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ABSTRACT
Exchange of digitally signed certificates is often used to establish
mutual trust between strangers that wish to share resources or to
conduct business transactions. Automated Trust Negotiation (ATN)
is an approach to regulate the flow of sensitive information during
such an exchange. Previous work on ATN are based on access con-
trol techniques, and cannot handle cyclic policy interdependency
satisfactorily. We show that the problem can be modelled as a
2-party secure function evaluation (SFE) problem, and propose a
scheme called oblivious signature-based envelope (OSBE) for ef-
ficiently solving the SFE problem. We develop a provably secure
and efficient OSBE protocol for certificates signed using RSA sig-
natures. We also build provably secure and efficient one-round
OSBE for Rabin and BLS signatures from recent constructions for
identity-based encryption. We also discuss other applications of
OSBE.

1. INTRODUCTION
Consider the following scenario: user Alice has a certificate show-
ing that she has top-secret clearance. To protect herself, Alice will
only present the certificate to other parties who also have a top-
secret clearance certificate. Similarly, user Bob has a top-secret
certificate and he will only reveal his certificate to others who have
top-secret clearance. Now imagine what happens when Alice and
Bob wish to establish a secure session using automated trust nego-
tiation techniques [17, 20, 21, 22, 24, 25]. Neither one is willing
to present their certificate first. Consequently, they are stuck and
cannot establish the session. We describe efficient cryptographic
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solutions to this problem. Our solutions work with standard certifi-
cate formats.

Exchanging digitally signed certificates is an increasingly popular
approach for authentication and authorization in distributed sys-
tems. These certificates associate public keys with key holders’
identity and/or attributes such as employer, membership of associ-
ations, credit card information, security clearance, and so on. Of-
ten, the attribute information contained in certificates is sensitive.
The goal of a growing body of work onautomated trust negotia-
tion (ATN) [17, 20, 21, 22, 24, 25] is to protect this information.
In ATN, each party establishes access control (AC) policies to reg-
ulate not only the granting of resources, but also the disclosure of
certificates to opponents. (Engaging in a discussion about secret
information can be viewed as an abstract resource protected by the
AC policy that requires secret clearance certificates.) A negotiation
begins when a requester requests to access a resource protected by
an AC policy. The negotiation process consists of a sequence of ex-
changes of certificates and possibly AC policies. In the beginning,
certificates that are not sensitive are disclosed. As certificates flow,
higher levels of mutual trust are established, and AC policies for
more sensitive certificates are satisfied, enabling these certificates
also to flow. In successful negotiations, certificates eventually flow
to satisfy the AC policy of the desired resource. A security require-
ment on ATN is that no certificate should flow to a party who does
not satisfy the AC policy established for the certificate.

In the scenario we described in the beginning of this paper, current
ATN protocols would conclude negotiation failure, because there is
cyclic interdependency between two negotiators’ AC policies. Ex-
isting ATN protocols require one negotiator to reveal its certificate
first; however, if the receiver does not have top-secret clearance, the
AC policy is violated. Reporting negotiation failure in this scenario
is not very satisfactory, since both parties have top-secret clearance
and it would be more productive for them to proceed. How to break
this policy cycle? Observe that, in many cases, the secret informa-
tion in a certificate is the signature created by the certificate au-
thority. For example, Alice’s certificate may contain her public key
and some string representing “top-secret clearance”; these are of-
ten public information, but the fact that a trusted authority signed
the certificate is sensitive. Using this observation, the cycle can
be broken as follows: First, Bob sends the content, including the
Certificate Authority’s (CA) public key but not the signature, of his
certificate to Alice.1 Alice verifies that the content satisfies her re-

1To prevent Alice from guessing whether Bob has top-secret clear-



quirement, then conducts a joint computation with Bob such that
in the end Bob sees Alice’s certificate if and only if Bob has the
CA’s signature on the content he sent earlier. Bob concludes ne-
gotiation success and proceeds with Alice if he has the signature
and successfully verifies that Alice has the right certificate. Bob
aborts the negotiation process when he does not have the signa-
ture or when Alice does not have the right certificate. Bob learns
whether Alice has the certificate only when he has the required cer-
tificate, and vice versa. This approach for breaking policy cycles
requires solving the following 2-party Secure Function Evaluation
(SFE) problem.

Problem 1.Let PK be a public key (the CA’s public key). Let
M andP be two messages. (M is the content of Bob’s certificate
without the CA’s signature;P is Alice’s complete certificate.) Let
Verify be the verification algorithm of a signature scheme such that
VerifyPK (M, σ) = true whenσ is PK ’s signature onM . Alice
and Bob want to compute a familyF of functions, parameterized
by Verify, M andPK . Both parties haveM andPK . Alice has
private inputP (Alice’s certificate). Bob has private inputσ (the
CA’s signature onM ). The functionF is defined as follows.

