
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-011 March 27, 2009

Oblivious Routing in On-Chip
Bandwidth-Adaptive Networks
Myong Hyon Cho, Mieszko Lis, Keun Sup Shim,
Michel Kinsy, Tina Wen, and Srinivas Devadas

Oblivious Routing in On-Chip Bandwidth-Adaptive Networks

Myong Hyon Cho, Mieszko Lis, Keun Sup Shim, Michel Kinsy, Tina Wen and Srinivas Devadas
Massachusetts Institute of Technology, Cambridge, MA 02139
{mhcho, mieszko, ksshim, mkinsy, tinaw, devadas}@mit.edu

Abstract

Oblivious routing can be implemented on simple router
hardware, but network performance suffers when routes be-
come congested. Adaptive routing attempts to avoid hot
spots by re-routing flows, but requires more complex hard-
ware to determine and configure new routing paths. We
propose on-chip bandwidth-adaptive networks to mitigate
the performance problems of oblivious routing and the com-
plexity issues of adaptive routing.

In a bandwidth-adaptive network, the bisection band-
width of a network can adapt to changing network con-
ditions. We describe one implementation of a bandwidth-
adaptive network in the form of a two-dimensional mesh
with adaptive bidirectional links, where the bandwidth of
the link in one direction can be increased at the expense of
the other direction. Efficient local intelligence is used to
reconfigure each link, and this reconfiguration can be done
very rapidly in response to changing traffic demands.

We compare the hardware designs of a unidirectional
and bidirectional link and evaluate the performance gains
provided by a bandwidth-adaptive network in comparison
to a conventional network under uniform and bursty traffic
when oblivious routing is used.

1. Introduction

Routers can be generally classified into oblivious and
adaptive [21]. In oblivious routing, the path is com-
pletely determined by the source and the destination ad-
dress. Deterministic routing is a subset of oblivious routing,
where the same path is always chosen between a source-
destination pair. Thanks to its distributed nature where each
node can make its routing decisions independent from oth-
ers, oblivious routing such as dimension-order routing [8]
enables simple and fast router designs and is widely adopted
in today’s on-chip interconnection networks. On the other
hand, today’s oblivious routing algorithms can have diffi-
culty with certain traffic patterns, especially when band-
width demands of flows vary with time, because routes are

not adjusted for different applications.
In adaptive routing, given a source and a destination ad-

dress, the path taken by a particular packet is dynamically
adjusted depending on, for instance, network congestion.
With this dynamic load balancing, adaptive routing can po-
tentially achieve better throughput and latency compared to
oblivious routing. However, adaptive routing methods face
a difficult challenge in balancing router complexity with
the capability to adapt. To achieve the best performance
through adaptivity, a router ideally needs global knowledge
of the current network status. However, due to router speed
and complexity, dynamically obtaining a global and instan-
taneous view of the network is often impractical. As a re-
sult, adaptive routing in practice relies primarily on local
knowledge, which limits its effectiveness. If it is necessary
to avoid out-of-order packet receipt at the destination, pack-
ets in transit on the original path of a flow all have to reach
the destination before the network is reconfigured and pack-
ets are injected into the new path.

We propose bandwidth-adaptive networks to mitigate
the problems of oblivious routing and avoid the complex-
ity of adaptive routing. In a bandwidth-adaptive network,
the bisection bandwidth of a network can adapt to chang-
ing network conditions. We describe one implementation
of a bandwidth-adaptive network in the form of a two-
dimensional mesh with adaptive bidirectional links1, where
the bandwidth of the link in one direction can be increased
at the expense of the other direction. Efficient local intel-
ligence is used to appropriately reconfigure each link, and
this reconfiguration can be done very rapidly to respond to
changing traffic demands. Reconfiguration logic compares
traffic on either side of a link to determine how to reconfig-
ure each link.

One can think of a bandwidth-adaptive link as a multi-
lane freeway, where a subset or all of the lanes can be set
up to carry traffic in either direction. Each lane carries traf-
fic in one particular direction at any point of time, but can
be easily switched to carry traffic in the opposite direction
depending on the number of cars wishing to travel in each

1Bidirectional links have been referred to as half-duplex links in router
literature.

1

Figure 1. Motivation for Bandwidth Adaptivity
(from www.panaramio.com)

direction. Figure 1 illustrates a scenario where this would
be helpful!

We compare the hardware designs of a unidirectional
and bidirectional link and argue that the hardware overhead
of implementing bidirectionality and reconfiguration is rea-
sonably small. We then evaluate the performance gains pro-
vided by a bandwidth-adaptive network in comparison to a
conventional network through detailed network simulation
of oblivious routing methods under uniform and bursty traf-
fic, and show that the performance gains are significant.

