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Abstract. Secure message transmission and Byzantine agreement have
been studied extensively in incomplete networks. However, information
theoretically secure multiparty computation (MPC) in incomplete net-
works is less well understood. In this paper, we characterize the condi-
tions under which a pair of parties can compute oblivious transfer (OT)
information theoretically securely against a general adversary structure
in an incomplete network of reliable, private channels. We provide char-
acterizations for both semi-honest and malicious models. A consequence
of our results is a complete characterization of networks in which a given
subset of parties can compute any functionality securely with respect to
an adversary structure in the semi-honest case and a partial characteri-
zation in the malicious case.

1 Introduction

Secure message transmission (SMT) [12,13,28,34–37] and Byzantine agree-
ment [12,14,15,31,38] in incomplete networks have been studied extensively.
However, information theoretically secure multiparty computation (MPC) in
incomplete networks is less well studied with a few notable exceptions [3,6,17,26].
In this paper we consider the problem of realizing oblivious transfer (OT)
between a given pair of parties in an incomplete network of reliable, private
links with unconditional security with respect to a general adversary structure.
We characterize networks in which a given pair of parties may securely compute
OT in both the semi-honest and malicious models. For the malicious case, our
characterization is limited to statistical security.

For a pair of parties A and B to compute OT securely in an incomplete
network, an approach which might suggest itself is the following. Try to complete
the network (or a part of the network which includes A and B) by using SMT
to realize the missing private links. Then, use a protocol for complete networks
[4,9,24] on the ‘completed’ (part of the) network to realize OT between A and B.
It turns out that such a direct approach is, in general, not adequate. In particular,
Fig. 1 shows a network where this approach fails, but it is still possible to realize
OT securely.

In the graph G (Fig. 1), vertices represent parties and edges represent private
authenticated communication links. Our characterization (Theorem1) shows
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Fig. 1. Semi-honest 2-secure OT between A and B is possible in G by Theorem 1.
However, a ‘direct’ approach of completing (a part of) the network using semi-honest
SMT with 2-security and applying a standard MPC protocol for complete networks
does not work.

that A and B can realize 2-secure OT in G in the semi-honest case. However,
we cannot achieve this using the aforementioned direct approach. Observe that
the pairs of vertices that are not already connected by an edge are only 2-
connected, hence no new semi-honest 2-secure links can be established in this
network using SMT. Thus, the biggest complete network containing A and B
that can be obtained by such a ‘completion’ is the subgraph induced by vertices
A,B,C,D. Theorem 1 also shows that 2-secure OT between A and B is impos-
sible in this induced subgraph. Alternatively, this impossibility can be seen as
follows. If 2-secure OT can be realized between a pair of parties in a complete
network with 4 parties, then, by symmetry, it is possible to set up 2-secure
OT between every pair of parties in the network. This would imply semi-honest
2-secure MPC in a network with 4 parties [18,19], which is impossible [4,9].

Standard results [11,18–20,25] allow reduction of MPC to establishing pair-
wise OT between the parties wishing to compute securely. In the semi-honest
case, a consequence of our result is a complete characterization of networks
in which a given subset of parties can compute any functionality with perfect
privacy with respect to a given adversary structure. When the adversary is mali-
cious, our results imply a condition that is necessary for statistically secure com-
putation of any functionality among a given subset of parties in an incomplete
network. This condition is also sufficient for statistically secure computation of
any functionality, but with abort and no fairness.

1.1 Our Model and Results

Consider a simple graph G(V, E) on a set V of n parties (or vertices), where each
undirected edge {u, v} ∈ E represents a private, authenticated, synchronous,
bidirectional communication link between the distinct parties u and v. Let
A,B ∈ V be two distinct parties. Given an adversary structure Z ⊆ 2V , we
seek necessary and sufficient conditions on G so that A and B may compute
OT with unconditional security with respect to (w.r.t.) the adversary structure
Z. By security w.r.t. Z, we mean security against the corruption of every set of
parties in Z. We restrict our attention to static adversaries, but consider both
the semi-honest and malicious cases.
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Given a vertex u ∈ V and a subset of vertices Z ⊆ V, we define u-blocked
vertices of Z, denoted by Γu(Z), as the set of vertices whose every path to
u contains some vertex in Z. Our main result for the semi-honest case is the
following:

Theorem 1. Given a graph G(V, E) and an adversary structure Z, two distinct
parties A,B ∈ V can compute OT with perfect unconditional security in the
semi-honest, static adversary setting if and only if the following conditions are
satisfied:

1. For every Z ∈ Z such that A,B /∈ Z, there exists a path from A to B that
does not have any vertex from Z.

2. There do not exist sets of parties ZA,ZB ∈ Z such that A ∈ ZA, B /∈ ZA,
B ∈ ZB, A /∈ ZB, and

ΓB(ZA) ∪ ΓA(ZB) = V.

Moreover, when these conditions are satisfied and |Z| = poly(n), there is an
efficient (poly(n) complexity) protocol to compute OT securely.

Standard results [18,19] imply that if every pair in a set of vertices can realize
oblivious transfer with security w.r.t. Z, then these vertices can compute any
functionality with security w.r.t. Z.