F [Verify, M,PK ]Alice(P, σ) = ⊥
F [Verify, M,PK ]Bob(P, σ) =

{ P if VerifyPK (M, σ) = true;
⊥ otherwise.

where F [Verify, M,PK ]Alice represents Alice’s output,
F [Verify, M,PK ]Bob represents Bob’s output, and⊥ is a
special symbol. In other words, our goal is that Alice learns
nothing and Bob learnsF [Verify, M,PK ]Bob(P, σ) without
learning anything else.

The SFE problem can be solved using general solutions to 2-party
SFE [23]; however, the general solutions are not efficient, since sig-
nature verification is done within the SFE. We propose the Oblivi-
ous Signature-Based Envelope (OSBE) scheme that solves the above
2-party SFE problem efficiently. Formal definition of OSBE will be
given in Section 3. Informally, an OSBE scheme enables a sender
to send an envelope (encrypted message) to a receiver, and has the
following properties: the receiver can open the envelope if and only
if it has a third party’s (e.g. certification authority) signature on an
agreed-upon messageM . An OSBE scheme issecure against the
receiverif a receiver who does not have the third party’s signature
on M cannot open the envelope. An OSBE scheme isobliviousif
at the end of the protocol the sender cannot tell whether the receiver
has the signature onM or not.

In this paper, our focus is to find efficient OSBE constructions for
existing signature schemes, rather than to develop new signature
schemes that make OSBE easy. In addition, we look for protocols
that do not involve any interaction with (trusted or semi-trusted)
third parties, except for the generation of signatures on certificates.
We present OSBE protocols for three existing signature schemes:
RSA [16], Rabin [15], and BLS [6]. The RSA-OSBE protocol is
two-round: one message from the receiver followed by one mes-
sage from the sender. The receiver and the sender each computes
two exponentiations. We prove in the Random Oracle Model [3]
that our RSA-OSBE protocol is as secure as RSA signatures. We

ance or not, Bob should follow the protocol to send the same thing
even if he does not have the top-secret clearance certificate. This is
possible because the content of certificate is not secret.

also show that any Identity Based public key Encryption (IBE) [18,
5, 11] scheme gives rise to an OSBE scheme for the signature
scheme corresponding to the IBE scheme. We use IBE to build
one-round OSBE protocols for Rabin and BLS. These two proto-
cols involve only one message from the sender to the receiver.

The rest of this paper is organized as follows. We discuss other ap-
plications of OSBE and related work in Section 2, and give formal
definition of OSBE and its security requirements in Section 3. In
Section 4, we describe an OSBE protocol for RSA signatures and
prove its security. In Section 5 we build a one round OSBE for
Rabin and BLS signatures. We conclude in Section 6.

2. OTHER APPLICATIONS AND RELATED
CONCEPTS OF OSBE

Our original motivation for OSBE comes from automated trust ne-
gotiation; however, OSBE can be used for other purposes. An
OSBE scheme enables the sender to send a message with the as-
surance that it can be seen only by the receiver if it has appropriate
certificates while at the same time protecting the receiver’s privacy
such that the sender does not know whether the receiver has the re-
quired certificates or not. In other words, OSBE performs access
control on a message in an oblivious (or privacy preserving) fash-
ion. We envision that OSBE could be used in other contexts (possi-
bly in conjunction with other protocols) to provide such oblivious
access control.

One application of OSBE is Oblivious Subscription. Consider an
online publishing service that gives access of various documents to
members of several organizations. Users need membership certifi-
cates to gain access to specific documents. OSBE enables users to
gain access without disclosing which organizations they are mem-
bers of. To do so, the publishing service encrypts all documents
with distinct keys. When a user requests to access a document, it
sends contents of some membership certificates it may or may not
possess, and runs multiple rounds of OSBE protocol with the pub-
lishing service. The publishing service delivers decryption keys of
the documents in corresponding envelopes. Only a user that has
the required certificate can open the envelope and obtain keys to
decrypt documents. The publishing service does not know what
memberships the user has.

OSBE might also be used in the context of Private Information Re-
trieval (PIR) [8, 9, 10, 12, 14] to provide access control on the
information being retrieved.