In Section 2, we describe a hardware implementation of
an adaptive bidirectional link, and compare it with a con-
ventional unidirectional link. In Section 3, we describe
schemes that determine the configuration of the adaptive
link, i.e., decide which direction is preferred and by how
much. The frequency of reconfiguration can be varied.
Related work is summarized in Section 4. Simulation re-
sults comparing oblivious routing on a conventional net-
work against a bandwidth-adaptive network are the subject
of Section 5. Section 6 concludes the paper.

2. Adaptive Bidirectional Link

2.1. Typical Virtual Channel Router

Althoguh bandwidth adaptivity can be introduced inde-
pendently of network topology and flow control mecha-
nisms, in the interest of clarity we assume a typical virtual-
channel router on a two-dimensional (2-D) mesh network
as a baseline.

Figure 2 illustrates a typical virtual-channel router ar-
chitecture and its operation [10, 23, 19]. As shown in the
figure, the datapath of the router consists of buffers and a
switch. The input buffers store flits waiting to be forwarded
to the next hop; each physical channel often has multiple
input buffers, which allows flits to flow as if there were
multiple “virtual” channels. When a flit is ready to move,
the switch connects an input buffer to an appropriate output

(1, …, p)

Virtual Channel Allocator
Credits in

Routing Logic Switch Allocator

Credits in

EM
U
X

M
U
X

p by pFlits in

Flits out

‐t
o‐
v
D
E

(1, …, v)

v‐
to
‐1
 M p‐by‐p

crossbar
switch

(1, …, p)
Flits in

(1 v)

1‐ v

Credits out
(1, …, v)

Figure 2. Typical virtual-channel router archi-
tecture with p physical channels and v virtual
channels per physical channel.

channel. To control the datapath, the router also contains
three major control modules: a router, a virtual-channel
(VC) allocator, and a switch allocator. These control mod-
ules determine the next hop, the next virtual channel, and
when a switch is available for each packet/flit.

The routing operation comprises four steps: routing
(RC), virtual-channel allocation (VA), switch allocation
(SA), and switch traversal (ST); these are often imple-
mented as four pipeline stages in modern virtual-channel
routers. When a head flit (the first flit of a packet) arrives at
an input channel, the router stores the flit in the buffer for
the allocated virtual channel and determines the next hop
node for the packet (RC stage). Given the next hop, the
router then allocates a virtual channel in the next hop (VA
stage). The next hop node and virtual channel decision is
then used for the remaining flits of the given packet, and
the relevant virtual channel is exclusively allocated to that
packet until the packet transmission completes. Finally, if
the next hop can accept the flit, the flit competes for a switch
(SA stage), and moves to the output port (ST stage).

2.2. Bidirectional Links

In the typical virtual-channel router shown in Figure 2,
each output channel is connected to an input buffer in an ad-
jacent router by a unidirectional link; the maximum band-
width is related to the number of physical wires that consti-
tute the link. In an on-chip 2-D mesh with nearest neighbor
connections there will always be two links in close proxim-
ity to each other, delivering packets in opposite directions.

We propose to merge the two links between a pair of net-
work nodes into a set of bidirectional links, each of which
can be configured to deliver packets in either direction, in-
creasing the bandwidth in one direction at the expense of
the other. The links can be are driven from two different
sources, with local arbitration logic and tristate buffers en-
suring that both do not simultaneously drive the same wire.

Figure 3 illustrates the adaptivity of a mesh network us-

A A

B B

(a) Flow A is dominant (b) Flow B is dominant(a) Flow A is dominant (b) Flow B is dominant

Figure 3. Adaptivity of a mesh network with
bidirectional links

ing bidirectional links. Flow A is generated at the upper
left corner and goes to the bottom right corner, while flow
B is generated at the bottom left corner and ends at the up-
per right corner. When one flow becomes dominant, bidi-
rectional links change their directions in order to achieve
maximal total throughput. In this way, the network capacity
for each flow can be adjusted by the flow burstiness without
changing routes.

Figure 4 shows a bidirectional link connecting two net-
work nodes (for clarity, only one bidirectional link is shown
between the nodes, but multiple bidirectional links can be
used to connect the nodes if desired). The bidirectional link
can be regarded as a bus with two read ports and two write
ports that are interdependent. A bandwidth arbiter governs
the direction of a bidirectional link based on pressure (see
Section 3) from each node, a value reflecting how much
bandwidth a node requires to send flits to the other node.
Bold arrows in Figure 4 illustrate a case when flits are de-
livered from right to left; a tri-state buffer in the left node
prevents the output of its crossbar switch from driving the
bidirectional link, and the right node does not receive flits
as the input is being multiplexed. If the link is configured to
be in the opposite way, only the left node will drive the link
and only the right node will receive flits.