Corollary 1. Given a graph G(V, E) and a subset of vertices K ⊆ V, any func-
tionality can be computed among the vertices in K with perfect security with
respect to a semi-honest adversary structure Z if and only if the conditions in
Theorem1 are satisfied by every pair of vertices in K.

Please refer to the full version [33] for a proof. When G is complete, Γu(Z) = Z
whenever u /∈ Z ⊂ V. Hence, when K = V, the condition in Corollary 1 is
equivalent to non-existence of sets Z1,Z2 ∈ Z such that Z1 ∪ Z2 = V. Thus, for
this case, we retrieve the Q2 condition of Hirt and Maurer [24].

While the focus of this paper is on deriving tight necessary and sufficient
conditions on the network which permit information theoretically secure com-
putation, we consider efficiency in two regimes for t-privacy (i.e., semi-honest
adversary structures of the form Z

t := {Z ⊂ V : |Z| ≤ t}). Theorem 1 already
gives an efficient protocol for t = O(1). We separately consider the case of
n = 2t + O(1) and give an efficient protocol in this setting as well (when the
conditions of Theorem 1 are satisfied). The case of other regimes of t remains
open.

The following is our result for the malicious case:

Theorem 2. Two vertices A,B in G(V, E) can realize OT with statistical secu-
rity (with guaranteed output delivery) against an adversary structure Z in the
malicious static adversary setting if and only if the following conditions are sat-
isfied:

1. For every Z1,Z2 ∈ Z such that A,B /∈ Z1 ∪ Z2, there exists a path from A to
B that does not have any vertex from Z1 ∪ Z2.
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2. There do not exist ZA,ZB ,Z ∈ Z such that A ∈ ZA, B /∈ ZA, B ∈ ZB,
A /∈ ZB, A,B /∈ Z, and

ΓB(ZA ∪ Z) ∪ ΓA(ZB ∪ Z) = V.

Moreover, when these conditions are satisfied and |Z| = poly(n), there is an
efficient (poly(n) complexity) protocol to compute OT securely.

This characterization can be easily extended to 2-party functionalities with out-
put only at one party since standard results [27] allow reduction of such function-
alities to establishing OT between the parties. Unlike in the semi-honest case,
the availability of secure OT between every pair of parties does not directly
imply that any functionality may be computed securely in the malicious case.
Hence, we have a more modest implication in this case using standard results
in [11,20] and [25].

Corollary 2. Consider a graph G(V, E), a subset of vertices K ⊆ V and a mali-
cious adversary structure Z.

1. The vertices in K can statistically securely compute any functionality w.r.t.
Z only if every pair of vertices in K satisfies the conditions in Theorem2.

2. The vertices in K can statistically securely compute any functionality with
abort and no fairness w.r.t. Z if every pair of vertices in K satisfies the
conditions in Theorem2.

Please refer to the full version [33] for a proof. When G is complete and K = V,
we indeed recover the Q3 condition of Hirt and Maurer [24]. Note that, for this
case, [24] shows that Q3 condition is sufficient to achieve perfect security.

1.2 Technical Overview

We now give a quick overview of the technical details of our results.

Necessity of Conditions: Semi-honest Case. The first condition in Theo-
rem 1 is simply the necessary (and sufficient) condition for SMT between A and
B in the semi-honest setting. To show the necessity of the second condition, we
observe that security w.r.t. the adversary structure {ZA,ZB} implies security
w.r.t. {ΓB(ZA), ΓA(ZB)}, i.e., we may throw into ZA those vertices which it
blocks from reaching B, and, similarly, for ZB and A. Our condition simply says
that this should not be a Q2 adversary structure [24].

Sufficiency of Conditions: Semi-honest Case. To show the sufficiency of
these conditions, we first observe (Lemma 1) that if one could find a vertex C
which cannot be blocked from an honest A or B, then C can provide A and B
with precomputed OT through SMT channels. But, in general, the conditions in
Theorem 1 do not guarantee that such a C exists. Our approach is to find a set
of such C’s such that a majority of them will work against each member of the
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adversary structure. This will allow us to employ the idea of OT combiner [22,
23,32,39] to obtain one protocol which is secure w.r.t. the adversary structure.
The bulk of our proof is in showing that there is a set of such C’s. In fact, we
do this for a special class of adversary structures (Lemma 3) – those with only
one member which contains A (B, respectively). We show that, in this case,
the vertices C of interest are precisely those that are not blocked from B (A,
respectively) the unique member of the adversary structure which contains A (B,
respectively). We then obtain a protocol for OT in the general case by employing
the idea of OT combiner again, this time on the protocols constructed for the
special class of adversary structures above.

Efficiency of t-privacy. Our protocol has complexity which is polynomial in
the size of the graph and the size of the adversary structure. So, it is efficient
for t-privacy when t = O(1). We also give a t-private protocol which is efficient
when n = 2t+O(1). For this, we first consider adversary structures where all the
members which contain A (B, respectively) block the same set of vertices. We
show that for such an adversary structure, using OT combiner, we may construct
an efficient protocol for OT. We show that, similar to the construction in the
general case, we may combine these protocols to get a t-private OT protocol.
If n = 2t + O(1), the number of such adversary structures is polynomial in n,
thereby making the combiner efficient.