A problem related to OSBE that has been studied in the literature
is Fair Exchange of Signatures (FES) [1, 2], which enables two
parties to exchange signatures such that either both parties obtain
the other parties’ signature or no party obtains the other party’s
signature. FES protocols are useful in contract signing and other
e-commerce transactions. A common approach to FES is verifiable
encryption of signatures, i.e., a signature encrypted in a way such
that one can verify that the right signature is being encrypted, one
can also go to a trusted third party (TTP) to obtain the signature
when necessary, but one cannot retrieve the signature without the
TTP. The TTP is involved only if one party tries to cheat. There are
several differences between OSBE and FES. First, the signatures
involved in OSBE are not generated by the two parties involved in
the protocols, but rather generated by certification authorities be-
fore the OSBE protocol is used. Second, in FES protocols, at some
stage, one party learns that the other party has a signature without
obtaining that signature. This does not satisfy the security require-



ments of OSBE. Because of the above two reasons, FES protocols
cannot be used directly to achieve OSBE. Third, OSBE does not
require a fair exchange of signatures. It is allowed that the receiver
gets the sender’s signature without sending its own signature, as
long as the receiver has the required signature. In this sense, OSBE
is weaker than fair exchange of signatures. This weaker require-
ment enables efficient OSBE protocols that do not involve third
parties.

Another piece of related work is Brands’ private certificates [7].
There, the main goal is that certificates can be used anonymously.
Our goal is different; we want a simultaneous exchange of attribute
information that works with current standards, e.g., X.509 attribute
certificates with RSA signatures.

3. OBLIVIOUS SIGNATURE-BASED ENVE-
LOPE (OSBE): DEFINITION

In this section, we give formal definition of OSBE. We will use
the following terminology. A function isnegligiblein the security
parametert if, for every polynomialp, f(t) is smaller than1/|p(k)|
for k large enough; otherwise, it isnonnegligible. An adversaryis
a probabilistic interactive Turing Machine.

In the following definition of OSBE, we use one senderS and two
receiversR1 andR2. ReceiverR1 has a third party’s signature on
some messageM . ReceiverR2 does not have the signature. In
each protocol run, the senderS interacts with eitherR1 or R2.

Definition 1. [Oblivious Signature-Based Envelope (OSBE)]

An Oblivious Signature-Based Envelope (OSBE) scheme is param-
eterized by a signature schemeSig. It involves a senderS and two
receiversR1 andR2. An OSBE scheme has the following three
phases:

Setup The Setup algorithm takes a security parametert and cre-
ates system parameters, which include a signing key whose
public key is denoted byPK . Two messagesM andP are
chosen.PK andM are given to all three parties, namely,
S, R1, andR2. In addition, the senderS is givenP and the
receiverR1 is given the signatureσ = SigPK (M).

Interaction One ofR1 andR2 is chosen asR, withoutS knowing
which one.S andR run an interactive protocol.

Open After the interaction phase, ifR = R1, i.e.,R1 was chosen
in the interaction phase,R outputs the messageP . (R can
do that because it knowsSigPK (M).) Otherwise, whenR =
R2, R does nothing.

An OSBE must satisfy three properties defined below. It must be
sound, oblivious, and semantically secure against the receiver.

Sound. An OSBE scheme issoundif in the open phase,R1 can
output the messageP with overwhelming probability, that is, the
probability thatR1 cannot outputP is negligible.

Oblivious. An OSBE scheme isobliviousif the senderS does not
learn whether it is communicating withR1 or R2. More precisely,
no adversarial senderA has a nonnegligible advantage against the
Challenger in the following game: The Challenger finishes the
setup phase, and sendsPK , M , P to the adversary. The Challenger

picks randomb ∈ {0, 1}, then interacts with the adversary by em-
ulatingRb. Finally, the adversary outputsb′ ∈ {0, 1}. The adver-
sary wins the game ifb = b′. In other words, an OSBE scheme is
oblivious if for every probabilistic interactive Turing MachineA,
|Pr[A wins the above game] − 1

2
| ≤ f(t), wheref is a negligible

function in t. (The adversary cannot do substantially better than
random guessing.)

Semantically secure against the receiver.An OSBE scheme is
semantically secure against the receiverif R2 learns nothing about
P . More precisely, no polynomially bounded adversaryA has a
nonnegligible advantage against the Challenger in the following
game: The Challenger finishes the setup phase, and sendsPK and
M to the adversary. The adversary responds with two messages
P0 andP1. The Challenger picks a randomb ∈ {0, 1}, then inter-
acts with the adversary by emulating the senderS using message
P = Pb. Finally, the adversary outputsb′ ∈ {0, 1}. The adversary
wins the game ifb = b′. In other words, even if we give the adver-
sary the power to pick two messagesP0 andP1 of its choice, it still
cannot distinguish an envelope containingP0 from one containing
P1. This formalizes the intuitive notion that the envelope leaks no
information about its content.

