

Theorem 3.5. Assume $\mathcal{P} \mathcal{R F}=\langle K e y G e n$, PRF, CFEval〉 is an algebraic PRF, then Protocol $\left[\right.$ securely realizes functionality $\mathcal{F}_{\mathrm{OPE}}$ in the presence of malicious adversaries in the $\mathcal{F}_{\text {MaskPoly }}$-hybrid model.

3.3 Secure Protocols for $\boldsymbol{\pi}_{\text {MaskPoly }}$

In this section we describe a concrete protocol that implements functionality $\mathcal{F}_{\text {MaskPoly }}$: $(K, t) \mapsto\left(-, g^{R(t)}\right)$, used as a subprotocol within our main protocol $\pi_{\text {OPE }}$ for oblivious polynomial evaluation from Section 3.2. This computation corresponds to the polynomial evaluation $\widetilde{R}(x)=\operatorname{PRF}_{K}(0) \cdot \operatorname{PRF}_{K}(1)^{x} \ldots . . \cdot \operatorname{PRF}_{K}(d)^{x^{d}}$ with respect to function PRF. In what follows, we discuss a detailed secure implementation for $\mathcal{P R} \mathcal{F}_{1}$ that is described in Section 3.1 and then briefly discuss how to implement function $\mathcal{P} \mathcal{R} \mathcal{F}_{2}$, formally described in Section 3.1, using similar ideas.

We recall that when implementing functionality $\mathcal{F}_{\text {MaskPoly }}$ relative to $\mathcal{P} \mathcal{R} \mathcal{F}_{1}$ the parties compute the value $g^{\sum_{i=0}^{d} k_{0} k_{1}^{i} x^{i}}=g^{\frac{k_{0}\left(\left(k_{1} x\right)^{d+1}-1\right)}{k_{1} x-1}}$, so that P_{0} enters a PRF key $K=\left(k_{0}, k_{1}\right)$ and learns nothing and P_{1} enters $x=t$ and learns this outcome. This is a simple computation that requires a constant number of exponentiations and can be easily implemented securely. Achieving malicious security requires to ensure correctness of computations which we obtain using simple zero-knowledge proofs of knowledge. Loosely speaking, the parties first generate a joint public key for the additive El Gamal PKE such that no party knows the secret key (we omit the details here). Next, each party commits to its input and the parties jointly compute $k_{1} t$. A slight complication arises since the parties need to compute the inverse of $k_{1} t-1$. Relying on the fact that $\left(k_{1} t-1\right)^{-1}=\left(k_{1} t-1\right)^{p-2} \bmod p$ and that

$$
\frac{k_{0}\left(\left(k_{1} t\right)^{d+1}-1\right)}{k_{1} t-1}=\frac{k_{0}\left(k_{1} t\right)^{d+1}-k_{0}}{k_{1} t-1}=\frac{k_{0} k_{1}^{d+1} t^{d+1}}{k_{1} t-1}-\frac{k_{0}}{k_{1} t-1}
$$

we let the parties compute the inverse of $k_{1} t-1$ first and then complete the computation by multiplying the result with $k_{0}\left(k_{1} t\right)^{d+1}$ and k_{0}. Formally, our protocol uses the following tools:

1. Distributed additive El Gamal. We denote this scheme by $\Pi=\left(\pi_{\text {KeyGen }}\right.$, Enc, $\left.\pi_{\mathrm{DEC}}\right)$.
2. Zero-knowledge proofs of knowledge: π_{DL} for proving a discrete logarithm and π_{Eq} for proving consistency of exponents, which are formally stated in Section 2.2.
Finally, we implicity assume that a party rerandomizes its homomorphic computations on the ciphertexts. Such that rerandomization is carried out by multiplying the outcome with a random encryption of zero. We now describe our protocol is details.

Protocol 2 (Protocol $\pi_{\text {MaskPoly }}$ with Malicious Security.)

- Input: Party P_{0} is given a PRF key $K=\left(k_{0}, k_{1}\right)$. Party P_{1} is given an element t. Both parties are given a security parameter 1^{n}, a polynomial degree d and (\mathbb{G}, p, g) for a group description \mathbb{G} of prime order p and a generator g.
- Convention: Homomorphic operations on ciphertexts are computed componentwise.
- The protocol:

1. Distributed key generation. P_{0} and P_{1} run protocols $\pi_{\mathrm{KeyGen}}\left(1^{n}, 1^{n}\right)$ in order to generate additive El Gamal public key $\mathrm{PK}=\langle\mathbb{G}, p, g, h\rangle$ for which the corresponding shares of the secret key SK are $\left(\mathrm{SK}_{0}, \mathrm{SK}_{1}\right) . P_{0}$ then sends P_{1} encryptions of k_{0} and k_{1}, denoted by $c_{k_{0}}$ and $c_{k_{1}}$, and proves their knowledge using π_{DL}.
2. Computing encryption of $\mathbf{k}_{1} \mathbf{t}$. Upon receiving ciphertexts $c_{k_{0}}$ and $c_{k_{1}}, P_{1}$ sends P_{0} an encryption of its input t, denoted by c_{t}. It further computes the encryption of $k_{1} t$, denoted by $c_{k_{1} t}$, and proves consistency relative to c_{t} and $c_{k_{1} t}$ using the zero-knowledge proof π_{Eq}.
3. Computing encryptions of $\mathbf{k}_{1}^{\mathbf{d}+\mathbf{1}}$ and $\mathbf{t}^{\mathbf{d + 1}} . P_{0}$ computes the encryption of k_{1}^{d+1}, denoted by $c_{k_{1}^{d+1}}$, and proves consistency between g^{d+1} and $c_{k_{1}^{d+1}}$ using π_{Eq}. Similarly, P_{0} computes the encryption of t^{d+1}, denoted by $c_{t^{d+1}}$, and proves correctness.
4. Computing encryption of $\left(\mathbf{k}_{\mathbf{1}} \mathbf{t}-\mathbf{1}\right)^{\mathbf{- 1}}$. The parties compute the inverse of $\left(k_{1} t-1\right)$, by first computing the encryption of $k_{1} t-1$ given ciphertext $c_{k_{1} t}$ from above, and then raising the result to the power of $p-2$. Let $c_{i n v}$ denote the outcome.
5. Computing encryptions of $\mathbf{k}_{\mathbf{0}}\left(\mathbf{k}_{\mathbf{1}} \mathbf{t}-\mathbf{1}\right)^{-\mathbf{1}}$ and $\mathbf{k}_{\mathbf{0}} \mathbf{k}_{\mathbf{1}}^{\mathbf{d + 1}}\left(\mathbf{k}_{\mathbf{1}} \mathbf{t}-\mathbf{1}\right)^{-\mathbf{1}}$. Given ciphertexts $c_{i n v}, c_{k_{1}^{d+1}}$ and $c_{k_{0}}, P_{0}$ computes the encryptions of $k_{0}\left(k_{1} t-1\right)^{-1}$ and $k_{0} k_{1}^{d+1}\left(k_{1} t-1\right)^{-1}$ and proves consistency relative to $c_{i n v}, c_{k_{1}^{d+1}}$ and $c_{k_{0}}$ using π_{Eq} (where the proof of the later computation involves running π_{Eq} twice). Let c_{0} and c_{0}^{\prime} denote the respective outcomes.
6. Computing encryption of $\mathbf{k}_{\mathbf{0}} \mathbf{k}_{\mathbf{1}}^{\mathbf{d + 1}} \mathbf{t}^{\mathbf{d + 1}}\left(\mathbf{k}_{\mathbf{1}} \mathbf{t}-\mathbf{1}\right)^{\mathbf{- 1}}$. Given ciphertexts $c_{t^{d+1}}$ and c_{0}^{\prime}, P_{1} computes the encryption of $k_{0} k_{1}^{d+1} t^{d+1}\left(k_{1} t-1\right)^{-1}$ and proves consistency using π_{Eq}. Let c_{1} denote the respective outcome.
7. Outcome. Finally, the parties decrypt c_{1} / c_{0} for P_{1} that outputs the result.

Theorem 3.6. Assume $\Pi=\left(\pi_{\mathrm{KeyGen}}\right.$, Enc, $\left.\pi_{\mathrm{DEC}}\right), \pi_{\mathrm{DL}}$ and π_{Eq} are as above, then Protocol 2 securely realizes functionality $\mathcal{F}_{\text {MaskPoly }}$ with respect to $\mathcal{P} \mathcal{R} \mathcal{F}_{1}$ in the presence of malicious adversaries.

We leave the proof to the full version. Next, we note that the implementation of the other PRF $\mathcal{P} \mathcal{R} \mathcal{F}_{2}$ follows similarly. Namely, recall that the parties compute the value $g^{k_{0}\left(1+k_{1}, x\right)\left(1+k_{2} x^{2}\right) \ldots\left(1+k_{m} x^{2^{m}}\right)}$ which can be carried out in $O(m)$ time as follows. First, P_{0} commits to its key $\left(k_{0}, k_{1}, \ldots, k_{m}\right)$, whereas P_{1} commits to the elements $\left(x, x^{2}, \ldots, x^{2^{m}}\right)$ together with a ZK proof of consistency. Next, given the product $\tilde{g}=g^{k_{0}\left(1+k_{1}, x\right)\left(1+k_{2} x^{2}\right) \ldots\left(1+k_{m}^{\prime} x^{2^{m^{\prime}}}\right)}$ for some integer $m^{\prime}<m$, the parties compute

$$
\tilde{g} \cdot \tilde{g}^{k_{m^{\prime}+1} x^{2\left(m^{\prime}+1\right)}}=\tilde{g}^{\left(1+k_{m^{\prime}+1} x^{2\left(m^{\prime}+1\right)}\right)}=g^{k_{0}\left(1+k_{1}, x\right)\left(1+k_{2} x^{2}\right) \ldots\left(1+k_{m^{\prime}+1} x^{2^{\left(m^{\prime}+1\right)}}\right)}
$$

where $\hat{g}=\tilde{g}^{k_{m^{\prime}+1}}$ is carried out by P_{0} and proven correct with respect the commitment of $g^{k_{m^{\prime}+1}}$. This computation is followed by P_{1} computing $\hat{g}^{x^{\left.2^{\prime \prime}+1\right)}}$ which is also verified against the commitment of $g^{x^{2^{\left(m^{\prime}+1\right)}}}$ where the commitment is realized using El Gamal. See the ZK proof π_{Eq} for more details.