Router logic invalidates the input channel at the driving
node so that only the other node will read from the link. The
switching of tri-state buffers can be done faster than other
pipeline stages of router architecture so that we can change
the direction without dead cycles at which no flits can move
in any direction. Note that if a dead cycle is required in
a particular implementation, we can minimize performance
loss by switching directions relatively infrequently. We dis-
cuss this tradeoff in Section 5.

2.3. Router Architecture with Bidirectional
Links

Figure 5 illustrates a network node with b bidirectional
links, where each link has a bandwidth of one flit per router

input ports (1, …, p)

Virtual Channel Allocator
Credits in

Routing Logic Switch Allocator

Credits in

output ports (1, …, p)

M
U
X

Flits in

Flits out

(p*v)‐by‐(p*b)

gr
es
s
D
E

(1, …, b)

(p) y (p)
crossbar
switch

(1, …, v)

In

(1, …, b)

Credits out
(1, …, v)

(, ,)

Figure 5. Network node architecture with u
unidirectional links and b bidirectional links
between each of p neighbor nodes and itself.

cycle; gray blocks highlight modules modified from the
baseline architecture shown in Figure 2. Adjacent nodes
are connected via p ports (for the 2-D mesh we consider
here, p = 4 at most). At each port, b input channels and b
output channels share the b bidirectional links via tri-state
buffers: if a given link is configured to be ingressive, its in-
put channel is connected to the link while the output channel
is disconnected, and vice versa (the output channels are not
shown in the figure).

We assume, as in typical routers, that at most one flit
from each virtual channel can be transferred in a given
cycle—if there are v virtual channels in the router, then at
most v flits can be transferred in one cycle regardless of
the bandwidth available. If i out of b bidirectional links are
configured to be ingressive at a router node, the node can re-
ceive up to i flits per cycle from the node across the link and
send out up to (b− i) flits to the other node. Since each in-
coming flit will go to a different virtual channel queue,2 the
ingress demultiplexer in Figure 5 can be implemented with
b instances of a v-to-1 demultiplexer with tri-state buffers at
the outputs; no additional arbitration is necessary between
demultiplexers because only one of their outputs will drive
the input of each virtual channel.

In a bidirectional router architecture, the egress link can
be configured to exceed one flit per cycle; consequently, the
crossbar switch must be able to consider flits from more
than one virtual channel from the same node. In our archi-
tecture, the output of each virtual channel is directly con-
nected to the switch and competes for an outgoing link, al-
though one could equally well imagine a hierarchical so-
lution where the v virtual channels are multiplexed to a
smaller number of switch inputs.

In addition, the crossbar switch must now be able to drive
all p ·b outgoing links when every bidirectional link is con-
figured as egressive. Consequently, the router requires a

2Recall that once a virtual channel is allocated to a packet at the pre-
vious node, other packets cannot use the virtual channel until the current
packet completes transmission.

from other nodes from other nodes to other nodesto other nodes

M
U
X

M
U
X

M
U
X

M
U
X

nop

1‐
to
‐v
D
E

(1, …, v)

v‐
to
‐1
 M Xbar

switch

1‐
to
‐v
D
E

(1, …, v)

v‐
to
‐1
 M Xbar

switch

p

nop

Bandwidth

nop

direction to other nodesto other nodes

Allocatorpressure pressure

Figure 4. Connection between two network nodes through a bidirectional link (configured going left).

p · v-by-p · b crossbar switch, compared to a p · v-by-p · u
switch of a conventional router with u unidirectional links;
this larger switch is the most significant hardware cost of
bidirectional router architecture. In designs where only w
of v virtual channels compete for the switch at any given
cycle, this cost difference increases, since the bidirectional
router requires w to be larger to satisfy its potentially larger
egress bandwidth.

To estimate the increased cost, we can parametrize ar-
chitectures with and without bidirectional links by the num-
ber of unidirectional links u and the number of bidirectional
links b; in this scheme, the conventional router architecture
in Figure 2 has u = 1 and b = 0. Such a router requires
a p · v-by-p · u crossbar (or p · u-by-p · u if only one vir-
tual channel from each port competes for the switch at any
given time). When each connection comprises more than
two links, a hybrid architecture with some of the links bidi-
rectional and some unidirectional (that is, u > 0 and b > 0)
can reduce the hardware cost.