Necessity of Conditions: Malicious Case. The first condition of Theorem2
is just the necessary (and sufficient) condition for SMT between A and B in the
malicious setting. We show the necessity of the second condition by reducing
the problem to the case of an OT in a specific graph and showing that such an
OT cannot be computed securely in that graph using arguments similar to the
proof of impossibility of Byzantine agreement by Fischer et al. in [15]. For ease
of exposition, in Sect. 3, we consider a special case (the general case is proved
in the full version [33] along similar lines), which we reduce to the case of the
graph HOT in Fig. 2 (Lemma 6). To show that A and B cannot compute OT in
HOT securely w.r.t. the malicious adversary structure {{C}, {A,D}, {B,D}}, we

C
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E F

Fig. 2. HOT: OT between A and B is not pos-
sible with security against the malicious adver-
sary structure {{C}, {A, D} and {B, D}}.
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Fig. 3. SOT: constructed by inter-
connecting two copies of HOT.
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interconnect two copies of HOT (see Fig. 3) and consider (a pair of) executions
of a purported OT protocol to argue that this would give a secure two-party OT
protocol in the semi-honest setting (Lemma 5).

Sufficiency of Conditions: Malicious Case. To show the sufficiency of these
conditions, we proceed along the lines of the semi-honest case. But here, we
construct a separate OT protocol corresponding to each set in the adversary
structure which does not contain either A or B. The parties in this set do not
participate in the protocol thereby ensuring that it is perfectly secure against
their corruption. However, the corruption of any other set in the adversary struc-
ture may force this protocol to abort. But, if the protocol does not abort, it is
guaranteed to compute OT with statistical security w.r.t Z. Our final protocol
iterates over every protocol of this kind. If the OT is computed in any iteration,
it is guaranteed to be statistically secure. If every iteration is aborted, either A
or B is corrupt, in which case, a honest B may output a random bit.

1.3 Related Work

Secure multiparty computation in complete networks is addressed in a large body
of literature. Ben-Or, Goldwasser, and Wigderson [4] and Chaum, Crépeau, and
Damg̊ard [9] showed that every function can be computed with perfect infor-
mation theoretic security against a semi-honest adversary whenever there is an
honest majority; and against a malicious adversary if more than two-third of
the parties are honest. Hirt and Maurer [24] extended these results and char-
acterized adversary structures, in both semi-honest and malicious settings, that
allow perfectly secure computation. Keeping these results in view, our problem
formulation is a natural one. However, to the best of our knowledge, there is no
prior work on the characterization problem we address even in restricted settings
of graph topologies other than the complete graph. We list below the works in
the literature that come closest to our problem.

Franklin and Yung [16] studied private message exchange in incomplete net-
works of hypergraph communication channels with the goal of performing secure
computation over such networks. Jakoby, Lískiewicz, and Reischuk [26] studied
the trade-off between connectivity and randomness required for private compu-
tation. Bläser et al. [6] characterized Boolean functions which can be computed
with 1-privacy in non-2-connected networks. Beimel [3] studied the case of gen-
eral functions in the same setting. Garay and Ostrovsky [17] introduced the
notion of almost-everywhere secure computation where, in an incomplete net-
work of potentially small degree, secure computation is accomplished by all but a
small number of honest parties. Improvements on the results in [17] were reported
by Chandran, Garay, and Ostrovsky in [8]. They also studied the case of edge cor-
ruptions in [7]. For non-2-connected networks, Bläser et al. [5] studied protocols
that provide a relaxed notion of privacy for functions that cannot be privately
computed in an incomplete network. Harnik, Ishai, and Kushilevitz [22] and
Kumaresan, Raghuraman, and Sealfon [29] characterized incomplete networks
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of OT channels which, when used along with a complete pairwise communica-
tion network, allow t-secure computation. Halevi et al. [21] studied notions of
security in multiparty computation with restricted interaction patterns.

Privacy and reliability of communication over incomplete networks has been
extensively studied. The problems of reliable and private message transmission
have been studied for threshold adversary structures [1,12,13,30,34–37] and for
arbitrary adversary structures [28]. The problem of Byzantine agreement was
studied in [12,14,15,31,38].

2 Semi-honest Case

In this section we prove Theorem 1. We start with some notation and definitions
which will be used throughout the sequel. We define the following subclasses of
an adversary structure Z.

ZA := {Z ∈ Z | A ∈ Z},
ZB := {Z ∈ Z | B ∈ Z},

Z¬A¬B := {Z ∈ Z | A,B �∈ Z}.

Clearly if Z ∈ ZA∪ZB , then it cannot be in Z¬A¬B by definition. If Z ∈ ZA∩ZB ,
then A,B ∈ Z, but any protocol is trivially secure against the corruption of
such a set since only A and B have inputs and outputs. Hence, without loss
of generality, we consider only adversary structures Z that do not contain such
sets. Thus, ZA,ZB , and Z¬A¬B form a partition of Z.

Definition 1. Given a pair of vertices u, v ∈ V in an undirected graph G(V, E),
a path from u to v is a sequence of distinct vertices such that u is the first vertex
and v is the last vertex and there is an edge between every pair of consecutive
vertices. The length-one sequence u is a path from u to u.