4 Secure Set-Intersection

One important application that benefits from our OPE construction is the set-intersection functionality which is defined by having each party's input consists of a set of elements from domain $\{0,1\}^{t}$. Formally:

Definition 4.1. Let X and Y be subsets of a predetermined arbitrary domain $\{0,1\}^{t}$ and m_{X} and m_{Y} the respective upper bounds on the sizes of X and Y Then functionality \mathcal{F}_{\cap} is defined by:

$$
(X, Y) \mapsto\left(m_{Y},\left(X \cap Y, m_{X}\right)\right)
$$

To achieve a secure set-intersection protocol, we modify protocol $\pi_{\text {OPE }}$ from Section 3.2 as follows. First, P_{0} prepares a polynomial $Q(\cdot)$ with coefficients in \mathbb{Z}_{p} and the set of roots X. It then masks $Q(\cdot)$ as in Protocol 1 using the sequence of pseudorandom elements $\widetilde{R}(\cdot)$. The parties then interact with a trusted party that computes functionality $\mathcal{F}_{\text {EqMask }}$, which is a slight variation of functionality $\mathcal{F}_{\text {MaskPoly }}$. Namely, instead of implementing $\mathcal{F}_{\text {MaskPoly }}$ the functionality checks for equality with respect to P_{1} 's polynomial evaluations of $g^{Q(\cdot)} \widetilde{R}(\cdot)$ and $\widetilde{R}(\cdot)$ on the set Y. This modification in the functionality's description is required due to the fact that we cannot let P_{1} learn $Q(y)$ for arbitrary $y \in Y$ (even if P_{1} is honest), since that would leak information about X. More specifically, $\mathcal{F}_{\text {EqMask }}$ is defined by $\left(K,\left\{\left(y_{i}, T_{i}\right)\right\}_{y_{i} \in Y}\right) \mapsto\left(-,\left\{b_{i}\right\}_{i}\right)$, where $b_{i}=1$ only if $T_{i}=g^{R\left(y_{i}\right)}$ and 0 otherwise, $g^{R(\cdot)}=\left(g^{r_{0}}, \ldots, g^{r_{m_{X}}}\right)$ and $g^{r_{i}}=\operatorname{PRF}_{K}(i)$ for all i. Stated differently, $b_{i}=1$ if and only if $Q\left(y_{i}\right)=0$ (or $y_{i} \in X \cap Y$) with overwhelming probability. Finally, P_{1} outputs the set of elements $Z \subseteq Y$ for which $b_{i}=1$.

Our implementation for $\mathcal{F}_{\text {MaskPoly }}$ from Section 3.3 easily supports this functionality, since P_{0} can run its zero-knowledge proofs with respect to a single set of ciphertexts encrypting its PRF key. In addition, in order to enable the extraction of the set X by the simulator we add zero-knowledge proofs of knowledge for the relation $\mathcal{R}_{\mathrm{DL}}$, formally defined in Section 2.2 This technicality arises because P_{0} sends elements in \mathbb{G} yet the polynomial $Q(\cdot)+R(\cdot)$ is evaluated in the exponent, implying that X and Y must be sampled from \mathbb{Z}_{p} as well. Note that P_{0} may fix X and its masked polynomial in \mathbb{G}. Nevertheless, P_{1} needs to know the discrete logarithms of Y with respect to some group generator g in order to evaluate the masked polynomial.

Formally, let $d=m_{X}-1$, then define our set-intersection protocol as follows,

Protocol 3 (Protocol π_{\cap} with malicious security.)

- Input: Party P_{0} is given a set X of size m_{X}. Party P_{1} is given a set Y of size m_{Y}. Both parties are given a security parameter 1^{n}.
- The protocol:

1. Masking the input polynomial. P_{0} defines an d-degree polynomial $Q(\cdot)=$ $\left(q_{0}, \ldots, q_{d}\right)$ with coefficients in \mathbb{Z}_{p} and the set of roots X, for $d=m_{X}-1$. It then

[^1]invokes (K, param) $\leftarrow \operatorname{KeyGen}\left(1^{n}, d\right)$ where param includes a group description \mathbb{G} of prime order p and a generator g, and defines a new d-degree polynomial $\widetilde{R}(\cdot)=\left(\widetilde{r}_{0}, \ldots, \tilde{r}_{d}\right)$ over \mathbb{G}, where r_{i} is defined by $\mathrm{PRF}_{K}(i)$ for all i.
P_{0} sends P_{1} param and the masked polynomial $C(\cdot)=\left(g^{q_{0}} \tilde{r}_{0}, \ldots, \ldots, g^{q_{d}} \tilde{r}_{d}\right)$, where multiplication is implemented in \mathbb{G}. P_{0} further proves the knowledge of the discrete logarithm of $c_{i}=g^{q_{i}} \tilde{r}_{i}$ for all i with respect to a generator g, by invoking an ideal execution of $\mathcal{F}_{\mathrm{DL}}$ on input $\left\{\left(\left(g, c_{i}\right), \log _{g} c_{i}\right)\right\}_{i \in[0, d]}$ The input of P_{1} for $\mathcal{F}_{\mathrm{DL}}$ is $\left\{\left(g, c_{i}\right)\right\}_{i \in[0, d]}$.
2. Unmasking the result. Upon receiving the masked polynomial $C(\cdot)=\left(c_{0}, \ldots, c_{d}\right)$ and upon receiving from $\mathcal{F}_{\mathrm{DL}}$ the value 1 , denoting "accept" for all i, party P_{1} computes the polynomial evaluation $C(y)=\prod_{i=0}^{d}\left(c_{i}\right)^{y^{i}}$ for all $y \in Y$ (picked in a random order). I.e., $C(\cdot)$ is evaluated in the exponent.
Next, the parties invoke an ideal execution of $\mathcal{F}_{\text {EqMask }}$, where the input of P_{0} is K and the input of P_{1} is the set $\{(y, C(y))\}_{y \in Y} . P_{1}$ outputs y if and only if the output from $\mathcal{F}_{\text {EqMask }}$ on $(y, C(y))$ is 1 .

Correctness follows easily since P_{1} outputs only elements in Y that zeros polynomial $Q(\cdot)$, whom its roots are the set X. Next, we prove the following theorem.

Theorem 4.2. Assume $\mathcal{P} \mathcal{R} \mathcal{F}=\langle$ KeyGen, F, CFEval \rangle is an algebraic PRF, then Protocol 3 securely realizes functionality \mathcal{F}_{\cap} in the presence of malicious adversaries in the $\left\{\mathcal{F}_{\mathrm{DL}}, \mathcal{F}_{\text {EqMask }}\right\}$-hybrid model.

Proof: We prove security for each corruption case separately.
P_{0} is corrupted. Let \mathcal{A} be a PPT adversary corrupting party P_{0}, we design a PPT simulator $\mathcal{S I M}$ that simulates the view \mathcal{A}, playing the role of the honest P_{1} while extracting \mathcal{A} 's input set X, details follow.

1. Given input $\left(1^{n}, X, z\right), \mathcal{S I M}$ invokes \mathcal{A} on this input and receives \mathcal{A} 's first message, (\mathbb{G}, p, g) and a d-degree polynomial $C(\cdot)=\left(c_{0}, \ldots, c_{d}\right)$.
2. $\mathcal{S I M}$ emulates the ideal calls of $\mathcal{F}_{\mathrm{DL}}$ by playing the role of the trusted party that receives from \mathcal{A} tuples $\left\{\left(\left(g, c_{i}\right), c_{i}^{\prime}\right)\right\}_{i \in[0, d]}$ and records these values. $\mathcal{S I M}$ verifies whether $c_{i}=g^{c_{i}^{\prime}}$ for all i and records 1 only if these conditions are met, and 0 otherwise. In case $\mathcal{S I M}$ records 0 it aborts and outputs whatever \mathcal{A} does.
3. $\mathcal{S I} \mathcal{M}$ defines the input set X^{\prime} as follows. For every i let $\tilde{r}_{i}=\operatorname{PRF}_{K}(i)$ and $r_{i}=$ $\log _{g} \tilde{r}_{i}$ and let $q_{i}^{\prime}=c_{i}^{\prime}-r_{i}{ }^{3} \mathcal{S} \mathcal{I} \mathcal{M}$ fixes polynomial $Q^{\prime}(\cdot)=\left(q_{0}^{\prime}, \ldots, q_{d}^{\prime}\right)$ and defines X^{\prime} to be the set of roots of $Q^{\prime}(\cdot) . \mathcal{S I M}$ computes X^{\prime} by factoring $Q^{\prime}(\cdot)$ over \mathbb{Z}_{p} and sends the set X^{\prime} to the trusted party, receiving back m_{Y}.
4. $\mathcal{S I M}$ emulates the ideal call of $\mathcal{F}_{\text {MaskPoly }}$ by playing the role of the trusted party that receives from \mathcal{A} a PRF key K.
5. $\mathcal{S I} \mathcal{M}$ outputs whatever \mathcal{A} does.