Table 1 summarizes the sizes of hardware components
of unidirectional, bidirectional and hybrid router architec-
tures assuming four virtual channels per ingress port (i.e.,
v = 4). While switch allocation logic grows as the size of
crossbar switch increases and bidirectional routers incur the
additional cost of the bandwidth allocation logic shown in
Figure 4, these are insignificant compared to the increased
size of the demultiplexer and crossbar. In our simulation
experiments we used the crossbars that are in bold in the
table.

Since the number of the crossbar input ports remains
the same in both the unidirectional case and the bidirec-
tional case, the number of crossbar output ports is the only

Architecture Ingress Demux Xbar Switch
(u, b) = (1, 0) one 1-to-4 demux 4-by-4 or 16-by-4
(u, b) = (0, 2) two 1-to-4 demuxes 8-by-8
(u, b) = (2, 0) two 1-to-4 demuxes 8-by-8 or 16-by-8
(u, b) = (0, 4) four 1-to-4 demuxes 16-by-16
(u, b) = (1, 2) three 1-to-4 demuxes 16-by-12

Table 1. The summary of differences in hard-
ware components between 4-VC router archi-
tectures

factor increasing the crossbar size in bidirectional routers
(u,b) = (0,4) and (1,2) when compared with the unidirec-
tional (2,0) case; this increase is size is roughly equal to the
ratio of the output ports. Considering that a 32×32 crossbar
takes approximately 25% of the gate count of a switch [16]
with much of the actual area being accounted for by queue
memory and wiring which is not part of the gate count, we
estimate that a 1.5× increase in crossbar size for the u=1,
b=2 case will increase the area of the node by < 15%. If
the queues are smaller, then this number will be larger.

To evaluate the flexibility and effectiveness of bidirec-
tional links, we compare, in Section 5, the performance
of bidirectional routers with (u,b) = (0,2) and (u,b) =
(0,4) against unidirectional routers with (u,b) = (1,0) and
(u,b) = (2,0), which, respectively, have the same total
bandwidth as the bidirectional routers. We also consider a a
hybrid architecture with (u,b) = (1,2) which has the same
total bandwidth as the (u,b) = (2,0) and (u,b) = (0,4) con-
figurations.

3. Bandwidth Allocation in Bidirectional Links

Bidirectional links contain a bandwidth arbiter (see Fig-
ure 4) which governs the direction of the bidirectional links
connecting a pair of nodes and attempts to maximize the
connection throughput. Key to our approach are the locality
and simplicity of this logic: the arbiter makes its decisions
based on very simple information local to the nodes it con-
nects.

Each network node tells the arbiter of a given bidirec-
tional links how much pressure it wishes to exert on the
link; this pressure indicates how much of the available link
bandwidth the node expects to be able to use in the next
cycle. In our design, each node counts the number of flits
ready to be sent out on a given link (i.e., at the head of
some virtual channel queue), and sends this as the pressure
for that link. The arbiter then configures the links so that
the ratio of bandwiths in the two directions approximates
the pressure ratio, additionally ensuring that the bandwidth
granted does not exceed the free space in the destination
node. Consequently, if traffic is heavier in one direction
than in the other, more bandwidth will be allocated to that
direction.

The arbitration logic considers only the next-hop nodes
of the flits at the front of the virtual channel queues and
the available buffer space in the destination queues, both
of which are local to the two relevant nodes and easy to
compute. The arbitration logic itself consists of treshold
comparisons and is also negligible in cost.

When each packet consists of one flit, the pressure as de-
fined above exactly reflects the traffic that can be transmit-
ted on the link; it becomes approximate when there are mul-
tiple flits per packet, since some of the destination queues
with available space may be in the middle of receiving pack-
ets and may have been assigned to flows different from the
flits about to be transmitted. Although more complex and
accurate definitions of pressure are possible, our experience
thus far is that this simple logic performs well in practice.

In some cases we may not want arbitration to take place
in every cycle; for example, implementations which require
a dead cycle after each link direction switch will perform
poorly if switching takes place too often. On the other
hand, switching too infrequently reduces the adaptivity of
the bidirectional network, potentially limiting the benefits
for quickly changing traffic and possibly requiring more
complex arbitration logic. We explore this tradeoff in Sec-
tion 5.