Definition 2. Given a vertex u ∈ V and a subset of vertices Z ⊆ V, we define
u-blocked vertices of Z as the set of vertices whose every path to u includes
some vertex in Z. We denote this set by Γu(Z).

Γu(Z) := {v ∈ V | every path from v to u has a vertex from Z}.

2.1 Necessity of Conditions

Necessity of the First Condition. Secure OT can be used for secure commu-
nication, i.e., secure message transmission (SMT). So a necessary condition for
SMT is also a necessary condition for OT. SMT between A and B is possible (if
and) only if for every Z ∈ Z¬A¬B there is a path from A to B that has no vertex
from Z [13]. Hence, OT between A and B with security w.r.t. Z is possible only
if the first condition in Theorem1 is satisfied.
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Necessity of the Second Condition. We show that if the second condition
in Theorem 1 is not satisfied, a protocol that can realize OT between A and
B would imply a 2-party OT protocol. The necessity then follows from the
impossibility of 2-party OT. Suppose the second condition is not satisfied, then
there are ZA ∈ ZA and ZB ∈ ZB such that ΓB(ZA) ∪ ΓA(ZB) = V. Let Π be
an OT protocol that is secure against the corruption of ZA and ZB .

Claim 1. Π is secure against the corruption of ΓB(ZA) and of ΓA(ZB).

Proof. We prove that Π is secure against the corruption of ΓB(ZA), the other
case can be proved in a similar manner. Let u be a vertex in ΓB(ZA) \ ZA and
v be any vertex outside ΓB(ZA). By the definition of B-blocked vertices of ZA

(i.e., ΓB(ZA)), every path from u to B has a vertex from ZA and v has a path
to B that has no vertex from ZA. Hence, every path from u to v must have a
vertex from ZA. Also, no vertex in ΓB(ZA) \ ZA has inputs since A ∈ ZA and
B /∈ ΓB(ZA). Hence we may conclude that the vertices in ΓB(ZA) \ ZA do not
have inputs or outputs and are separated from V \ΓB(ZA) by ZA. Consequently,
the view of ΓB(ZA)\ZA may be simulated by ZA. Since Π is secure against the
corruption of ZA, it must also be secure against the corruption of ΓB(ZA). 	

Now consider three parties P1,P2, and P3. Let P3 simulate vertices in the set
Z := ΓB(ZA) ∩ ΓA(ZB) and P1 and P2 simulate ΓB(ZA) \ Z and ΓA(ZB) \
Z respectively. By Claim 1, there is a 3-party protocol Π3 that computes OT
between P1 and P2 that is secure against the corruption of {P1,P3} and that
of {P2,P3}. Since P3 does not have any input, Π3 is also secure against the
corruption of {P1} (and {P2}); see [22, Lemma 2]. From Π3 we can get a 2-
party OT protocol Π2 by letting one party simulate P1 and the other party
simulate {P2,P3} (see [22, Sect. 3.2]), yielding a contradiction.

2.2 Sufficiency of Conditions

Next, we construct a protocol Πsh for OT between A and B that is secure w.r.t.
an adversary structure Z if the conditions in Theorem1 are met. If the size of
Z is polynomial in n, the Πsh constructed is efficient. We first consider a few
special cases that will lead us up to the general case.

For the complete graph on 3 vertices A,B,C, 1-secure OT between A and
B can be realized as follows: Vertex C samples a precomputed OT uniformly
at random and sends it privately to A and B, who use this to securely realize
OT [2]. i.e., C samples independent, uniform bits r0, r1, c and then sends (r0, r1)
to A and (c, rc) to B privately. B sends to A the sum u := b ⊕ c of its input b
with c, where ⊕ denotes addition in the binary field. Let (x0, x1) be the input
to A, then A replies with (y0, y1) := (x0 ⊕ ru, x1 ⊕ r1⊕u). B reconstructs xb as
yb ⊕ rc.

We first generalize the above protocol to networks and adversary structures
where we can find a node C which can not be corrupted together with A or B,
and such that it can communicate to A with privacy against ZB and to B with
privacy against ZA.
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Lemma 1. Consider G(V, E) with vertices A,B ∈ V and a semi-honest adver-
sary structure Z that satisfy the conditions in Theorem1. Suppose there exists a
vertex C such that

(i) ∀ZA ∈ ZA, C /∈ ΓB(ZA), and
(ii) ∀ZB ∈ ZB , C /∈ ΓA(ZB).

Then, there is an efficient protocol ΠC for securely computing OT between A
and B.

The protocol ΠC involves C sending precomputed OT to A and B using SMT. A
and B use it to carry out OT by using the standard protocol from [2] mentioned
above. In carrying out the OT, A and B communicate with each other using
SMT; something which the first condition of Theorem 1 guarantees is possible.
The conditions in the lemma ensure that if C is corrupt, A and B must be honest
and, since they carry out OT over SMT, they have privacy. If A is corrupt, the
conditions in the lemma guarantee that both C and B are honest, and have a
path of honest vertices between them ensuring the privacy of SMT from C to B
used to deliver the precomputed OT. The privacy of B’s input then follows. A
similar argument can be made for the case when B is corrupt. The full proof,
which includes a formal description of ΠC , is deferred to the full version [33].
Note that A is a valid candidate for the choice of C in Lemma 1 if (and only if)
ZA is empty, i.e., A is honest. Similarly, B is a valid choice if and only if ZB is
empty, i.e., B is honest. The protocols, ΠA and ΠB , for these cases will play a
role in the sequel.