We now argue that OSBE is an adequate solution to the 2-party SFE
problem in Problem 1, by showing intuitively that the above secu-
rity properties defined for OSBE suffice to prove that the scheme
protects the privacy of the participants in the malicious model. Ob-
serve that our definitions allow arbitrary adversaries, rather than
just those following the protocol. The oblivious property guaran-
tees that the sender’s view of any protocol run can be simulated
using just the sender’s input, because one can simulate a protocol
run betweenS andR2, who has no private input. Soundness and
semantic security against the receiver guarantee that the receiver’s
view can be simulated using just the receiver’s input and output. If
the receiver has the signature, then the messageP is in the output,
one can therefore simulates the senderS. If the receiver does not
have the signature, one can simulate the senderS with a arbitrary
messageP ′ and no polynomially bounded receiver can tell the dif-
ference.

We assume that OSBE is executed on top of a secure communi-
cation channel that the sender and the receiver has already estab-
lished. This assumption is common in secure multiparty computa-
tion literature. In the context of automated trust negotiation, this
assumption is also valid, since secure communication is already re-
quired to protect against eavesdroppers. Technically, an SSL con-
nection can be established between the sender Alice and receiver
Bob using self-signed certificates. When Alice and Bob wants to
use OSBE to break a policy cycle, Bob first sendsM (the content
of Bob’s certificate) to Alice. At this time, Alice verifies that the
public key inM is the same as the one Bob used to establish the
communication channel and then runs the OSBE protocol to send
P (Alice’s certificate) to Bob. At the end of the OSBE, Bob ver-
ifies that the public key inP is the same as the one Alice used to
establish the communication channel. A man-in-the-middle attack
during the OSBE will not be a problem.

In our proofs, we often use the random oracle model, which is an
idealized security model introduced by Bellare and Rogaway [3] to
analyze the security of certain natural cryptographic constructions.
Roughly speaking, a random oracle is a functionH : X → Y cho-
sen uniformly at random from the set of all functions{h : X →
Y } (we assumeY is a finite set). An algorithm can query the ran-



dom oracle at any pointx ∈ X and receive the valueH(x) in
response. Random oracles are used to model cryptographic hash
functions such as SHA-1. Note that security in the random oracle
model does not imply security in the real world. Nevertheless, the
random oracle model is a useful tool for validating natural crypto-
graphic constructions. Security proofs in this model prove security
against attackers that are confined to the random oracle world.

4. AN OSBE SCHEME FOR RSA SIGNA-
TURES

In this section, we present an OSBE scheme for RSA signatures
(i.e. when user certificates are signed using RSA). The RSA signa-
ture scheme [16] is as follows. The key spaceK is defined to be the
following set:

{(n, e, d) | n = pq, p, q equal size primes,ed ≡ 1 (mod φ(n))}

The valuesn ande are public, and the valued is secret.
For K = (n, e, d), messageM , and a message digest function
H : {0, 1}∗ → Zn, define

SigK(M) = H (M)d mod n
and VerifyK(M, σ) = true⇐⇒ H (M) ≡ σe (mod n)

Our RSA-OSBE scheme runs a Diffie-Hellman style key agreement
protocol. If it is run betweenS andR1, thenR1 can derive the
shared secret. If it is run betweenS andR2, thenR2 cannot de-
rive the shared secret. Leth = H (M), then the signature on the
messageM is σ = (hd mod n). R1 sends toS a blinded version
of the signatureη = (σhx mod n) for some randomx. S then
computesηeh−1 mod n, which should behex mod n. S now
holds(he)x such that onlyR1 knows the valuex. This achieves
half of the Diffie-Hellman key agreement protocol, withhe as the
base.S then does the other half and creates the envelope using a
symmetric key derived from the shared secret.

Definition 2. [RSA-OSBE] LetH be the message digest func-
tion used in the signature. LetE be a semantically secure sym-
metric encryption scheme. LetH ′ be a function (e.g., a crypto-
graphic hash function) that extracts a key for the symmetric en-
cryption scheme from a shared secret.

Setup The setup algorithm takes a security parametert and runs
the RSA key generation algorithm to create an RSA key
(n, e, d); in addition, it generates two security parameters
t1 andt2, which are linear int. In practice,t1 = t2 = 128
suffices. Two messagesM andP are chosen. PartyS is
given (n, e), M , andP . PartyR1 is given(n, e), M , and
σ = (H(M)d mod n). PartyR2 is given(n, e) andM .

Interaction We usex ← [1..2t1n] to denote thatx is randomly
chosen from[1..2t1n]. In the following protocol, we de-
scribe actions forS, R1, andR2. However, during each pro-
tocol run, only one ofR1 andR2 is involved as the receiver
R.