When analyzing link bandwidth allocation and routing
in a bidirectional adaptive network, we must take care to
avoid additional deadlock due to bidirectional links, which
may arise in some routing schemes. Consider, for example,
the situation shown in Figure 6: a flow fB travels from node
B to node C via node A, and all links connecting A with

A B

fB fA

C

D

Figure 6. Deadlock on deadlock-free routes
due to bidirectional links

B are configured in the direction B → A. Now, if another,
smaller flow fA starts at D and heads for B, it may not exert
enough pressure on the A → B link to overcome that of fB,
and, with no bandwidth allocated there, may be blocked.
The flits of fA will thus eventually fill the buffers along its
path, which might prevent other flows, including fB, from
proceeding: in the figure, fB shares buffering resources with
fA between nodes C and D, and deadlock results. Note that
the deadlock arises only because the bidirectional nature of
the link between A and B can cause the connection A→ B to
disappear; since the routes of fA and fB obey the west-first
turn model [13], the deadlock does not arise in the absence
of bidirectional links. One easy way to avoid deadlock is to
require, in the definition of pressure, that some bandwidth is
always available in a given direction if some flits are waiting
to be sent in that direction.

4. Related Work

4.1 Routing Techniques

A basic deterministic routing method is dimension or-
dered routing (DOR) [8] which becomes XY routing in a
2-D mesh. ROMM [20] and Valiant [27] are classic obliv-
ious routing algorithms, which are randomized in order to
achieve better load distribution. In o1turn [24], Seo et al
show that simply balancing traffic between XY and YX
routing can guarantee provable worst-case throughput. A
weighted ordered toggle (WOT) algorithm that assumes 2
or more virtual channels [12] assigns XY and YX routes to
source-destination pairs in a way that reduces the maximum
network load for a given traffic pattern. While we have fo-
cused on dimension-ordered routing in this paper due to its
speed and simplicity, other methods can be used in conjunc-
tion with bandwidth adaptivity.

Classic adaptive routing schemes include the turn routing
methods [13] and odd even routing [5]. These are general

schemes that allow packets to take different paths through
the network while ensuring deadlock freedom but do not
specify the mechanism by which a particular path is se-
lected. An adaptive routing policy determines what path
a packet takes based on network congestion.

Adaptive routing policies can be classified as ei-
ther congestion-oblivious or congestion-aware, based on
whether they take output link demand into account [14].
Some examples of congestion-oblivious routing strategies
are random [11], zigzag [2] and no-turn [13]. Congestion-
aware routing policies use various metrics to determine con-
gestion. For example, Dally and Aoki [7] favor the port
with the largest number of available virtual channels, and
give results that have better performance than congestion-
oblivious algorithms. In [15] a scheme that switches be-
tween deterministic and adaptive modes depending on the
application is presented, where local FIFO information is
used to adapt routes. Buffer availability at adjacent routers
has been used as a congestion metric [18], as well as output
queue length [25, 26]. These routing algorithms all rely on
local congestion indicators. Regional Congestion Aware-
ness (RCA) [14] is an adaptive routing approach that prop-
agates congestion information across the network in a scal-
able manner, improving the ability of adaptive routers to
spread network load.

We have used oblivious routing methods in this paper,
and therefore the hardware requirements are smaller than
for conventional adaptive routing methods. The router only
has to support DOR, and we have used simple, local con-
gestion metrics to determine how best to configure each
link. Rather than making decisions on a per-packet basis,
our network makes decisions on a per-link basis.

4.2 Router Designs

Dally’s virtual channels [6] allocate buffer space for vir-
tual channels in a decoupled way from bandwidth alloca-
tion. Many designs of virtual channel routers have been
proposed (e.g., [19], [3], [17], [22]). Our virtual channel
router design is modified to enable adaptive bidirectional
links in the network.

Router designs with bidirectional or half-duplex links
have been proposed. For example, Ariadne [1], the Intel
Cavallino [4] and NetworkDesignFrame [9] use half-duplex
links, with the Cavallino using simultaneous bidirectional
signalling.