In general, the conditions in Theorem1 do not imply the existence of a vertex
C that satisfies the conditions in Lemma 1. Our approach is to next consider
several protocols of the kind used in the proof of this lemma, each corresponding
to a potentially different choice of C. In general, no such protocol on its own
may be secure against the corruption of each set in Z. We invoke the idea of OT
combiner [22,23,32,39] to obtain one protocol which is secure w.r.t. Z. An OT
combiner is a compiler of OT protocols which produces one OT protocol which
is secure w.r.t. Z by ‘combining’ many OT protocols, none of which is secure
against the corruption of every set in Z.

Lemma 2 [22,23,32,39]
Let Π1, . . . , Πm be m protocols for OT between A and B, such that against

the passive corruption of every Z ∈ Z, a majority of Π1, . . . , Πm is secure. Then,
there exists a protocol Combiner(Π1, . . . , Πm) for OT between A and B which is
secure w.r.t. the semi-honest adversary structure Z. Moreover, this protocol is
efficient if m is polynomial in n, and Πi is efficient for each i ∈ [m].

We proceed in two steps. We first consider adversary structures Z such that ZA

(or ZB) is a singleton set. Specifically, we first prove our result for adversary
structure Z = {ZA} ∪ZB ∪Z¬A¬B where ZA is such that A ∈ ZA; similarly, we
consider Z = {ZB}∪ZA ∪Z¬A¬B, where ZB is such that B ∈ ZB . We will later
use this to prove our general result.
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Lemma 3. Consider G(V, E) with vertices A,B ∈ V and a semi-honest adver-
sary structure Z = {ZA}∪ZB∪Z¬A¬B, where A ∈ ZA, (Z = {ZB}∪ZA∪Z¬A¬B,
B ∈ ZB, respectively) that satisfy the conditions in Theorem1. There is an
efficient protocol ΠZA (ΠZB , respectively) that securely realizes OT between A
and B.

Before we present the construction of the protocols, we make the following claims.

Claim 2. For every C /∈ ΓB(ZA), the protocol ΠC is secure w.r.t. {ZA}∪Z¬A¬B .

Proof. If C /∈ ΓB(ZA), then C satisfies both the conditions in Lemma 1 for the
adversary structure {ZA} ∪ Z¬A¬B. This proves the claim. 	

Claim 3. Let Z ′

B ∈ ZB , then there exists C /∈ ΓB(ZA) ∪ ΓA(Z ′
B). The protocol

ΠC is secure w.r.t. {ZA} ∪ Z¬A¬B ∪ {Z ′
B}.

Proof. If there exists a C /∈ ΓB(ZA) ∪ ΓA(Z ′
B), then C satisfies both the condi-

tions in Lemma 1 for the adversary structure {ZA} ∪Z¬A¬B ∪ {Z ′
B} and second

part of the claim follows. Such a C must exist, since ΓB(ZA) ∪ ΓA(Z ′
B) �= V by

the second condition in Theorem 1. 	

Similar claims can be made regarding the adversary structure {ZB} ∪ ZA ∪

Z¬A¬B, and the proof for these claims are similar.
Claims 2 and 3 directly imply the following observations. For ZA ∈ ZA, let

V \ ΓB(ZA) = {C1, . . . , CkA}. Note that V \ ΓB(ZA) is non-empty since B /∈
ΓB(ZA). Then, by Claim 2, ΠCi

is secure w.r.t. {ZA} ∪ Z¬A¬B for all i ∈ [kA].
By Claim 3, for each Z ′

B ∈ ZB, there exists i ∈ [kA] such that ΠCi

is secure w.r.t.
{ZA}∪Z¬A¬B ∪{Z ′

B}. Similarly, for ZB ∈ ZB , let V \ΓA(ZB) = {C1, . . . , CkB}.
Then ΠCi

is secure w.r.t. {ZB} ∪ Z¬A¬B for all i ∈ [kB ]. For each, Z ′
A ∈ ZA

there exists i ∈ [kB ] such that ΠCi

is secure w.r.t. {Z ′
A} ∪ Z¬A¬B ∪ {ZB}.

Proof (Proof of Lemma 3)
Consider a collection of protocols Π1, . . . Π2kA−1, where Πi := ΠCi

for i ∈
[kA] and Πi := ΠA for i = kA + 1, . . . , 2kA − 1. We construct the protocol
ΠZA as Combiner(Π1, . . . , Π2kA−1). Since Π1, . . . Π2kA−1 are protocols for OT
between A and B, this is a valid combiner. As we argued above, Π1, . . . , ΠkA

(= ΠC1
, . . . , ΠCkA ) are secure w.r.t. {ZA} ∪ Z¬A¬B. Hence a majority of the

protocols (kA out of 2kA − 1 protocols) used in the combiner is secure w.r.t.
{ZA} ∪ Z¬A¬B. The security of ΠZA w.r.t. {ZA} ∪ Z¬A¬B now follows from
Lemma 2. Consider the corruption of any Z ′