• R1 sends toS: η = (σhx mod n), in which x ←
[1..2t1n].

R2 sends toS: η = (hx′
mod n), in which x′ ←

[1..2t1n].

• S receivesη, checks thatη 6∈ {0, 1, n − 1}, picks
y ← [1..2t2n], computesr = (ηey h−y mod n) and
then sends toR the pair: 〈ζ = (hye mod n), C =
EH′(r)[P ]〉.

Open R1 receives〈ζ, C〉 from the interaction phase; it computes
r′ = (ζx mod n), and decryptsC usingH ′(r′).

To see that this scheme is sound, observe thatζ = (hye mod n)
and whenR is R1, η = (hd+x mod n); therefore:

r = ηyeh−y = h(d+x)ey h−y = hdey hxey h−y

hxye = ζx = r′ (mod n)

ThusS andR1 share the same symmetric key.

The key idea of the RSA-OSBE scheme is that it convertsR1’s
knowledge of thee’th root of h to the knowledge of a discrete
log with basehe. The senderS then uses this fact to do a Diffie-
Hellman style key agreement withR1.

Before proving the oblivious property of RSA-OSBE, we intro-
duce the following terminology. Two distribution familiesδ0(t)
andδ1(t) arestatistically indistinguishableif

∑
y |Prx∈δ0(t)[x = y]− Prx∈δ1(t)[x = y]| is negligible int.

If two distribution families are statistically indistinguishable, then
there exists no algorithm that can distinguish the two distribution
families with nonnegligible advantage by sampling from them.

THEOREM 1. RSA-OSBE is oblivious.

PROOF. It suffices to show that whatR1 and R2 send in the
first step are drawn from two distribution families that are statis-
tically indistinguishable, i.e., for allh, n, andd, the two distri-
bution familiesδ0(t1) = {hd+x mod n | x ← [1..2t1n]} and
δ1(t1) = {hx′

mod n | x′ ← [1..2t1n]} are statistically indistin-
guishable.

Let o be the order ofh, i.e., the smallest numberj such thathj ≡
1(mod n). For any fixedt1, both distributions haveo points. The
probability difference on any point is at most1/(2t1n); the total
difference is thus at mosto/(2t1n). Sinceo ≤ φ(n) < n, the sta-
tistical difference between the two distributions is less than1/2t1 ,
which is negligible int1. Sincet1 is linear int, the statistical dif-
ference is also negligible int.

THEOREM 2. Assuming that there exists no polynomial algo-
rithm that can forge an RSA signature on a messageM with non-
negligible probability, andH ′ is modelled as a random oracle,
RSA-OSBE is secure against the receiver.

PROOF. RSA-OSBE uses a semantically secure symmetric en-
cryption algorithm. WhenH ′ is modelled as a random oracle,
RSA-OSBE is secure against the receiver when no receiver who
does not have the signature can compute with nonnegligible proba-
bility the secret that the sender uses to derive the encryption key.
More precisely, RSA-OSBE is secure against the receiver if no
polynomially bounded adversary wins the following game against
the Challenger with nonnegligible probability: The Challenger ran-
domly picks a public key(n, e) and a messageM , and gives them
to the adversary. The adversary responds with aη such thatη 6∈



{0, 1, n− 1}. The Challenger then pick a randomy from [1..2t2n]
and sends the adversaryH (M)ye mod n. The adversary then out-
putsr, and the adversary wins the game ifr = ηeyh−y mod n.

Given an attackerA that wins the above game with probability
ε. We construct another attackerB that can successfully forge the
RSA signatureH (M)d mod n with probabilityε′, where|ε − ε′|
is negligible.B does the following (all arithmetic ismod n):

1. B, when given(n, e) andM , gives(n, e) andM to A and
getsη back.

2. B then computesh = H (M), picks a randomz from [1..2t2n]

and sendsh1+ez toA. Note thath1+ez = hed+ez = he(d+z).
ThenB can getr = ηe(d+z)h−(d+z) fromA.

3. Note thatr = η1+ezh−dh−z. SinceB knowsη, h, e, andz,
thenB can computehd.

B succeeds in forging an RSA signature if and only ifA wins the
above game, i.e., successfully compute(ηeyh−y mod n). WhatA
receives from the Challenger in the game is drawn from the distri-
bution family{he(d+z) | z ← [1..n2t2 ]}. WhatA receives fromB
are drawn from{hey | y ← [1..n2t2 ]}. Using an argument similar
to that in the proof of Theorem 1, it is easy to show that these two
distribution families are statistically indistinguishable. Therefore,
the difference betweenA’s success probabilities in the two cases is
negligible.