5. Results and Comparisons

5.1. Experimental Setup

A cycle-accurate network simulator was used to model
the bidirectional router architectures with different combi-

(u b) = (1 0) (u b) = (0 2)(u, b) (1, 0) (u, b) (0, 2)

(u, b) = (2, 0) (u, b) = (1, 2) (u, b) = (0, 4)

Figure 7. Link configurations used in the ex-
periments

Characteristic Configuration
Topology 8x8 2D MESH
Link configuration (u, b) = (1,0), (0,2)

(2,0), (1,2), (0,4)
Routing DOR-XY and DOR-YX
Per-hop latency 1 cycle
Virtual channels per port 4
Flit buffers per VC 4
Average packet length (flits) 8
Traffic workload transpose, bit-complement,

shuffle, uniform random
Burstiness model Markov modulated process
Warmup cycles 20,000
Analyzed cycles 100,000

Table 2. Summary of network configuration

nations of unidirectional (u) and bidirectional (b) links in
each connection (see Figure 7 and Table 2 for details). To
evaluate performance under various loads, we employed
a set of standard synthetic traffic patterns (transpose, bit-
complement, shuffle, and uniform-random) both without
burstiness and with a Markov Modulated Process (MMP)
bursty traffic model. We also examined several frequencies
of bandwidth allocation to estimate the impact on architec-
tures where a dead cycle is required to switch the link direc-
tion.

Although the bidirectional routing technique applies to
various oblivious routing algorithms, we have, for eval-
uation purposes, focused on Dimension Ordered Routing
(DOR), the most widely implemented oblivious routing
method. While our experiments included both DOR-XY
and DOR-YX routing, we did not see significant differences
in the results, and consequently report only DOR-XY re-
sults. In all of our experiments, the router was configured
for four virtual channels per ingress port under a dynamic
virtual channel allocation regimen.

5.2. Non-bursty Traffic

Figure 8 shows the throughput in the unidirectional and
bidirectional networks under non-bursty traffic. When traf-

0 10 20 30 40 50 60
1

2

3

4

5

6

7

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Transpose

U=1,B=0
U=0,B=2
U=2,B=0
U=1,B=2
U=0,B=4

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

9

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Shuffle

U=1,B=0
U=0,B=2
U=2,B=0
U=1,B=2
U=0,B=4

0 10 20 30 40 50 60 70
0.5

1

1.5

2

2.5

3

3.5

4

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Bitcomp

U=1,B=0
U=0,B=2
U=2,B=0
U=1,B=2
U=0,B=4

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Uniform Random

U=1,B=0
U=0,B=2
U=2,B=0
U=1,B=2
U=0,B=4

Figure 8. Throughput under non-bursty traffic

fic is consistent, the improvement offered by bidirectional
links depends on how symmetric the flows are. On the one
extreme, bit-complement, which in steady state is entirely
symmetric when routed using DOR and results in equal
traffic in each direction on any link, shows no improve-
ment; on the other extreme, in transpose, packets move
in only one direction over any given link, and bidirectional
links improve throughput twofold. Shuffle lies between the
two extremes, with the bidirectional network outperforming
the unidirectional solution by 60% when total bandwidth is
equal.

Uniformly random traffic is also symmetric when aver-
aged over a period of time. For very short periods of time,
however, the symmetry is imperfect, allowing the bidirec-
tional network to track the traffic shifts as they happen and
outperform the unidirectional network throughput by up to
8%.

5.3. Bursty Traffic

The temporary nature of bursty traffic allows the bidi-
rectional network to adjust the direction of each link to
favor whichever direction is prevalent at the time, and re-
sults in throughput improvements across all traffic patterns
(see Figure 9). With bursty traffic, even bit-complement,

for which the bidirectional network does not win over the
unidirectional case without burstiness, shows a 20% im-
provement in total throughput because its symmetry is bro-
ken over short periods of time by the bursts. For the same
reason, shuffle and uniform-random outperform the unidi-
rectional network by 66% and 26% respectively, compared
to 60% and 8% in non-bursty mode. Finally, transpose per-
formance is the same as for the non-bursty case, because the
traffic, if any, still only flows in one direction and requires
no changes in link direction after the initial adaptation.

5.4. Link Arbitration Frequency

So far, our results have assumed that the bandwidth ar-
biter may alter the direction of every link on every cycle.
While we believe this is very realistic, we also consid-
ered the possibility that switching directions might require
a dead cycle, in which case changing too often could limit
the throughput up to 50% in the worst case. We therefore
reduced the arbitration frequency and examined the trade-
off between lessening the impact of a dead cycle every N
cycles to 1

N+1 and limiting the network’s adaptivity to rapid
changes in traffic patterns. The results in this section illus-
trate the relevant tradeoffs.