B ∈ ZB . Since A is honest (i.e.,
A /∈ Z ′

B), the kA − 1 copies of ΠA used in the combiner are secure against the
corruption of Z ′

B . As we previously observed, for each Z ′
B ∈ ZB , at least one

of the protocols Π1, . . . , ΠkA
is secure against the corruption of Z ′

B . Hence, at
least kA protocols used in the combiner are secure against the corruption of each
Z ′

B ∈ ZB . From Lemma 2, it follows that ΠZA is secure w.r.t. ZB and hence
against {ZA} ∪ Z¬A¬B ∪ ZB . Observe that ΠZA is a combiner of 2kA − 1 < 2n
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protocols of the kind ΠC . Since, by Lemma 1, each of these protocols is efficient,
ΠZA is efficient according to Lemma 2.

Similarly, the protocol ΠZB := Combiner(Π1, . . . Π2kB−1), where Πi := ΠCi

for i ∈ [kB ] and Πi := ΠB for i = kB + 1, . . . , 2kB − 1 will efficiently realize OT
between A and B with security w.r.t. {ZB} ∪ Z¬A¬B ∪ ZA. 	


We are finally ready to prove Theorem 1. The idea is to combine protocols
of the kind ΠZA ,ZA ∈ ZA and ΠZB ,ZB ∈ ZB in a way such that a majority of
these protocols is secure against the corruption of every set of vertices in Z.

Proof (Proof of Theorem 1). If the adversary structure Z is such that ZA (ZB),
respectively) is empty then, we have already seen that ΠA (ΠB , respectively)
is secure w.r.t. Z. So, let ZA = {Z1

A, . . . ,Z�A
A } and ZB = {Z1

B , . . . ,Z�B
B }. We

consider the following pairs of protocols.

(Π1,1,Π1,2), . . . , (Π�A,1,Π�A,2), (Π�A+1,1,Π�A+1,2), . . . , (Π�A+�B ,1,Π�A+�B ,2),

where

(Πi,1,Πi,2) := (ΠZi
A ,ΠB), for 1 ≤ i ≤ �A, (1)

(Π�A+i,1,Π�A+i,2) := (ΠZi
B ,ΠA), for 1 ≤ i ≤ �B . (2)

Let Πsh := Combiner((Π1,1,Π1,2) . . . , (Π�A+�B ,1,Π�A+�B ,2)). All the protocols
used in the combiner realize OT between A and B, hence the combiner is valid.
For all ZA ∈ ZA and ZB ∈ ZB , ΠZA and ΠZB are secure w.r.t. Z¬A¬B by
Lemma 3. ΠA and ΠB are also secure w.r.t. Z¬A¬B. Therefore, by Lemma 2,
Πsh is secure w.r.t. Z¬A¬B. The essential idea for the proof of security of Πsh

w.r.t. ZA ∪ ZB is the fact that for each Z ∈ ZA ∪ ZB , both protocols in the
pair corresponding to Z are secure against the corruption of Z and at least one
protocol from every other pair is also secure against the corruption of Z. Hence,
a majority of protocols used in the combiner is secure against the corruption of
Z.

Formally, let Zj
A be any set in ZA. Note that (Πj,1,Πj,2) = (ΠZj

A ,ΠB). By
Lemma 3, ΠZj

A is secure against the corruption of Zj
A. Also, ΠB is secure against

the corruption of Zj
A since B /∈ Zj

A. Hence, the pair of protocols (Πj,1,Πj,2) is
secure against the corruption of Zj

A. Among the other pairs, for 1 ≤ i ≤ �A,
the protocols Πi,2 are copies of ΠB and hence, secure against the corruption
of Zj

A. For the remaining pairs, note that Π�A+i,1 = ΠZi
B , 1 ≤ i ≤ �B are also

secure against the corruption of Zj
A by Lemma 3. Thus, at least �A + �B + 1

protocols (among 2(�A + �B)) protocols used in the combiner are secure against
the corruption of Zj

A. Hence, by Lemma 2, Πsh is secure against the corruption
of this set. This proves that the protocol Πsh is secure w.r.t. ZA. The proof of
security against ZB is similar.

If the size of ZA ∪ ZB is polynomial in n, Πsh is a combiner of poly(n)
protocols, each of which is efficient by Lemma 3. Hence, in this case Πsh is
efficient by Lemma 2. 	
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2.3 Efficiency of t-privacy

A protocol is said to be t-private if it is secure w.r.t. the semi-honest adversary
structure Z

t := {Z ⊆ V : |Z| ≤ t}. Without loss of generality, we restrict our
attention to t < n/2 since OT cannot be computed with n/2�-privacy even in
a complete graph [4,9]. We have the following result:

Theorem 3. Given a communication graph G(V, E), vertices A,B ∈ V can
compute OT with perfect t-privacy if and only if the following conditions are
satisfied:

1. There exists an edge or at least t + 1 vertex disjoint paths between A and B.
2. There do not exist ZA,ZB ⊂ V of size at most t such that A ∈ ZA, B /∈

ZA, A /∈ ZB , B ∈ ZB , and ΓB(ZA) ∪ ΓA(ZB) = V.

Moreover, this can be performed using an efficient protocol if t = O(1) or n =
2t + O(1).