RSA-OSBE does a Diffie-Hellman style key agreement that has the
added twist that one party can recover the shared key only when
knowing the signature. This construction may be useful for other
purposes, in which case the following property of the RSA-OSBE
scheme could be useful: no eavesdropping attacker against RSA-
OSBE can recover the shared secret with nonnegligible probability,
even if the eavesdropper knows the signaturehd. (This property
is not required for OSBE because we assume secure communica-
tion channels.) We base the security on the CDH (Computational
Diffie-Hellman) problem inZ∗

n. The CDH problem is the follow-
ing: given a finite cyclic groupG, a generatorg ∈ G, and group
elementsga, gb, find gab. The difficulty of this problem is the se-
curity foundation of Diffie-Hellman key agreement protocol and
many other protocols. TheCDH assumptionis that there exists no
polynomial probabilistic algorithm that can solve the CDH prob-
lem. It is known that if the CDH problem inZ∗

n can be solved in
polynomial time for a nonnegligible portion of all basesg ∈ Z∗

n,
thenn can be factored in expected polynomial time [4].

THEOREM 3. Under the CDH assumption onZ∗
n, no eaves-

dropping attacker against RSA-OSBE can recover the shared secret
with nonnegligible probability.

PROOF. We prove that there exists no polynomial bounded al-
gorithm that can solve the following problem with non-negligible
probability (all arithmetic is mod n): given an RSA public key
(n, e), which has corresponding private keyd, and the following
tuple〈h, hd, hd+x, hey〉, computehexy.

Given an algorithmA that solves the above problem, we con-
struct another algorithmB that can solve the CDH problem in
Z∗

n. B, when given (g, ga, gb), picks a small primee and out-
putsA((n, e), 〈h = ge, g, h2 = gga, h3 = (gb)e〉). Let x

denote(ad mod φ(n)) andy denote(bd mod φ(n)). Observe

thath2 = (h)d+x, h3 = hey; therefore,hexy = ge2d2ab = gab.

5. ONE-ROUND OSBE USING IDENTITY
BASED ENCRYPTION

Next, we show how to implement a one-round OSBE using any
Identity Based public key Encryption scheme (IBE). The one-round
refers to the fact that during the interaction phase there is only one
message — the sender sends a ciphertext to the recipient. As usual,
the recipient is only able to decrypt if she has a third party’s signa-
ture on some predefined messageM . Using IBE we build a one-
round OSBE where user certificates are signed using a Rabin [15]
or BLS [6] signature.

Before we describe the one-round OSBE we briefly review the
concept of Identity Based Encryption. IBE was first proposed by
Shamir [18], but the first usable IBE systems were found only very
recently [5, 11]. An IBE public key encryption scheme is a stan-
dard public key system with the added twist that any string can
function as a public key. In such a system there is a third party that
has a secretmaster-key that enables it to generate the private key
corresponding to any public key string. This third party plays the
role of a Certificate Authority (CA) in a standard PKI. There are
also global IBE system parameters given to all users, as is the CA’s
root certificate in a standard PKI. Shamir’s idea was that user Alice
uses her name (or email address) as a public key, thus avoiding the
need for a public key certificate. Alice obtains her private key from
the third party. More details on using IBE can be found in [5].

Any secure IBE system gives rise to a signature scheme [5]: to
sign a messageM we viewM as an IBE public key; the signature
on M is the private key corresponding to the public keyM . Here
the signer has the IBEmaster-key that enables it to generate the
signature on any messageM . The main point is that this signature
on M can also function as an IBE decryption key. For the two
recently proposed IBE systems the associated signature schemes
are Rabin signatures and BLS signatures.

We show how to build an OSBE from any IBE system. As usual,
both the senderS and the receiverR have a certain messageM .
The sender wants to send an encrypted messageP to the receiver
R so thatR is able to recoverP only if R has the third party’s
signature onM . The OSBE based on a generic IBE system works
as follows:

Setup. Run the setup algorithm of the IBE system to generate the
third party’smaster-key and the global IBE system param-
eters, which are viewed asPK . Let M andP be two mes-
sages and letSigPK (M) be the IBE private key correspond-
ing to M whenM is viewed as a public key. The sender is
givenM andP . The receiver is givenSigPK (M).

Interaction. The sender wants to sendP to the receiver so that the
receiver can only obtainP if she has the signatureSigPK (M)
onM . The sender encryptsP usingM as an IBE public key
and sends the resulting ciphertextC to the receiver.

Open. The receiver, using the private keySigPK (M) can decrypt
C to obtainP .