Figure 10 shows how often each bidirectional link actu-

0 10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Transpose (Burst)

U=1,B=0
U=0,B=2
U=2,B=0
U=1,B=2
U=0,B=4

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Shuffle (Burst)

U=1,B=0
U=0,B=2
U=2,B=0
U=1,B=2
U=0,B=4

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Bitcomp (Burst)

U=1,B=0
U=0,B=2
U=2,B=0
U=1,B=2
U=0,B=4

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Uniform Random (Burst)

U=1,B=0
U=0,B=2
U=2,B=0
U=1,B=2
U=0,B=4

Figure 9. Throughput under bursty traffic

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.5%
1% 1.5%

2% 2.5%
3% 3.5%

4% 4.5%
5% 5.5%

6% 6.5%
7% 7.5%

8% 8.5%
9% 9.5%

10%
>10%

N
um

be
r o

f L
in

ks
 (o

ut
 o

f 4
48

)

Frequency of Direction Switches

Shuffle
Uniform Random

Figure 10. The frequency of direction
changes on bidirectional links

ally changes its direction under bursty shuffle and uniform-
random traffic: the x-axis shows how frequently links direc-
tions change and the y-axis shows how many links switch
that often. For example, under shuffle traffic, about 8%
of bidirectional links change their direction less than once
every two hundred cycles. Traffic exhibiting the uniform-
random pattern, in comparison, is more symmetric than
shuffle, and so the link directions change more often.

The observation that no link changes its direction more
frequently than once in ten cycles led us to investigate how
infrequent the link switches could be without significantly
affecting performance. In Figure 11 we compare the per-

formance of the bidirectional network under different link
arbitration frequencies; as expected, throughput decreases
when the links are allowed to switch less often.

Even with a switching period as large as 100 cycles, the
bidirectional network still significantly outperforms the uni-
directional design under many loads (e.g., by more than
20% for shuffle). In the case of uniform-random, however,
the bidirectional network performance trails the unidirec-
tional design when switching is infrequent. This is because,
when each link arbitration decision lasts 100 cycles, any
temporary benefit from asymmetric bandwidth allocation is
nullified by changes in traffic patterns, and, instead of im-
proving throughput, the asymmetric allocations only serve
to throttle down the total throughput compared to the unidi-
rectional router.

Infrequent link switching, therefore, demands a more so-
phisticated link bandwidth arbiter that bases its decisions on
the pressures observed over a period of time rather than on
instantaneous measurements. For uniform-random, for ex-
ample, the symmetry of uniform random traffic over time
would cause the link bandwidths to be allocated evenly, al-
lowing it to match the performance of the unidirectional net-
work.

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

4

4.5

5

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Shuffle (Burst)

U=2,B=0
U=1,B=2,N=1
U=1,B=2,N=10
U=1,B=2,N=16
U=1,B=2,N=25
U=1,B=2,N=100

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Offered Injection Rate (packet/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

/c
yc

le
)

Uniform Random (Burst)

U=2,B=0
U=1,B=2,N=1
U=1,B=2,N=10
U=1,B=2,N=16
U=1,B=2,N=25
U=1,B=2,N=100

Figure 11. Bursty traffic throughput with dif-
ferent link arbitration periods (N)

6. Conclusions

We have proposed the notion of bandwidth-adaptive net-
works in this paper, given one concrete example of bidirec-
tional links in a 2-D mesh, and evaluated it. Adaptivity is
controlled by local pressure that is easily computed. While
more comprehensive evaluation is underway, adaptive bidi-
rectional links provide better performance under both uni-
form and bursty traffic for the tested benchmarks.

While we have focused on a mesh, adaptive bidirectional
links can clearly be used in other network topologies. In
adaptive routing decisions are made on a per-packet basis at
each switch. In bandwidth-adaptive networks, decisions are
made on a per-link basis. We believe this difference makes
bandwidth-adaptivity more amenable to local decision mak-
ing, though more rigorous analysis is required.

References

[1] J. D. Allen, P. T. Gaughan, D. E. Schimmel, and S. Yalaman-
chili. Ariadne—an adaptive router for fault-tolerant multi-
computers. SIGARCH Comput. Archit. News, 22(2), 1994.

[2] H. Badr and S. Podar. An optimal shortest-path routing
policy for network computers with regular mesh-connected
topologies. IEEE Transactions on Computers, 38(10):1362–
1371, 1989.

[3] T. Bjerregaard and J. Sparsø. Virtual channel designs for
guaranteeing bandwidth in asynchronous network-on-chip.
In Proceedings of the IEEE Norchip Conference (NORCHIP
2004). IEEE, 2004.

[4] J. Carbonaro and S. Verhoorn. Cavallino: The teraflops
router and nic. In Proceedings of the Fourth Symp. High-
Performance Interconnects (Hot Interconnects 4), August
1996.

[5] G.-M. Chiu. The odd-even turn model for adaptive routing.
IEEE Trans. Parallel Distrib. Syst., 11(7):729–738, 2000.