Note that the adversary's view is identical to its view in the hybrid execution since it does not get any output from the internal ideal calls as well as from \mathcal{F}_{\cap}. We now claim

[^2]that P_{1} 's output is identical with overwhelming probability in both executions due to the following. In the hybrid execution the correctness of the ideal call for $\mathcal{F}_{\text {EqMask }}$ ensures that P_{1} obtains the correct equality bit for every $y \in Y$. Namely, if $C(y) \neq \widetilde{R}(y)$ then the honest P_{1} obtains 0 from $\mathcal{F}_{\text {EqMask }}$ and does not output y. On the other hand, if $C(y)=\widetilde{R}(y)$ then P_{0} receives 1 and returns y. Stating differently, P_{1} returns $y \in Y$ only if $C(y) / \widetilde{R}(y)=1$ where division is computed component-wise. Next, in the simulation $\mathcal{S I} \mathcal{M}$ defines the input set X^{\prime} of the adversary as the set of roots with respect to the unmasked polynomial $C(\cdot) / \widetilde{R}(\cdot)$ (computed component-wise), where the masking is defined by the PRF key K input by the adversary to $\mathcal{F}_{\text {EqMask }}$. Therefore the intersection is computed with respect to the same set X^{\prime}.
P_{1} is corrupted. Let \mathcal{A} be a PPT adversary corrupting party P_{1}, we design a PPT simulator $\mathcal{S I} \mathcal{M}$ that generates the view of \mathcal{A} as follows. $\mathcal{S I} \mathcal{M}$ first sends a random polynomial $\widetilde{S}(\cdot)$. Next, upon receiving the adversary's set of elements Y^{\prime} to $\mathcal{F}_{\text {MaskPoly }}$, $\mathcal{S I M}$ forwards it to the trusted party for \mathcal{F}_{\cap}. Let Z^{\prime} denotes the output returned by the trusted party, then $\mathcal{S I M}$ completes the simulation by forcing the output of \mathcal{A} within $\mathcal{F}_{\text {EqMask }}$ to be consistent with the set Z. More formally,

1. Given input $\left(1^{n}, Y, z\right), \mathcal{S I M}$ invokes \mathcal{A} on this input and sends it (\mathbb{G}, p, g).
2. $\mathcal{S I M}$ picks a random d-degree polynomial $\widetilde{S}(\cdot)=\left(\tilde{s}_{0}, \ldots, \tilde{s}_{d}\right)=\left(g^{s_{0}}, \ldots, g^{s_{d}}\right)$ with coefficients in \mathbb{G} and sends it to \mathcal{A}. (We assume that the simulator knows m_{X} as part of its auxiliary information. This can also be assured by modifying the definition of the functionality, given m_{X} to P_{1} as part of its input).
3. $\mathcal{S I} \mathcal{M}$ emulates the ideal calls of $\mathcal{F}_{\mathrm{DL}}$ by playing the role of the trusted party that receives from \mathcal{A} tuples $\left\{\left(g, \tilde{s}_{i}\right)\right\}_{i \in[0, d]}$ and sends \mathcal{A} the value 1 for all i (denoting accept calls).
4. $\mathcal{S I M}$ then emulates the ideal call of $\mathcal{F}_{\text {EqMask }}$ by playing the role of the trusted party that receives from \mathcal{A} the set $\left\{\left(y_{j}^{\prime}, T_{y_{j}^{\prime}}\right)\right\}_{j \in\left[m_{Y}\right]} . \mathcal{S I M}$ sends the set $Y^{\prime}=$ $\left\{y_{j}^{\prime}\right\}_{j \in\left[m_{Y}\right]}$ to the trusted party, receiving back the intersection $Z=X \cap Y^{\prime}$.
For all $y_{j}^{\prime} \in Z, \mathcal{S I M}$ emulates the ideal response of $\mathcal{F}_{\text {EqMask }}$ as follows. If $T_{y_{j}^{\prime}}=$ $g^{S\left(y_{j}^{\prime}\right)}$ then $\mathcal{S I M}$ sends \mathcal{A} the value 1 . Otherwise it sends 0 . For all $y_{j}^{\prime} \notin Z, \mathcal{S I M}$ always replies with 0 .
5. $\mathcal{S I} \mathcal{M}$ outputs whatever \mathcal{A} does.

Note that the protocol never verifies that \mathcal{A} 's inputs to $\mathcal{F}_{\text {EqMask }}$ are consistent pairs $\left\{\left(y_{j}^{\prime}, T_{y_{j}^{\prime}}\right)\right\}_{j}$ of which $T_{y_{j}^{\prime}}=g^{S\left(y_{j}^{\prime}\right)}$ for all $j \in\left[m_{Y}\right]$. We prove that this is not required. Specifically, the differences between the hybrid and simulated executions are as follows. First, $\mathcal{S I M}$ sends in the simulation a random polynomial instead of a real masked polynomial. In addition, $\mathcal{S I M}$ fixes the output of $\mathcal{F}_{\text {EqMask }}$ based on the correctness of \mathcal{A} 's computations which deviates from the way this functionality is defined. Consider a hybrid game Hyb where the simulator $\mathcal{S I} \mathcal{M}_{\mathrm{Hyb}}$ uses the real input X of P_{0} to define polynomial $Q(\cdot)$, but decides on the output of $\mathcal{F}_{\text {EqMask }}$ according to the strategy specified in the simulation. Namely for every pair $\left(y_{j}^{\prime}, T_{y_{j}^{\prime}}\right), \mathcal{S I} \mathcal{M}_{\text {Hyb }}$ verifies first whether $T_{y_{j}^{\prime}}=C\left(y_{j}^{\prime}\right)$ and returns 1 if equality holds. Clearly, the views induced in Hyb and in the simulation are computationally indistinguishable due to the pseudorandomness of F. This argument is similar to the argument presented in the proof of Protocol 1 .

Next, we claim that the distributions induced by the views of the hybrid execution and game Hyb are statistically close.

Formally, for every y_{j}^{\prime} consider two cases. (i) $y_{j}^{\prime} \notin X$ which implies that y_{j}^{\prime} is not in the intersection and that $b_{j}=0$ in the simulation of Hyb. Next, define a Bad event in which \mathcal{A} receives $b_{j}=1$ from the trusted party for $\mathcal{F}_{\text {EqMask }}$ in the hybrid execution. Clearly, this event holds only if $T_{y_{j}^{\prime}}=\operatorname{CFEval}\left(y_{j}^{\prime}, K\right)=g^{R\left(y_{j}^{\prime}\right)}$ for K the PRF key entered by the honest P_{0}, which implies that \mathcal{A} must correctly guess CFEval $\left(y_{j}^{\prime}, K\right)$. We claim that the probability this event occurs is negligible due to the pseudorandomness of F and CFEval (in Section 5 we discuss the pseusorandomness of CFEval). Specifically, any successful guess with a non-negligible probability implies an attack on the PRF. Thus, the probability that Bad occurs is negligible. It therefore holds that the adversary's views are statistically close condition on the event that y_{j}^{\prime} is not in the intersection. (ii) $y_{j}^{\prime} \in X$ which implies that y_{j}^{\prime} is in the intersection. Nevertheless, here there is no analogue bad event. This is because $b_{j}=1$ only when $T_{y_{j}^{\prime}}=C\left(y_{j}^{\prime}\right)=\operatorname{CFEval}\left(y_{j}^{\prime}, K\right)$, which implies that $b_{j}=1$ in both executions due to correctness of $\mathcal{F}_{\text {EqMask }}$.

Efficiency. As in Protocol 1, the efficiency of Protocol 3 is dominated by the implementation of functionality $\mathcal{F}_{\text {EqMask }}$. Our protocols from Section 3.3 can be easily modified to support this functionality without significantly effecting their overhead, since the parties can first compute the encryption of the closed form efficiency of the PRF and then compare it with the input of P_{1}. Therefore, the overall communication complexity is $O\left(m_{X}\right)$ group elements for sending the first message and $O\left(m_{Y}\right)$ (resp. $O\left(m_{Y} \log m_{Y}\right)$) group elements for the second phase of implementing $\mathcal{F}_{\text {EqMask }}$ for each $y \in Y$, depending on the underlying PRF. In particular, the number of modular exponentiations implies multiplicative costs in the sets sizes since P_{1} evaluates its masked polynomial for each element in Y. Next, we demonstrate how to reduce this cost.

4.1 Improved Constructions Using Hash Functions

We now show how to reduce the computational overhead using hash functions by splitting the set elements into smaller bins. Our protocol is applicable for different hash functions such as: simple hashing, balanced allocations [4] and Cuckoo hashing [33]. For simplicity, we first describe our protocol for the simple hashing case; see Section 4.1 for a discussion about extensions to the other two hashing. Informally, the parties first agree on a hash function that is picked from a family of hash functions and induces a set of bins with some upper bound on the number of elements in each bin. Next, P_{0} maps its elements into these bins and generates a polynomial for each such bin, which is computed as in Protocol 3 but with a smaller degree. Finally, P_{0} masks all the polynomials and sends them to P_{1}. Upon receiving the masked polynomials, P_{1} maps its elements into the same set of bins and evaluates the masked polynomials for these mapped bins. In the last step, the parties unmask these evaluations. To be precise, we need to specify how the masking procedure works and ensure that the parties do not deviate from the instructions of the protocol.

We fix some notations first. We denote by h the hash function picked by the parties, by \mathcal{B} the number of bins and by \mathcal{M} the maximum number of elements allocated to any single bin (where \mathcal{B} and \mathcal{M} are parameters specified by the concrete hash function in use and further depend on m_{X}). Note that the potential number of allocated elements is bounded by $\mathcal{B} \mathcal{M}$ which may be higher than the exact number m_{X}. This implies that the protocol must ensure that P_{0} does not take advantage of that and introduce more set elements into the protocol execution. In addition, it must be ensured that a corrupted P_{0} does not mask the zero polynomial, which would imply that P_{1} accepts any value it substitutes in the masked polynomial. On the other hand, the protocol must ensure that a corrupted P_{1} does not gain any information by entering incorrect values. Verifying that a polynomial is not all zeros can be easily done by substitution a random element in it and checking that the result is different than zero. In Section 4.1 we demonstrate how to enforce P_{0} 's correct behaviour by designing a new proof that exploits the algebraic properties of the underlying PRF. The verification procedure for P_{1} is even simpler as demonstrated below.