The conditions 1 and 2 above are just restatements of the conditions in The-
orem 1 for Z

t. The efficiency when t = O(1) follows from Theorem 1 as the size
of the adversary structure in this case is poly(n). It only remains to construct an
efficient t-private OT protocol for the case of n = 2t + O(1). As in Sect. 2.2, we
first consider certain specific adversary structures and construct efficient proto-
cols for these. We will then use these protocols to construct protocols for the
general case. For a set S ⊆ V, let

Z
t
A(S) := {ZA ∈ Z

t
A | ΓB(ZA) \ ZA = S}, where Z

t
A := {ZA ∈ Z

t | A ∈ ZA},

Z
t
B(S) := {ZB ∈ Z

t
B | ΓA(ZB) \ ZB = S}, where Z

t
B := {ZB ∈ Z

t | B ∈ ZB}.

To interpret this, Zt
A(S) are sets containing A and of size at most t (i.e., they

can be corrupted) such that the set of additional vertices they block off from
reaching B is precisely S. Loosely, S is the “shadow” of sets in Z

t
A(S). Now we

define the collections of such “shadow” sets.

S
t
A := {S ⊆ V | Zt

A(S) �= ∅}, and S
t
B := {S ⊆ V | Zt

B(S) �= ∅}.
It is clear that Z

t
A = ∪SA∈StA

Z
t
A(SA) and Z

t
B = ∪SB∈StB

Z
t
B(SB).

Claim 4. Let k = n−2t. |SA| < k for all SA ∈ S
t
A, and |SB | < k for all SB ∈ S

t
B .

Sizes of St
A and S

t
B are O(nk).

Proof. Let SA ∈ S
t
A. Then, there exists ZA ∈ Z

t
A such that ΓB(ZA) \ ZA = SA,

so clearly B /∈ SA. Suppose |SA| ≥ k.
If |V \ (SA ∪ {B})| < t, the size of V \ SA is at most t. Since SA ⊆ ΓB(ZA),

V \ ΓB(ZA) is of size at most t with B as an element. Hence, V \ ΓB(ZA) ∈ Z
t
B ;

call this set ZB . Then ΓB(ZA)∪ΓA(ZB) = V which violates the second condition
in Theorem 1.

Therefore, |V \ (SA ∪{B})| ≥ t. This implies that there is Z ′
A ⊆ V \SA ∪ {B}

of size t such that ZA ⊆ Z ′
A. Since, ΓB(Z ′

A) ⊇ SA ∪ Z ′
A, size of ΓB(Z ′

A) is at
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least t + k. But then, |V \ ΓB(Z ′
A)| ≤ n − (t + k) = t and B is a member of this

set. Hence V \ ΓB(Z ′
A) ∈ Z

t
B ; call this set ZB . Then ΓA(ZB) ∪ ΓB(Z ′

A) = V, a
contradiction. Thus, |SA| < k for all SA ∈ S

t
A. Further, this implies that |St

A| is
O(nk). The proof for sizes of SB ∈ S

t
B and S

t
B is similar. 	


We next construct efficient protocols for OT between A and B that are secure
w.r.t. adversary structures of the kind Z

t
A(SA) ∪ Z

t
B ∪ Z

t
¬A¬B, where SA ∈ S

t
A,

and adversary structures of the kind Z
t
A ∪ Z

t
B(SB) ∪ Z

t
¬A¬B, where SB ∈ S

t
B.

Then, we use a combiner of these protocols to construct an efficient protocol
Π ′

sh that is secure w.r.t. Zt. The efficiency of Π ′
sh will follow from Claim 4 which

shows that the sizes of the adversary structures SA and SB are of the order nk.

Lemma 4. For every SA ∈ S
t
A (SB ∈ S

t
B, respectively) there is an efficient

protocol ΠSA (ΠSB , respectively) that realizes OT between A and B with security
w.r.t. a semi-honest adversary structure Z = Z

t
A(SA) ∪ ZB ∪ Z¬A¬B, (Z =

Z
t
B(SB)∪ZA ∪Z¬A¬B, respectively) if the conditions in Theorem3 are satisfied.

Proof. Refer to the full version [33] for the proof. 	

Proof. (Proof of Theorem 3). The construction of Π ′

sh is similar to that of Πsh in
the proof of Theorem 1. Let S

t
A = {S1

A, . . . ,S�A
A } and S

t
B = {S1

B , . . . ,S�B
B }. We

construct Π ′
sh as

Π ′
sh := Combiner((Π1,1,Π1,2), . . . , (Π�A+�B ,1,Π�A+�B ,2)),

where (Πi,1,Πi,2) := (ΠSi
A ,ΠB), for 1 ≤ i ≤ �A, and

(Πi,1,Πi,2) := (ΠSi
B ,ΠB), for �A + 1 ≤ i ≤ �A + �B .

From Lemma 4 and the properties of ΠA,ΠB , it is easy to see that against
the corruption of every Z ∈ Z

t, a majority of the protocols in the combiner are
secure. A pair of efficient protocols are contributed by every S ∈ S

t
A ∪ S

t
B to the

combiner, but as we previously observed, the size of St
A ∪ S

t
B is of the order nk.

Hence the combiner is efficient, this proves that Π ′
sh is efficient. 	