The OSBE described above is clearly oblivious sinceS receives no



information fromR. The semantic security of this OSBE follows
from the security of the IBE system. We summarize this in the
following theorem. The theorem refers to the standard notion of
security for IBE systems (IND-ID-CCA) defined in [5].

THEOREM 4. Let EIBE be an IBE system that is semantically
secure under a chosen ciphertext attack (IND-ID-CCA). Then the
resulting OSBE is sound, oblivious, and secure against the receiver.

PROOF. The oblivious property is trivial, as the sender receives
no information at all during the interaction phase, and thus cannot
tell whether the receiver has the signature or not.

SinceSigPK (M) is the private key corresponding toM . The sound-
ness property of the resulting OSBE scheme is immediate from the
soundness property of the IBE scheme (given a private key and a
message encrypted under the corresponding public key, one can de-
crypt the message).

In addition, if the resulting OSBE is not semantically secure against
the receiver, then there exists an adversaryA that wins the fol-
lowing game against the Challenger with nonnegligible probability:
The Challenger givesPK andM to the adversary. The adversary
responds with two messagesP0 andP1. The Challenger picks a
randomb ∈ {0, 1} and gives the adversaryC, which is the IBE
encryption ofPb with M as the public key. The adversary outputs
b′ ∈ {0, 1} and wins ifb′ = b. A is a direct attacker against the
semantic security of the IBE scheme. Therefore, the OSBE is se-
mantically secure when the IBE system is semantically secure.

In Appendix A, we describe an OSBE for Rabin signatures, us-
ing Cocks’ IBE system [11]. In this OSBE, communication during
the interaction phase is quite large. This is because encryption in
Cocks’ IBE is done bit by bit, and the ciphertext for each bit is a
number inZn (about 1024 bits in a typical setting). In the rest of
this section, we describe an OSBE for BLS signatures [6], using an
IBE system due to Boneh and Franklin [5]. With this OSBE, the
amount of communication during the interaction phase is small.

The BLS short signature scheme [6] is based on bilinear maps.
A number of recent cryptographic constructions make use of such
maps [13, 5, 19]. LetG1, G2 be two groups of prime orderq. A
bilinear mape : G1 × G1 → G2 satisfiese(gx, gy) = e(g, g)xy

for anyg ∈ G1 andx, y ∈ Zq. Using elliptic curves one can give
examples of bilinear mapse : G1 × G1 → G2 where the Com-
putational Diffie-Hellman problem (CDH) inG1 is believed to be
hard. Throughout this section we letg be a generator ofG1.

The BLS signature scheme works as follows: the public key is
h = gx ∈ G1 and the private key isx ∈ Z∗

q . Let H be a hash
function from{0, 1}∗ to G1. To sign a messageM the signer com-
putesσ = H(M)x ∈ G1. To verify a signature onM test that
e(g, σ) = e(h, H(M)). WhenH is modelled as a random oracle
the system is existentially unforgeable under a chosen message at-
tack assuming CDH inG1 is hard [6]. Note that a BLS signature
is a single element ofG1. Using certain elliptic curves, elements
in G1 are represented as short strings, resulting in very short signa-
tures.

To build an OSBE using BLS signatures we use the Boneh-Franklin
IBE system [5]. We do not describe the system here, but note that

in this IBE system, the private key corresponding to a public key
M ∈ {0, 1}∗ is exactly a BLS signature onM . Thus we can build
a one-round OSBE out of this system as we did in the previous
section. The advantage of this IBE system is that the encryption of
a 128-bit message key results in a short ciphertext (two elements
in a finite field). Encryption and decryption are also more efficient
than in Cocks’ system.

Given a bilinear mape : G1 × G1 → G2, the OSBE works as
follows:

Setup. Pick a randomx ∈ Z∗
q and computeh = gx ∈ G1.

The third party is givenx. Let M andP be two messages.
Let Sig(M) be the BLS signature onM , i.e. Sig(M) =
H(M)x ∈ G1. The sender is givenh, M andP . The re-
ceiver is givenh andSig(M).

Interaction. The sender encryptsP usingM as the public key and
sends the resulting ciphertextCT to the receiver. The public
keyM is only used to encrypt a message keyk which is then
used to encryptP .

Open. The receiver, using the private keySig(M), decrypts the
ciphertextCT to obtainP .

The security of this OSBE follows from the security of BLS sig-
natures [3] and the security of the Boneh-Franklin IBE [11]. We
summarize this in the following corollary of Theorem 4.

COROLLARY 5. The OSBE above is sound, oblivious, and se-
cure against the receiver, assuming that the bilinear Diffie-Hellman
problem is hard fore : G1 ×G1 → G2.