Next, we explain how the masking procedure is computed. Denote by $Q_{j}(\cdot)$ the polynomial associated with the j th bin. If the degree of $Q_{j}(\cdot)$ is smaller than $\mathcal{M}-1$ then P_{0} fixes the values of the $\mathcal{M}_{1}-\operatorname{deg}\left(Q_{j}(\cdot)\right)$ leading coefficients to be zeros. It then masks the i th coefficient of $Q_{j}(\cdot)$ by multiplying it with $\operatorname{PRF}_{K}((j-1) \cdot \mathcal{M}+i)$ for $i \in[0, \mathcal{M}-1]$. Furthermore, unmasking is computed by comparing the evaluation of the j th polynomial to the following computation

$$
\begin{aligned}
& \prod_{i=0}^{j \mathcal{M}-1} \operatorname{PRF}_{K}(i)^{x^{i}} / \prod_{i=0}^{(j-1) \mathcal{M}-1} \operatorname{PRF}_{K}(i)^{x^{i}} \\
& \quad=\operatorname{PRF}_{K}((j-1) \mathcal{M})^{x^{(j-1) \mathcal{M}}} \cdot \ldots \cdot \operatorname{PRF}_{K}(j \mathcal{M}-1)^{x^{j \mathcal{M}-1}}
\end{aligned}
$$

which is exactly the set of PRF values that mask polynomial $Q_{j}(\cdot)$.
More formally, our protocol uses two functionalities in order to ensure correctness. First, the parties call functionality $\mathcal{F}_{\text {Bins }}$ for proving that the masked polynomials sent by P_{0} are correctly defined. Namely, $\mathcal{F}_{\text {Bins }}:\left(K,\left\{C_{j}(\cdot)=\left(c_{0}^{j}, \ldots, c_{\mathcal{M}-1}^{j}\right)\right\}_{j \in[\mathcal{B}]}\right) \mapsto$ $(-, b)$ and $b=1$ only if none of the unmasked polynomials $\left\{Q_{j}(\cdot)\right\}_{j}$ is the zero polynomial and the overall degrees of these polynomials $\left\{Q_{j}(\cdot)\right\}_{j}$ is bounded by m_{X}. In addition, the parties call functionality $\mathcal{F}_{\text {EqMaskHash }}$ in order to correctly unmask polynomial evaluations $\left\{C_{h(y)}(y)\right\}_{y \in Y}$ for P_{1}. We continue with the detailed description of our set-intersection protocol in the hybrid model. In Sections 4.1 and 4.1 we discuss how to securely implement these functionalities.

Protocol 4 (Protocol π_{\cap} with Malicious Security and Hash Functions.)

- Input: Party P_{0} is given a set X of size m_{X}. Party P_{1} is given a set Y of size m_{Y}. Both parties are given a security parameter 1^{n}.
- The protocol:

1. Fixing the parameters of the hash function. The parties fix the parameters \mathcal{B} and \mathcal{M} of the hash function and picks a hash function $h:\{0,1\}^{t} \mapsto[\mathcal{B}] . P_{0}$ invokes $(K$, param $) \leftarrow \operatorname{KeyGen}\left(1^{n}, \mathcal{M}-1\right)$ where param includes a group description \mathbb{G} of prime order p and a generator g.
2. Masking the input polynomial. For every $x \in X, P_{0}$ maps x into bin $h(x)$. Let \mathcal{B}_{j} denote the set of elements mapped into bin j. Next, P_{0} constructs a polynomial $Q_{j}(\cdot)=\left(q_{0}^{j}, \ldots, q_{d}^{j}\right)$ with coefficients in \mathbb{Z}_{p} and the set of roots \mathcal{B}_{j}. If $\left|\mathcal{B}_{j}\right|<\mathcal{M}, P_{0}$ fixes the leading $\mathcal{M}-\left|\mathcal{B}_{j}\right|-1$ coefficients to zero.
For each $j \in[\mathcal{B}], P_{0}$ defines a new $(\mathcal{M}-1)$-degree polynomial $\widetilde{R}_{j}(\cdot)=\left(\tilde{r}_{0}^{j}, \ldots, \tilde{r}_{\mathcal{M}-1}^{j}\right)$ over \mathbb{G}, where \tilde{r}_{i}^{j} is defined by $\operatorname{PRF}_{K}((j-1) \mathcal{M}+i)$ for all $i \in[0, \mathcal{M}-1]$. P_{0} sends P_{1} param and the masked polynomials $\left\{C_{j}(\cdot)\right\}_{j}=\left\{g^{q_{0}^{j}} \tilde{r}_{0}^{j}, \ldots, \ldots, g^{q_{\mathcal{M}-1}^{j}} \tilde{r}_{\mathcal{M}-1}^{j}\right\}_{j}$, where multiplication is implemented in $\mathbb{G} . P_{0}$ further proves the knowledge of the discrete logarithm of $c_{i}^{j}=g^{q_{i}^{j}} \tilde{r}_{i}^{j}$ for all i and j with respect to a generator g, by invoking an ideal execution of $\mathcal{F}_{\mathrm{DL}}$ on input $\left\{\left(\left(g, c_{i}^{j}\right), \log _{g} c_{i}^{j}\right)\right\}_{i \in[0, \mathcal{M}-1], j \in[\mathcal{B}]} \square^{4}$ The input of P_{1} for $\mathcal{F}_{\mathrm{DL}}$ is $\left\{\left(g, c_{i}^{j}\right)\right\}_{i \in[0, \mathcal{M}-1], j \in[\mathcal{B}]}$.
Finally, P_{0} proves correctness using $\mathcal{F}_{\text {Bins }}$ where P_{0} enters K and P_{1} enters the masked polynomials.
3. Unmasking the result. Upon receiving the polynomials $\left\{C_{j}(\cdot)=\right.$ $\left.\left(c_{0}^{j}, \ldots, c_{\mathcal{M}-1}^{j}\right)\right\}_{j \in[\mathcal{B}]}$ and upon receiving accepting messages from $\mathcal{F}_{\mathrm{DL}}, \mathcal{F}_{\mathrm{Bins}}$, party P_{1} computes the following for every $y \in Y$ (picked in a random order). It first maps y into bin $h(y)$ and then computes the polynomial evaluation $C_{h(y)}(y)=\prod_{i=(h(y)-1) \mathcal{M}}^{h(y) \mathcal{M}-1}\left(c_{i}^{h(y)}\right)^{y^{i}}$. I.e., $C_{h(y)}(\cdot)$ is evaluated in the exponent. Next, the parties invoke an ideal execution of $\mathcal{F}_{\text {EqMaskHash }}$, where the input of P_{0} is K and the input of P_{1} is the set $\left\{\left(y, h(y), C_{h(y)}(y)\right)\right\}_{y \in Y}$.
P_{1} outputs y only if the output from $\mathcal{F}_{\mathrm{EqMaskHash}}$ on $\left(y, h(y), C_{h(y)}(y)\right)$ is 1 .
Theorem 4.3. Protocol 4 securely realizes functionality \mathcal{F}_{\cap} in the presence of malicious adversaries in the $\left\{\mathcal{F}_{\mathrm{DL}}, \mathcal{F}_{\text {Bins }}, \mathcal{F}_{\text {EqMaskHash }}\right\}$-hybrid model.

Security follows easily from the secure implementations of $\mathcal{F}_{\text {Bins }}$ and $\mathcal{F}_{\text {EqMaskHash }}$ and the proof of Protocol 3] We discuss these protocols next. We stress that P_{1} needs to ensure in Protocol4 that P_{0} indeed uses the same PRF key for both sub-protocols (for instance by ensuring that P_{0} enters the same commitment of K).

A Secure Protocol for $\mathcal{F}_{\text {Bins }}$. In this section we design a protocol $\pi_{\text {Bins }}$ for securely implementing functionality $\mathcal{F}_{\text {Bins }}:\left(K,\left\{C_{j}(\cdot)\right\}_{j \in[\mathcal{B}]}\right) \mapsto(-, b)$ for which $b=1$ only if none of the unmasked polynomials $\left\{Q_{j}(\cdot)\right\}_{j}$ is the zero polynomial and the overall degrees of all polynomials $\left\{Q_{j}(\cdot)\right\}_{j}$ is bounded by m_{X}. To prove that none of the polynomials is the all zeros polynomial we evaluate each masked polynomial on a random element and then verify that the result is different than zero. In particular, for each j the parties first agree on a random element z_{j} and then compute the polynomial evaluation $C_{j}\left(z_{j}\right)$. Next, the parties verify whether $C_{j}\left(z_{j}\right)=\widetilde{R}_{j}\left(z_{j}\right)$ where $\widetilde{R}_{j}(\cdot)$ is the masking polynomial of $C_{j}(\cdot)$. Note that if $Q_{j}(\cdot)$ is not the all zeros polynomial then $C_{j}\left(z_{j}\right) \neq \widetilde{R}_{j}\left(z_{j}\right)$ with overwhelming probability over the choice of z_{j}. This is because there exists a coefficient $q_{i, j} \neq 0$ which implies that for $C_{j}\left(z_{j}\right)=Q_{j}\left(z_{j}\right) \cdot \widetilde{R}_{j}\left(z_{j}\right)$. Now since $Q_{j}\left(z_{j}\right) \neq 0$ it holds that $C_{j}\left(z_{j}\right) \neq \widetilde{R}_{j}\left(z_{j}\right)$. On the other hand, in case $Q_{j}(\cdot)$ is the zero polynomial then it holds that $C_{j}\left(z_{j}\right)=\widetilde{R}_{j}\left(z_{j}\right)$ for all z_{j}. This is because $Q_{j}\left(z_{j}\right)=0$ as all its coefficients equal zero.

[^3]The more challenging part is to prove that the overall degrees of all polynomials $\left\{Q_{j}(\cdot)\right\}_{j}$ is bounded by $m_{X}+\mathcal{B}{ }^{5}$ Our proof ensures that as follows. First, P_{0} picks a PRF key K and forwards P_{1} a commitment of K together with encryptions of $f=\left(f_{0}=\operatorname{PRF}_{K}(0), \ldots, f_{\mathcal{B M}-1}=\operatorname{PRF}_{K}(\mathcal{B M}-1)\right)$ (that are encrypted using the El Gamal encryption scheme). Next, P_{0} proves that it computed the sequence f correctly. This can be achieved by exploiting the closed form efficiency property of the PRF. Namely, the parties mutually compute the encryption of $\prod_{i=0}^{\mathcal{B M}-1} \mathrm{PRF}_{K}(i)^{z^{i}}$ for some random z, and then compare it with the encryption of $\prod_{i=0}^{\mathcal{B} \mathcal{M}-1} f_{i}^{z^{i}}$. In particular, the latter computation is carried out on the ciphertexts that encrypt the corresponding values from f by utilizing the homomorphic property of El Gamal. Then, equality is verified such that P_{0} proves that the two ciphertexts encrypt the same value. Finally, the parties divide the vector of ciphertexts f with the polynomials coefficients $\left\{C_{j}(\cdot)\right\}_{j \in[\mathcal{B}]}$ component-wise (note that both vectors have the same length). P_{0} then proves that the overall degrees of the polynomials is as required using a sequence of zero-knowledge proofs. The last part of our proof borrows ideas from [28]. We continue with the formal description of our protocol.

Protocol 5 (Protocol $\pi_{\text {Bins }}$ with Malicious Security.)