[6] W. Dally. Virtual-channel flow control. IEEE Transactions
on Parallel and Distributed Systems, 03(2):194–205, 1992.

[7] W. J. Dally and H. Aoki. Deadlock-free adaptive rout-
ing in multicomputer networks using virtual channels.
IEEE Transactions on Parallel and Distributed Systems,
04(4):466–475, 1993.

[8] W. J. Dally and C. L. Seitz. Deadlock-Free Message Routing
in Multiprocessor Interconnection Networks. IEEE Trans.
Computers, 36(5):547–553, 1987.

[9] W. J. Dally and P. Song. Design of a self-timed vlsi mul-
ticomputer communication controller. In Proceedings of
International Conference on Computer Design (ICCD-87),
pages 230–234, 1987.

[10] W. J. Dally and B. Towles. Principles and Practices of In-
terconnection Networks. Morgan Kaufmann, 2003.

[11] W.-C. Feng and K. G. Shin. Impact of selection functions on
routing algorithm performance in multicomputer networks.
In In Proc. of the Int. Conf. on Supercomputing, pages 132–
139, 1997.

[12] R. Gindin, I. Cidon, and I. Keidar. Noc-based fpga: Ar-
chitecture and routing. In First International Symposium on
Networks-on-Chips (NOCS 2007), pages 253–264, 2007.

[13] C. J. Glass and L. M. Ni. The turn model for adaptive rout-
ing. J. ACM, 41(5):874–902, 1994.

[14] P. Gratz, B. Grot, and S. W. Keckler. Regional Congestion
Awareness for Load Balance in Networks-on-Chip. In In
Proc. of the 14th Int. Symp. on High-Performance Computer
Architecture (HPCA), pages 203–214, Feb. 2008.

[15] J. Hu and R. Marculescu. DyAD: Smart Routing for Net-
works on Chip. In Design Automation Conference, June
2004.

[16] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and
N. Chrysos. Variable packet size buffered crossbar (cicq)
switches. In 2004 IEEE International Conference on Com-
munications, volume 2, pages 1090–1096, June 2004.

[17] N. K. Kavaldjiev, G. J. M. Smit, and P. G. Jansen. A vir-
tual channel router for on-chip networks. In IEEE Int. SOC
Conf., Santa Clara, California, pages 289–293. IEEE Com-
puter Society Press, Sept. 2004.

[18] H. J. Kim, D. Park, T. Theocharides, C. Das, and
V. Narayanan. A low latency router supporting adaptivity for
on-chip interconnects. In Proceedings of Design Automation
Conference, pages 559–564, June 2005.

[19] R. D. Mullins, A. F. West, and S. W. Moore. Low-latency
virtual-channel routers for on-chip networks. In Proc. of the
31st Annual Intl. Symp. on Computer Architecture (ISCA),
pages 188–197, 2004.

[20] T. Nesson and S. L. Johnsson. ROMM routing on mesh and
torus networks. In Proc. 7th Annual ACM Symposium on
Parallel Algorithms and Architectures SPAA’95, pages 275–
287, 1995.

[21] L. M. Ni and P. K. McKinley. A survey of wormhole rout-
ing techniques in direct networks. Computer, 26(2):62–76,
1993.

[22] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S.
Yousif, and C. R. Das. ViChaR: A dynamic virtual channel
regulator for network-on-chip routers. In Proc. of the 39th
Annual Intl. Symp. on Microarchitecture (MICRO), 2006.

[23] L.-S. Peh and W. J. Dally. A Delay Model and Specula-
tive Architecture for Pipelined Routers. In Proc. Interna-
tional Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 255–266, Jan. 2001.

[24] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thot-
tethodi. Near-optimal worst-case throughput routing for
two-dimensional mesh networks. In Proceedings of the 32nd
Annual International Symposium on Computer Architecture
(ISCA 2005), pages 432–443, 2005.

[25] A. Singh, W. J. Dally, A. K. Gupta, and B. Towles. Goal:
a load-balanced adaptive routing algorithm for torus net-
works. SIGARCH Comput. Archit. News, 31(2):194–205,
2003.

[26] A. Singh, W. J. Dally, B. Towles, and A. K. Gupta. Glob-
ally adaptive load-balanced routing on tori. IEEE Comput.
Archit. Lett., 3(1), 2004.

[27] L. G. Valiant and G. J. Brebner. Universal schemes for
parallel communication. In STOC ’81: Proceedings of the
thirteenth annual ACM symposium on Theory of computing,
pages 263–277, 1981.