6. CONCLUSION

Automated Trust Negotiation (ATN) is an approach to regulate the
flow of sensitive information. Previous work on ATN, which only
uses access control techniques, cannot deal with cyclic policy in-
terdependency satisfactorily. We showed that cyclic policy interde-
pendency in ATN can be handled by solving a particular 2-party Se-
cure Function Evaluation (SFE) problem. We introduced oblivious
signature-based envelope (OSBE) as a solution to the SFE problem
and mentioned that OSBE can be used in other privacy sensitive
applications as well. We developed an OSBE protocol for RSA
signatures. The protocol does not involve a third party, is provably
secure and quite efficient. We also showed that identity-based en-
cryption can be used to build efficient one-round OSBE for Rabin
and BLS signatures.

An open problem is to find an efficient and provably secure OSBE
scheme for DSA signatures. We are also investigating other appli-
cations of the OSBE concept.
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APPENDIX

A. ONE-ROUND OSBE WITH RABIN SIG-
NATURES

The Rabin signature scheme is similar to RSA, but one uses a pub-
lic exponente = 2, i.e. a signature on a messageM isH(M)1/2 mod
N . One just has to make sure that the square root exists.

To define Rabin signatures [15], letn = pq be an RSA modulus
with p = q = 3 mod 4. The public key isn and the signing
key is p, q. Let Q ⊆ Z∗

n be the subset ofZ∗
n containing all ele-

ments with Jacobi symbol 1. We know that the size ofQ is ap-
proximatelyn/2. Let H be a hash function from{0, 1}∗ to Q.
Then for anyM ∈ {0, 1}∗ exactly one ofH(M) or−H(M) are
quadratic residues inZ∗

n. To sign a messageM the signer computes
Sig(M) = (±H(M))1/2 mod n where the sign ofH(M) is cho-
sen so that the square root exists. To verify the signature, test that
(Sig(M))2 = ±H(M) mod n. WhenH is modelled as a ran-
dom oracle the system is existentially unforgeable under a chosen
message attack assuming factoring RSA moduli is hard [3].

To build an OSBE using Rabin signatures we use Cocks’ IBE sys-
tem [11]. A private key in this system can be viewed as a Ra-
bin signature of the public key. Cocks’ IBE works as follows:
the global parameters are simply “n” where n = pq is an RSA
modulus withp = q = 3 mod 4. The master-key is p, q. The
private key corresponding to a public keyM ∈ {0, 1}∗ is s =

(±H(M))1/2 mod n (the sign ofH(M) is chosen so that the
square root exists). To encrypt a plaintext bitb ∈ {0, 1} using
the public keyM one picks two random numbersx0, x1 ∈ Z∗

n

such that the Jacobi symbols
(

x0
n

)
=

(
x1
n

)
= (−1)b. The cipher-

text is a pair(C0, C1) whereCi = xi +((−1)iH(M)/xi) mod n
for i = 0, 1. SupposeH(M) is a quadratic residue inZ∗

n. Then
to decrypt a ciphertext(C0, C1), one computes the Jacobi symbol(

C0+2s
n

)
which one can show is equal to(−1)b as required. If

−H(M) is a quadratic residue we useC1 instead. The system can
be shown to be semantically secure under a chosen ciphertext at-
tack (IND-ID-CCA) in the random oracle model assuming that the
problem of distinguishing quadratic residues from non-residues in
Q is hard.

Note that in this system encryption of a plaintextP is done bit-
by-bit. Thus, encrypting a 128-bit message key results in a long
ciphertext – the ciphertext contains 256 elements inZ∗

n. Neverthe-
less, this system gives a one-round OSBE using Rabin signatures.

The OSBE works as follows:

Setup. Generate an RSA modulusn = pq wherep = q = 3 mod
4. The third party is given the factorization ofN . Let M
andP be two messages. LetSig(M) be the Rabin signature
on M , i.e. Sig(M) = (±H(M)1/2) mod n. The sender is
givenn, M andP . The receiver is givenn andSig(M).

Interaction. The sender encryptsP bit-by-bit usingM as the pub-
lic key in Cocks’ IBE and sends the resulting ciphertextCT
to the receiver. For efficiency, one could pick a random block
cipher message keyk, encryptP usingk, and then encryptk
bit-by-bit usingM as the public key.

Open. The receiver, using the private keySig(M), decrypts the
ciphertextCT to obtainP .

The security of this OSBE follows from the security of Rabin sig-
natures [3] and the security of Cocks’ IBE [11]. We summarize this
in the following corollary of Theorem 4.

COROLLARY 6. The OSBE above is sound, oblivious, and se-
cure against the receiver, assuming that the problem of distinguish-
ing quadratic residue from non-residues inQ is hard.