- Input: Party P_{0} is given a PRF key K for function PRF. Both parties are given a security parameter 1^{n}, masked polynomials $\left\{C_{j}(\cdot)=\left(c_{0}^{j}, \ldots, c_{\mathcal{M}-1}^{j}\right)\right\}_{j \in[\mathcal{B}]},(\mathbb{G}, p, g)$ for a group description \mathbb{G} of prime order p and a generator g, and an integer m_{X}.
- The protocol:

1. Setup. P_{0} generates $(\mathrm{PK}, \mathrm{SK}) \leftarrow \mathrm{Gen}\left(1^{n}\right)$ for the El Gamal encryption scheme for group \mathbb{G}. It then computes the set $f=\left(f_{0}=\operatorname{PRF}_{K}(0), \ldots, f_{\mathcal{B M}}-1=\operatorname{PRF}_{K}(\mathcal{B M}-\right.$ 1)) and sends to P_{1} their encryptions under PK , denoted by $\left(e_{0}, \ldots, e_{\mathcal{B} M-1}\right)$, as well as PK.
2. Proving the correctness of f. The parties pick $z \leftarrow \mathbb{Z}_{p}$ at random and compute $e_{f}=\prod_{i=0}^{\mathcal{M B}-1} e_{i}^{z^{i}}$. Next, the parties compute the encryption of the product $\prod_{i=0}^{\mathcal{B} \mathcal{M}-1} \operatorname{PRF}_{K}(i)^{z^{i}}$, denoted by ePRF, which corresponds to the closed form efficiency function of PRF. Finally, P_{0} proves that the two ciphertexts encrypt the same plaintext by proving that $e_{f} / e_{\text {PRF }}$ is a Diffie-Hellman tuple using $\pi_{\text {DL }}$ (see Section 2.2).
3. Proving a bound m_{X} on the overall degrees. If $\pi_{D L}$ is verified correctly, the parties compute the differences with respect to the masked polynomials $\left\{C_{j}(\cdot)\right\}_{j}$ and plaintexts f, component-wise. Namely, for all $j \in[\mathcal{B}]$ and $i \in[0, \mathcal{M}-1]$ the parties compute the encryption of $c_{i}^{j} / f_{(j-1) \mathcal{M}+i}$. We denote the result vector of ciphertexts by $c_{\text {Diff }}$.
P_{0} then sets $Z_{i, j}=1$ for $0 \leq i \leq \operatorname{deg}\left(Q_{j}(\cdot)\right)$, and otherwise $Z_{i, j}=0$. P_{0} computes $z_{i, j}=\operatorname{Enc}_{\mathrm{PK}}\left(Z_{i, j}\right)$ and sends $\left\{z_{i, j}\right\}_{i, j}$ to $P_{1} . P_{0}$ proves that $Z_{0, j}, Z_{1, j}, \ldots, Z_{M-1, j}$ is monotonically non-increasing. For that, P_{0} and P_{1} compute encryptions of $Z_{i, j}$ $Z_{i+1, j}$ and $Z_{i, j}-Z_{i+1, j}-1$, and P_{0} proves that $Z_{i, j}-Z_{i+1, j} \in\{0,1\}$ by showing that one of these encryptions denotes a Diffie-Hellman tuple using π_{DDH}.
P_{0} completes the proof that the values $Z_{i, j}$ were constructed correctly by proving for all i, j that one of the encryptions $\left\{e_{(j-1) \mathcal{M}+i}, z_{i, j}^{\prime}\right\}$ is an encryption of zero, where $z_{i, j}^{\prime}$ is an encryption of $1-Z_{i, j}{ }^{6}$
[^4]Finally, to prove that the sum of degrees of the polynomials $\left\{Q_{j}(\cdot)\right\}$ equals m_{X}, both parties compute an encryption τ of $T=\sum_{i, j} Z_{i, j}-B-m_{X}$. Then P proves that (PK, Enc $\left.{ }_{\mathrm{PK}}(T)\right)$ is a Diffie-Hellman tuple using π_{DDH}.
4. Checking zero polynomials. If all the proofs are verified correctly, then for any $j \in[\mathcal{B}]$ the parties compute $C_{j}\left(z_{j}\right)$ where $z_{j} \leftarrow \mathbb{Z}_{p}$. The parties call $\mathcal{F}_{\text {EqMaskHash }}$ with inputs $\left(K,\left\{z_{j}, j, C_{j}\left(z_{j}\right)\right\}_{j \in[\mathcal{B}]}\right)$. Let $\left\{b_{j}\right\}_{j \in[\mathcal{B}]}$ be P_{1} 's output from this ideal call $]^{7}$
5. P_{1} outputs $b=1$ only if $b_{j}=0$ for all j.

Theorem 4.4. Assume that El Gamal is IND-CPA, then Protocol 5 securely realizes functionality $\mathcal{F}_{\text {Bins }}$ in the presence of malicious adversaries in the $\left\{\mathcal{F}_{\mathrm{DL}}, \mathcal{F}_{\mathrm{DDH}}, \mathcal{F}_{\text {EqMaskHash }}\right\}$-hybrid model.

The details of the proof are omitted here. Next, we note that the efficiency of our protocol is dominated by Steps 2 and 4 where in the former step the parties compute the closed form efficiency relative to the set f in time $O(\mathcal{B M})=O\left(m_{X}\right)$ and in the latter step the parties substitute a random element in every polynomial C_{j}. Overall, the overhead of this step relative to PRF $\mathcal{P} \mathcal{R} \mathcal{F}_{1}$ implies $O(\mathcal{B})=O\left(m_{X}\right)$ group elements and modular exponentiations. For PRF $\mathcal{P} \mathcal{R} \mathcal{F}_{2}$ this step implies $O\left(\mathcal{B} \log m_{X}\right)=$ $O\left(\left(m_{X} \backslash \log \log m_{X}\right) \cdot \log m_{X}\right)$ cost; see a discussion below.

A Secure Protocol for $\mathcal{F}_{\text {EqMaskHash }}$. The next protocol is designed in order to compare the result of P_{1} 's polynomial evaluations on the set Y with the masking polynomials. Basically, for every $y \in Y, P_{1}$ computes first $C_{h(y)}(y)$. The parties then run a protocol for comparing $\left\{C_{h(y)}(y)\right\}_{y \in Y}$ with $\left\{\widetilde{R}_{h(y)}(y)\right\}_{y \in Y}$. To do so, P_{1} must also input the value $h(y)$ which determines the bin's name. Nevertheless, we do not require from the parties to mutually compute $h(y)$ since that would imply a far less efficient protocol. Instead, we demonstrate that P_{1} cannot learn additional information by entering an inconsistent bin number. Finally, for every j, P_{1} outputs 1 only if equality holds.

Formally, we define $\mathcal{F}_{\text {EqMaskHash }}$ by $\left(K,\left\{y, h(y), C_{h(y)}(y)\right\}_{y \in Y}\right) \mapsto\left(-,\left\{b_{j}\right\}_{j}\right)$, where $b_{j}=1$ if $C_{h(y)}(y)=\prod_{i=0}^{h(y) \mathcal{M}-1} \operatorname{PRF}_{K}(i)^{y^{i}} / \prod_{i=0}^{(h(y)-1) \mathcal{M}-1} \operatorname{PRF}_{K}(i)^{y^{i}}$. The actual implementation of this functionality depends on the underlying PRF. We consider two different implementations here. First, considering our protocol from Section 3.3 designed for $\mathcal{P} \mathcal{R} \mathcal{F}_{1}$, an analogue protocol for our purposes can be similarly designed with the modification that the parties now compare $C_{h(y)}(y)$ against the result of the following formula evaluation,

$$
g^{\frac{k_{0}\left(\left(k_{1} x\right)^{(h(y)+1) \mathcal{M}-1}-\left(k_{1} x\right)^{h(y) \mathcal{M}-1}\right)}{k_{1}^{x-1}}}
$$

where $h(y)$ is only known to P_{1}. Note that our protocol from Section 3.3 does not need to rely on the fact that both parties know the polynomial degree d for computing this formula. It is sufficient to prove that the computation of some ciphertext c to the power of $h(y)$ is consistent with a ciphertext encrypting $g^{h(y)}$, where such a ciphertext can be provided by P_{1}. See this protocol from Section 3.3 and the ZK proof π_{Eq} for more details. The overall overhead of the modified protocol is also constant.

[^5]Next, considering the unmasking protocol for $\mathcal{P} \mathcal{R} \mathcal{F}_{2}$, the parties compute the following formula that corresponds to the masking of the polynomial that is associated with bin $h(y)$,

$$
\begin{aligned}
& g^{k_{0}\left(1+k_{1}, x\right)\left(1+k_{2} x^{2}\right) \ldots\left(1+k_{m} x^{2^{\log (h(y) \mathcal{M}-1)}}\right)} \\
& \quad / g^{k_{0}\left(1+k_{1}, x\right)\left(1+k_{2} x^{2}\right) \ldots\left(1+k_{m} x^{\left.2^{2^{\log ((h(y)-1) \mathcal{M}-1)}}\right)}\right.} .
\end{aligned}
$$

Note that computing this formula requires $O\left(\log m_{X}\right)$ exponentiations on the worst case if the bin number implies a high value so that $h(y) \mathcal{M}$, which determines the polynomial degree, is $O\left(m_{X}\right)$.

Security is stated as follows. If P_{0} is corrupted then security follows similarly to the security proof of the protocols implementing $\mathcal{F}_{\text {MaskPoly }}$ (Section 3.3) since P_{0} enters the same input for both functionalities and runs the same computations with respect to its PRF key. The interesting and less trivial corruption case is of P_{1}. We consider two bad events here: (1) A corrupted P_{1} enters y, h^{\prime} for which $h^{\prime} \neq h(y)$. This implies that the parties will not compute the correct unmasking. (2) A corrupted P_{1} enters consistent $y, h(y)$, but an incorrect value $C_{h(y)}(y)$. Note that upon extracting P_{1} 's input to the protocol execution, the simulator can always tell whether this input corresponds to the first or the second case, or neither.

Specifically, in the first case the parties compute the unmasking on y for which element y in not allocated to the specified bin h^{\prime}. This implies that P_{1} would always obtain 0 from the protocol execution unless it correctly guesses $\widetilde{R}_{h^{\prime}}(y)$, which only occurs with a negligible probability due to the security of the PRF. Therefore we can successfully simulate this case by always returning zero. We further note that the security argument of the later case boils down to the security presented in the proof for a single polynomial shown in the proof of Theorem4.2, since in this case P_{1} enters $h(y)$ that is consistent with y so the parties compute the correct masking for y.

Using More Than One Hash Function. In some cases, such as for balanced allocation hash function [4], better performance are obtained by using a pair of hash functions h_{1}, h_{2}, which allocate elements into two distinct bins. That is, the input to the functionality are defined by $\left(K,\left\{y, h_{1}(y), h_{2}(y), C_{h(y)}(y)\right\}_{y \in Y}\right) \mapsto\left(-,\left\{b_{j}\right\}_{j}\right)$. This poses a problem in our setting since a corrupted P_{1} may deviate from the protocol by substituting a different element with respect to each hash function, and learn some information about P_{0} 's input. Specifically, if P_{1} learns that some element $y \in X$ was not allocated to $h_{1}(y)$ it can conclude that P_{0} has \mathcal{M} additional elements that are already mapped into bin $h_{1}(y)$. Note that this leaked information cannot be simulated since it depends on the real input X. In this case we need to verify that P_{1} indeed maps the same element into both bins correctly. A simple observation shows that if this is not the case then the simulation fails only for elements that are in the intersection. Meaning, there exists a bin for which the membership result is positive (since otherwise the adversary anyway learns 0 , and it cannot distinct the cases of non-membership and incorrect behaviour). We thus define the polynomials slightly different, forcing correct behaviour.

Specifically, the polynomial $Q_{j}(\cdot)$ that is associated with the set of elements \mathcal{B}_{j} (namely, the elements that are mapped to the j th bin) is defined as follows. For each $x \in$
\mathcal{B}_{j}, set $Q_{j}(x)=g^{h_{1}(x)+h_{2}(x)}$ where $h_{1}(x)$ and $h_{2}(x)$ are viewed as elements in \mathbb{Z}_{p}. Next, in the unmasking phase, for any tuple $\left(y, h_{1}, h_{2}, C_{y}\right)$ entered by P_{1}, the parties compare C_{y} with both $\left(\prod_{i=0}^{h_{1} \mathcal{M}-1} \operatorname{PRF}_{K}(i)^{y^{i}} / \prod_{i=0}^{\left(h_{1}-1\right) \mathcal{M}-1} \operatorname{PRF}_{K}(i)^{y^{i}}\right) \cdot g^{h_{1} \cdot h_{2}}$ and $\left(\prod_{i=0}^{h_{2} \mathcal{M}-1} \mathrm{PRF}_{K}(i)^{y^{i}} / \prod_{i=0}^{\left(h_{2}-1\right) \mathcal{M}-1} \mathrm{PRF}_{K}(i)^{y^{i}}\right) \cdot g^{h_{1} \cdot h_{2}}$ such that the functionality returns 1 to P_{1} if equality holds with respect to one of the comparisons. Therefore, P_{1} will learn that an element $y \in X$ only if it entered h_{1} and h_{2} such that $h_{1}+h_{2}=$ $h_{1}(y)+h_{2}(y)$. Note that this implies that if one of the h_{1}, h_{2} values is inconsistent with $h_{1}(y), h_{2}(y)$ yet equality holds, then the other value is also inconsistent with high probability. In this case, P_{1} 's output will always be 0 since the incorrect polynomials will be unmasked.

We further need to prove that for any $y \notin X$ the protocol returns 0 with overwhelming probability. Specifically, we need to prove that the probability that either $Q_{h_{1}(y)}(y)=g^{h_{1}(y)+h_{2}(y)}$ or $Q_{h_{2}(y)}(y)=g^{h_{1}(y)+h_{2}(y)}$, is negligible. In order to simplify our proof, we modify our construction and fix $Q_{j}(x)=\operatorname{PRF}_{K}\left(g^{h_{1}(x)+h_{2}(x)}\right)$ for any $x \in \mathcal{B}_{j}$ using a PRF K key that is mutually picked by both parties. In this case, we can easily claim that the probability that the protocol returns 1 for $y \notin X$ is negligible since that implies that either $Q_{h_{1}(y)}(y)$ or $Q_{h_{2}(y)}(y)$ equal the pseudorandom value $\operatorname{PRF}_{K}\left(g^{h_{1}(y)+h_{2}(y)}\right)$ for $y \notin X$. We stress that the PRF key for this purpose can be publicly known since pseudorandomness is still maintained as long as the algorithm for generating the bin polynomials does not use this key. We further note that both algebraic PRFs that we consider in this paper can be easily evaluated over an encrypted plaintext given the PRF key since it only require linear operations.

Finally, a similar solution can be easily adapted for Cuckoo hashing with a stash [33] (by treating the stash as a third polynomial). Nevertheless, Cuckoo hashing using a stash suffers from the following drawback. It has been proven in [33] that for any constant s, using a stash of size s implies an overflow with probability $O\left(n^{s}\right)$ (taken over the choice of the hash functions). Specifically, if the algorithm aborts whenever the original choice of hash functions results in more than s items being moved to the stash, then this means that the algorithm aborts with probability of at most $O\left(n^{s}\right)$. Consequently, P_{1} can identify with that probability whether a specific potential input of P_{0} does not agree with the hash functions h_{1} and h_{2}. This probability is low but not negligible. On the other hand, Broder and Mitzenmacher [8] have shown for balanced allocations hash function that asymptotically, when mapping n items into n bins, the number of bins with i or more items falls approximately like $2^{2.6 i}$. This means that if $\mathcal{M}=\omega(\log \log n)$ then except with negligible probability no bin will be of size greater than \mathcal{M}. Nevertheless, (ignoring the abort probability), Cuckoo hashing performs better than balanced allocation hash functions, and by tuning the parameters accordingly this abort probability can be ignored for most practical applications.

Efficiency. The efficiency here depends on the parameters $\mathcal{B}=O\left(m_{X} / \log \log m_{X}\right)$ and $\mathcal{M}=O\left(\log \log m_{X}\right)$ that are specified by the underlying hash function, as well as the PRF implementation that induce the overhead of the implementations of $\mathcal{F}_{\text {Bins }}$ and $\mathcal{F}_{\text {EqMaskHash }}$. Concretely, when implementing the algebraic PRF with $\mathcal{P} \mathcal{R} \mathcal{F}_{1}$ the number of exponentiations computed by the parties is $O\left(\mathcal{B M}+m_{Y} \mathcal{M}\right)=$

```
Functionality }\mp@subsup{\mathcal{F}}{\mathrm{ CPRF}}{
Functionality \(\mathcal{F}_{\text {CPRF }}\) communicates with with parties \(P_{0}\) and \(P_{1}\), and adversary \(\mathcal{S I M}\).
1. Upon receiving a message (key, \(K\) ) from \(P_{0}\), send message key to \(\mathcal{S I M}\) and record \(K\).
2. Upon receiving (input, \(x\) ) from \(P_{1}\), send message input to adversary \(\mathcal{S I M}\). Upon receiving an approve message, send \(\operatorname{PRF}_{K}(x)\) to \(P_{1}\). Otherwise, send \(\perp\) to \(P_{1}\) and abort.
```

Fig. 1. The committed oblivious PRF evaluation functionality.
$O\left(m_{X}+m_{Y} \log \log m_{X}\right)$, whereas the number of transmitted group elements is $O(\mathcal{B M}+$ $\left.m_{Y}\right)=O\left(m_{X}+m_{Y}\right)$. Moreover, implementing the algebraic PRF using $\mathcal{P} \mathcal{R} \mathcal{F}_{2}$ implies the overhead of $O\left(m_{X}+m_{Y} \log m_{X}\right)$ exponentiations and the communication is as above.

5 Committed Oblivious PRF Evaluation

The oblivious PRF evaluation functionality $\mathcal{F}_{\text {PRF }}$ is an important functionality that is defined by $(K, x) \mapsto\left(-, \mathrm{PRF}_{K}(x)\right)$. One known example for a protocol that implements $\mathcal{F}_{\mathrm{PRF}}$ is the instantiation based on the Naor-Reingold pseudorandom function [42] (specified in Section 3.1), that is implemented by the protocol presented in [20] (and proven secure in the malicious setting in [25]). This protocol involves executing an oblivious transfer for every bit of the input x. Nevertheless, it has major drawback since it does not enforce the usage of the same key for multiple evaluations, which is often required. In this section, we observe first that the algebraic closed form efficiency of PRFs $\mathcal{P} \mathcal{R} \mathcal{F}_{1}$ and $\mathcal{P} \mathcal{R} \mathcal{F}_{2}$, specified in Section 3.1, are PRFs as well. Moreover, the protocols for securely evaluating these functions induce efficient implementations for the committed oblivious PRF evaluation functionality with respect to these new PRFs in the presence of adaptive inputs. This is because the PRF evaluations protocols are implemented with respect to the same set of key commitments. We formally define this functionality in Figure 1 .

More formally, let PRF be an algebraic PRF from a domain $\{0,1\}^{m}$ into a group \mathbb{G}. Then, define the new function $\mathrm{PRF}^{\prime}: \mathbb{Z}_{p} \mapsto \mathbb{G}$ by $\mathrm{PRF}_{K}^{\prime}(x)=\prod_{i=0}^{l}\left[\mathrm{PRF}_{K}(i)\right]^{x^{i}}$. Note that the domain size of PRF^{\prime} is bounded by $l+1$, since upon observing $l+$ 1 evaluations of PRF^{\prime} it is possible to interpolate the coefficients of the polynomial $\left\{\mathrm{PRF}_{K}(i)\right\}_{i}$ (in the exponent). On the other hand, it is easy to verify that if $l+1 \leq 2^{m}$ then PRF^{\prime} is a PRF. The proof is straight forward and thus omitted.

Theorem 5.1. Assume $F:\{0,1\}^{m} \mapsto \mathbb{G}$ is a PRF, then PRF^{\prime} is a PRF for $(l+1) \leq$ 2^{m}.

We implement PRF^{\prime} using the two PRFs from Section 3.1 and obtain two new PRF constructions under the strong-DDH and DDH assumptions. Let $K=\left(k_{0}, k_{1}\right)$ be the
key for the $\operatorname{PRF} \mathcal{P} \mathcal{R} \mathcal{F}_{1}$ with the strong-DDH based security, and recall that the closed form efficiency for this function is defined by

$$
\operatorname{PRF}_{K}^{\prime}(x)=\operatorname{CFEval}_{h}(x, K)=g^{\frac{k_{0}\left(k_{1}^{d+1} x^{d+1}-1\right)}{k_{1} x-1}}
$$

This implies that PRF^{\prime} only requires a constant number of modular exponentiations. See Section 3.3 for secure implementations of obliviously evaluating PRF'. Next, let $K=\left(k_{0}, \ldots, k_{m}\right)$ be the key for the Naor-Reingold PRF, and recall that the closed form efficiency of this function is defined by

$$
\operatorname{PRF}_{K}^{\prime}(x)=\operatorname{CFEval}_{h, z}(x, K)=g^{k_{0}\left(1+k_{1}, x\right)\left(1+k_{2} x^{2}\right) \ldots\left(1+k_{m} x^{2^{m}}\right)}
$$

which requires $O(\log l)=O(m)$ operations, namely, a logarithmic number of operations in the domain size where x is an m-bits string. This is the same order of overhead induced by the [20] implementation that requires an OT for each input bit. Nevertheless, our construction has the advantage that it also achieves easily the property of a committed key since multiple evaluations can be computed with respect to the same PRF key. Plugging-in our protocol inside the protocols for keyword search, OT with adaptive queries [20] and set-intersection [25] implies security against malicious adversaries fairly immediately. It is further useful for search functionalities as demonstrated below.

5.1 The Set-Intersection Protocol

We continue with describing our set-intersection protocol. Informally, P_{0} generates a PRF key for PRF and evaluates this function on its set X. It then sends the evaluation results to P_{1} and the parties engage in a committed oblivious PRF protocol that evaluates PRF on the set $Y . P_{1}$ then concludes the intersection. In order to handle a technicality in the security proof, we require that P_{0} must generate its PRF key independently of its input X, since otherwise it may maliciously pick a secret key that implies collisions on elements from X and Y, causing the simulation to fail. We ensure key independence by asking the parties to mutually generate the PRF key after P_{0} has committed to its input. Then upon choosing the PRF key, the parties invoke two variations of functionality $\mathcal{F}_{\mathrm{CPRF}}$, denoted by $\mathcal{F}_{\mathrm{CPRF}}^{0}$ and $\mathcal{F}_{\mathrm{CPRF}}^{1}$. Formally, we define $\mathcal{F}_{\mathrm{CPRF}}^{0}$ as follows: $\left(\left(K,\left(x_{1}, \ldots, x_{m_{X}}\right), R\right),\left(c_{\mathrm{KEY}},\left(c_{1}, \ldots, c_{m_{X}}\right), \mathrm{PK}\right)\right) \mapsto$ $\left(-,\left(\operatorname{PRF}_{K}\left(x_{1}\right), \ldots, \operatorname{PRF}_{K}\left(x_{m_{X}}\right)\right)\right)$ only if c_{i} encrypts x_{i} for all i and $c_{\text {KEY }}$ is a commitment of K where verification is carried out using randomness R. In the final step, the parties call functionality $\mathcal{F}_{\text {CPRF }}^{1}$ in order to evaluate the PRF on the set Y and is defined by $\left((K, R),\left(c_{\text {KEY }},\left(y_{1}, \ldots, y_{m_{Y}}\right)\right)\right) \mapsto\left(-,\left(\operatorname{PRF}_{K}\left(y_{1}\right), \ldots, \operatorname{PRF}_{K}\left(y_{m_{Y}}\right)\right)\right)$ only if $c_{\text {KEY }}$ is a commitment of K where verification is carried out using randomness R. In both executions the output is given to P_{1} that computes the intersection of the results.

Implementing $\mathcal{F}_{\mathrm{CPRF}}^{0}$ and $\mathcal{F}_{\mathrm{CPRF}}^{1}$. Implantation-wise, there is not much of a difference between the protocols for the two functionalities, which mainly differ due to the identity of the party that enters the input values to the PRF (where the same committed key is used for both protocol executions). We note that the realization of $\mathcal{F}_{\text {CPRF }}^{0}$ and $\mathcal{F}_{\text {CPRF }}^{1}$ can be carried out securely based on the implementations of the closed form efficiency
functions shown in Section 3.3, since our committed PRFs are based on these functions. More concretely, the difference with respect to functionality $\mathcal{F}_{\text {CPRF }}^{0}$ is that now when P_{0} is corrupted the simulator needs to extract the randomness used for committing to the PRF key and the x_{i} 's elements which can be achieved using the proof of knowledge π_{DL} since the parties use the El Gamal PKE. Specifically, P_{0} proves the knowledge of the discrete logarithm of $\left(c_{1}, \ldots c_{m_{X}}\right)$ with respect to a generator g, by invoking an ideal execution of $\mathcal{F}_{\mathrm{DL}}$ on input $\left\{\left(\left(g, c_{i}\right), \log _{g} c_{i}\right)\right\}_{i \in\left[m_{X}\right]}$ The input of P_{1} for $\mathcal{F}_{\mathrm{DL}}$ is $\left\{\left(g, c_{i}\right)\right\}_{i \in\left[m_{X}\right]}$. In case P_{1} does not receive an "accept" message from $\mathcal{F}_{\mathrm{DL}}$ it aborts. Next, the parties continue with the PRF evaluations where the ZK proofs are carried out with respect to the same key commitment. We note that extracting the PRF key and the set $\left(x_{1}, \ldots, x_{m_{X}}\right)$ is already implied by the protocols from Section 3.3 due to the ZK proofs of knowledge. Finally, the implementation of $\mathcal{F}_{\text {CPRF }}^{1}$ follows similarly but without the additional proof we added above for $\mathcal{F}_{\mathrm{CPRF}}^{0}$ in order to extract the randomness of the committed input.

Next, we describe our set-intersection protocol using committed oblivious PRF.

Protocol 6 (Protocol π_{\cap} with malicious security from committed oblivious PRF.)

- Input: Party P_{0} is given a set X of size m_{X}. Party P_{1} is given a set Y of size m_{Y}. Both parties are given a security parameter 1^{n}.
- The protocol:

1. Distributed key generation. P_{0} and P_{1} run protocol $\pi_{\text {KeyGen }}\left(1^{n}, 1^{n}\right)$ in order to generate additive El Gamal public key $\mathrm{PK}=\langle\mathbb{G}, p, g, h\rangle$ where the corresponding shares of the secret key SK are $\left(\mathrm{SK}_{0}, \mathrm{SK}_{1}\right)$.
2. Input commitment and PRF key generation. P_{0} sends encryptions of its input X under PK; denote this set of ciphertexts by $C=\left(c_{1}, \ldots c_{m_{X}}\right)$.
P_{0} invokes $(K$, param $) \leftarrow \operatorname{KeyGen}\left(1^{n}, d=\log \left(m_{X}+m_{Y}\right)\right)$ where param includes a group description \mathbb{G} of prime order p and a generator g, and sends P_{1} param and a ciphertext $\operatorname{Enc}_{\mathrm{PK}}(K ; R)$.
P_{1} picks a new key $\left(K^{\prime}\right.$, param $) \leftarrow \operatorname{KeyGen}\left(1^{n}, d=\log \left(m_{X}+m_{Y}\right)\right)$ and sends it to P_{0}. The parties then compute the encryption $c_{\text {KEY }}$ of $\widetilde{K}=K K^{\prime}$, relying on the homomorphic property of El Gamal.
3. PRF evaluations on \mathbf{X}. The parties call functionality $\mathcal{F}_{\text {CPRF }}^{0}$ where P_{0} enters the set X, key \widetilde{K} and randomness R and P_{1} enters $C, c_{\text {KEY }}$ and PK. Denote by $\mathrm{PRF}_{X}=$ $\left\{\operatorname{PRF}_{\tilde{K}}^{\prime}(x)\right\}_{x \in X}$ the output of P_{1} from this ideal call only if C is a vector of ciphertexts that encrypts X and c_{KEY} is a commitment of \widetilde{K}, where verification is computed using randomness R.
4. Oblivious PRF evaluations on Y. The parties call functionality $\mathcal{F}_{\mathrm{CPRF}}^{1}$ where P_{0} enters the key \widetilde{K} and randomness R and P_{1} enters the commitment $c_{\text {KEY }}$ and the set Y. Denote by $\operatorname{PRF}_{Y}=\left\{f_{y}\right\}_{y \in Y}$ the output of P_{1} from this ideal call only if $c_{\text {KEY }}$ is a commitment of \widetilde{K} where verification is computed using randomness R. P_{1} outputs all $y \in Y$ for which $f_{y} \in \operatorname{PRF}_{X}$.

Theorem 5.2. Assume $\mathrm{PRF}_{K}^{\prime}(\cdot)$ is a PRF defined as above and that El Gamal is INDCPA, then Protocol 6 securely realizes functionality \mathcal{F}_{\cap} in the presence of malicious adversaries in the $\left\{\mathcal{F}_{\mathrm{DL}}, \mathcal{F}_{\mathrm{CPRF}}^{0}, \mathcal{F}_{\mathrm{CPRF}}^{1}\right\}$-hybrid model.

[^6]Proof: We prove security for each corruption case separately. We assume that the simulator is given m_{X} and m_{Y} as part of its auxiliary input.
P_{0} is corrupted. Let \mathcal{A} be a PPT adversary corrupting party P_{0}, we design a PPT simulator $\mathcal{S I M}$ that generates the view of \mathcal{A} as follows.

1. Given $\left(1^{n}, X, z\right), \mathcal{S I M}$ engages in an execution of $\pi_{\text {KeyGen }}\left(1^{n}, 1^{n}\right)$ with \mathcal{A}. Denote the outcome by PK.
2. Upon receiving from \mathcal{A} its commitment for the PRF key $K \leftarrow \operatorname{KeyGen}\left(1^{n}, d=\right.$ $\left.\log \left(m_{X}+m_{Y}\right)\right), \mathcal{S I} \mathcal{M}$ picks a new key share K^{\prime} and sends it to \mathcal{A} using PK . Denote the combined key by $\widetilde{K}=K K^{\prime}$.
3. $\mathcal{S I} \mathcal{M}$ extracts the adversary's input X^{\prime} from the input to the ideal call $\mathcal{F}_{\mathrm{CPRF}}^{0}$. It then sends X^{\prime} to the trusted party and completes the execution as would the honest P_{1} do on an arbitrary set.

In the hybrid setting, computational indistinguishability between the hybrid and simulated executions is trivially claimed since the adversary does not receive any message from P_{1} that depends on Y. An important observation here is that the probability of the event for which there exists $y \in Y$ such that $y \notin X^{\prime}$ and yet $\operatorname{PRF}_{\widetilde{K}}(y) \in \operatorname{PRF}_{X^{\prime}}$ is negligible, since the key \widetilde{K} is picked independently of the set X^{\prime}. This argument follows from similarly to the proof in [25] and implies that P_{1} 's output in both executions is identical condition that the above event does not occur.
P_{1} is corrupted. Let \mathcal{A} be a PPT adversary corrupting party P_{1}, we design a PPT simulator $\mathcal{S I M}$ that generates the view of \mathcal{A} as follows.

1. Given $\left(1^{n}, Y, z\right), \mathcal{S I M}$ engages in an execution of $\pi_{\text {KeyGen }}\left(1^{n}, 1^{n}\right)$ with \mathcal{A}. Denote the outcome by PK.
2. $\mathcal{S I} \mathcal{M}$ picks a PRF key share $K \leftarrow \operatorname{KeyGen}\left(1^{n}, d=\log \left(m_{X}+m_{Y}\right)\right)$ and sends its encryption to \mathcal{A} using PK. Upon receiving \mathcal{A} 's key share K^{\prime} the simulator sets the combined key by $\widetilde{K}=K K^{\prime}$.
3. $\mathcal{S I M}$ picks a set of m_{X} arbitrary elements $X_{\mathcal{S I M}}$ from \mathbb{Z}_{p}. It then emulates the ideal call $\mathcal{F}_{\text {CPRF }}^{0}$ and hands the adversary a random set U of size m_{X} and proper length.
4. Finally, the simulator extracts the adversary's input Y^{\prime} to the ideal call $\mathcal{F}_{\mathrm{CPRF}}^{1}$ and sends this set to the trusted party, receiving back $Z=X \cap Y^{\prime}$. The simulator completes the execution as follows. For each element $y^{\prime} \in Y^{\prime} \cap Z$ it programs the ideal answer of $\mathcal{F}_{\mathrm{CPRF}}^{1}$ to be $r \in U$ where r is picked from the remaining elements from the set U that were not picked thus far. Otherwise, the simulator returns a fresh random element from \mathbb{Z}_{p}.

Security here follows from the IND-CPA security of the El Gamal PKE and the security of the PRF. That is, the simulated view is different from the hybrid view relative to the encrypted input of P_{0} and the fact that the simulator uses a random function to evaluate the sets in $X_{\mathcal{S I M}}^{\prime}$ and Y^{\prime}. Therefore, the proof can be shown by defining a hybrid game where in the first game the simulator encrypts P_{0} 's real input X but completes the simulation as in the original simulation. Indistinguishability between the
simulation and the hybrid game follows easily by a reduction to the IND-CPA security of El Gamal since the simulator never uses the secret key of the encryption scheme. Indistinguishability between the hybrid game and the hybrid execution follows by a reduction to the pseudorandomness of the PRF.

Efficiency. The overhead of protocol 6 depends on the implementations of $\mathcal{F}_{\text {CPRF }}^{0}$ and $\mathcal{F}_{\text {CPRF }}^{1}$ discussed above. Our protocol obtains $O\left(m_{X}+m_{Y}\right)$ communication and computation overheads under the strong-DDH assumption and $O\left(\left(m_{X}+m_{Y}\right) \log \left(m_{X}+\right.\right.$ $\left.m_{Y}\right)$) overheads under the DDH assumption, where the former analysis matches the [31] analysis (such that both constructions rely on dynamic assumptions).

5.2 Search Functionalities

In search functionalities a receiver searches in a sender's database, retrieving the appropriate record(s) according to some search query. The database for search functionalities can be described by pairs of queries/records $\left\{\left(q_{i}, T_{i}\right)\right\}_{i}$ such that the answer to a query q_{i} is a record $T_{i}{ }^{9}$ In a private setting we need to ensure that nothing beyond these records leaks to the receiver, while the sender does not learn anything about the receiver's search queries. Committed oblivious PRF evaluation is a useful tool for securely implementing various search functionalities [20]. First, in the setup phase the database is encoded and handed to the receiver. That is, for each query q_{i} the sender defines the pair $\left(\operatorname{PRF}_{K}\left(q_{i} \| 1\right), \operatorname{PRF}_{K}\left(q_{i} \| 2\right) \oplus T_{i}\right)$. Next, in the query phase the parties run a committed oblivious PRF evaluation protocol twice such that the sender inputs K and the receiver inputs a query q. The receiver's output are the values $\operatorname{PRF}_{K}(q \| 1)$ and $\operatorname{PRF}_{K}(q \| 2)$, where the first outcome is used to find the encrypted record while the second outcome is used to extract the record. (Alternative implementations involve a single invocation of PRF by splitting $\mathrm{PRF}_{K}(q)$ into two parts). Examples for such functionalities are keyword search, oblivious transfer with adaptive queries and pattern matching (and all its variants). The functionality of committed oblivious PRF is important in this context since the sender must be enforced to use the same PRF key.

References

1. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th-ranked element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 40-55. Springer, Heidelberg (2004)
2. Ateniese, G., De Cristofaro, E., Tsudik, G.: (if) size matters: Size-hiding private set intersection. IACR Cryptology ePrint Archive, 2010:220 (2010)
3. Ateniese, G.: Dagdelen, I. Damgård, D. Venturi. Entangled cloud storage. IACR Cryptology ePrint Archive, 2012:511 (2012)
4. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM J. Comput. 29(1), 180-200 (1999)

[^7]5. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377-391. Springer, Heidelberg (1992)
6. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111-131. Springer, Heidelberg (2011)
7. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169188. Springer, Heidelberg (2011)
8. Broder, A.Z., Mitzenmacher, M.: Using multiple hash functions to improve IP lookups. In: INFOCOM, pp. 1454-1463 (2001)
9. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural learning. Theor. Comput. Sci. 341(1-3), 39-54 (2005)
10. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89-105. Springer, Heidelberg (1993)
11. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213231. Springer, Heidelberg (2010)
12. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143-159. Springer, Heidelberg (2010)
13. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125-142. Springer, Heidelberg (2009)
14. Damgård, I., Jurik, M., Nielsen, J.B.: A generalization of paillier's public-key system with applications to electronic voting. Int. J. Inf. Sec. 9(6), 371-385 (2010)
15. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1-18. Springer, Heidelberg (2013)
16. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643-662. Springer, Heidelberg (2012)
17. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416-431. Springer, Heidelberg (2005)
18. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: An efficient and scalable protocol. IACR Cryptology ePrint Archive, 2013:515 (2013)
19. Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 545-556. Springer, Heidelberg (2013)
20. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303-324. Springer, Heidelberg (2005)
21. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1-19. Springer, Heidelberg (2004)
22. Gilboa, N.: Two party RSA key generation (Extended abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 116-129. Springer, Heidelberg (1999)
23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218-229 (1987)
24. Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation with simulation-based security. IACR Cryptology ePrint Archive, 2009:459 (2009)
25. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. J. Cryptology 23(3), 422-456 (2010)
26. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions. Springer (2010)
27. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 313-331. Springer, Heidelberg (2012)
28. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. J. Cryptology 25(3), 383-433 (2012)
29. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 195-212. Springer, Heidelberg (2010)
30. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572-591. Springer, Heidelberg (2008)
31. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577-594. Springer, Heidelberg (2009)
32. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418-435. Springer, Heidelberg (2010)
33. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing with a stash. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 611-622. Springer, Heidelberg (2008)
34. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241-257. Springer, Heidelberg (2005)
35. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1-17. Springer, Heidelberg (2013)
36. Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: Optimizations, variants and concrete efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259-276. Springer, Heidelberg (2011)
37. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptology 15(3), 177-206 (2002)
38. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329-346. Springer, Heidelberg (2011)
39. Micali, S., Rogaway, P.: Secure computation (abstract). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392-404. Springer, Heidelberg (1992)
40. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC, pp. 245-254 (1999)
41. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254-1281 (2006)
42. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: FOCS, pp. 458-467 (1997)
43. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical activesecure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681-700. Springer, Heidelberg (2012)
44. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368-386. Springer, Heidelberg (2009)
45. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, pp. 797-812 (2014)
46. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239-252. Springer, Heidelberg (1990)
47. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119-136. Springer, Heidelberg (2004)
48. Vergnaud, D.: Efficient and secure generalized pattern matching via fast fourier transform. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 41-58. Springer, Heidelberg (2011)
49. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162167 (1986)
50. Zhu, H., Bao, F.: Augmented oblivious polynomial evaluation protocol and its applications. In: de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 222-230. Springer, Heidelberg (2005)

[^0]: * Research partially supported by a grant from the Israel Ministry of Science and Technology (grant No. 3-10883).
 Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 90-120 2015.
 © International Association for Cryptologic Research 2015

[^1]: ${ }^{1}$ In order to deal with a proof technicality, where a corrupted party inputs less elements than its set size, prior constructions assume a super polynomial lower bound on the input domain sizes. Since we do not wish to restrict the input domains, we assume that the set sizes are not strict and may denote some upper bound on the actual numbers of elements.

[^2]: ${ }^{2}$ We implicitly assume that P_{0} knows the discrete logarithms of the r_{i} 's by its knowledge of K. This is the case for all PRF implementations presented in [6].
 ${ }^{3}$ See Footnote 2

[^3]: ${ }^{4}$ See Footnote 2

[^4]: ${ }^{5}$ For technical reasons, we require that in case of an empty bin, P_{0} fixes the polynomial that is associated with this bin to be 1 .
 ${ }^{6}$ We wish to avoid the case where $e_{(j-1) \mathcal{M}+i}$ is an encryption of a non-zero value while $z_{i, j}^{\prime}$ encrypts zero.

[^5]: ${ }^{7}$ Note that z_{j} may be an element that is not mapped to the j th bin.

[^6]: ${ }^{8}$ We abuse notation and write $\log c$ to denote the discrete logarithm of the two group elements in ciphertext c.

[^7]: ${ }^{9}$ This may not be the most concise description of the database but it is the simplest. In particular, it will do for our purposes.