3 Malicious Case

In this section, we characterize graphs in which a given pair of vertices may
realize OT with statistical security w.r.t. an adversary structure Z in the static
malicious setting.

3.1 Necessity of Conditions

Necessity of the First Condition. If A and B can compute OT with sta-
tistical security, then they can communicate with non-trivial (greater than 1/2)
probability of success. Necessity of the condition follows from the fact that in
a graph, if A and B are disconnected by removing two vertices C and D from
the graph, then A and B cannot communicate with non-trivial probability of
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success w.r.t the adversary structure {{C}, {D}} in the malicious setting [15].
Note that although the proof in [15] is for communication with zero-error, it also
works for communication with non-trivial probability of success. A proof of the
necessity of this condition is included in the full version [33].

Necessity of the Second Condition. We show that in a graph G, it is
impossible to realize OT between two of its vertices A and B with statistical
security w.r.t. the adversary structure Z if the second condition is not satisfied,
i.e., there exists ZA ∈ ZA,ZB ∈ ZB , and Z ∈ Z¬A¬B such that

ΓB(ZA ∪ Z) ∪ ΓA(ZB ∪ Z) = V. (3)

For the ease of exposition, we provide a proof for a special case where the fol-
lowing additional conditions hold for the sets ZA,ZB and Z satisfying (3).1

(ΓB(ZA ∪ Z) \ (ZA ∪ Z)) ∩ ΓA(ZB ∪ Z) = ∅, (4)
(ΓA(ZB ∪ Z) \ (ZB ∪ Z)) ∩ ΓB(ZA ∪ Z) = ∅. (5)

Please refer to the full version [33] for a proof of the general case. The proof
technique is identical, but uses a more elaborate construction (Fig. 10).

The proof proceeds in two steps: First we show the impossibility of OT
between A and B in the graph HOT of Fig. 4 with security w.r.t. a certain adver-
sary structure (Lemma 5), then we use this observation to prove the necessity
of the second condition in Theorem2 for the special case through a reduction
argument (Lemma 6).

Lemma 5. In HOT(VHOT
, EHOT

) (Fig. 4), it is impossible to realize OT between
A and B with statistical security w.r.t. the malicious adversary structure
{{C}, {A,D}, {B,D}}.
Proof. The proof uses ideas from the proof for impossibility of Byzantine agree-
ment by Fischer et al. in [15]. We first consider the case of perfect security for
clarity and later argue the case of statistical security. We will show that a proto-
col for OT between A and B with perfect security w.r.t. the malicious adversary
structure {{C}, {A,D}, {B,D}} would imply a secure 2-party OT protocol for
the semi-honest case. The impossibility will then follow from the impossibility of
secure 2-party semi-honest OT. To prove a contradiction, let Π be a protocol that
realizes OT between A and B with perfect security w.r.t. {{C}, {A,D}, {B,D}}.
Similar to the construction used in [15], we construct a graph SOT(VSOT

, ESOT
)

by interconnecting two copies of HOT as shown in Fig. 5. Consider the map
φ : VSOT

→ VHOT
such that φ(vi) = v, i = 0, 1, i.e., φ(A0) = φ(A1) = A,

φ(B0) = φ(B1) = B and so on. Then SOT looks locally like HOT. For example,
A0 has edges to B0,D0, E0 and C1 in SOT, whereas in HOT, φ(A0) has edges to
φ(B0), φ(D0), φ(E0), and φ(C1). Let each vertex v in SOT run the instruction

1 ΓB(ZA ∪ Z) \ (ZA ∪ Z) is the set of vertices outside ZA ∪ Z that have no paths to
B except through vertices in ZA ∪ Z, similarly for ΓB(ZA ∪ Z) \ (ZA ∪ Z).
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C
(Z)

A
(Z ′

A)
B

(Z ′
B)

D
(ZAB)

E
(SA)

F
(SB)

Fig. 4. HOT(VHOT , EHOT): OT between A and
B with security w.r.t. malicious adversary
structure {{C}, {A, D}, {B, D}} is impossible
(Lemma 5). The sets shown inside brackets cor-
respond to the vertex identification used in the
proof of Lemma 6.

C0

B0 A1

D0

F0 E1

C1

A0 B1

D1

E0 F1

Fig. 5. SOT(VSOT
,ESOT

): Con-
structed by interconnecting two
copies of HOT. We analyze the
scenario where vi, i = 0, 1 in SOT

execute the instructions for v in
HOT for protocol Π faithfully.

for φ(v) in the protocol Π. We fix the input to A1 as (0, 0) and input to B1 as 0
and let the input to A0 be (X0,X1) and that to B0 be Q, where X0,X1, Q are
independent uniformly random bits. We call this the execution of a protocol Π ′

in SOT. Clearly Π ′ is not the same as Π (Π is defined for 6 parties), but it is
easy to see that this execution is well-defined.

Claim 5. The output at B0 is XQ.

Proof. In Fig. 6, it can be verified none of the vertices in the yellow region has
any inputs or outputs in the protocol (inputs of A1, B1 have been fixed) and that
all the edges that enter the yellow region (edges in red) are incident on either
C0 or C1. Hence, all the vertices in the yellow region may be thought of as being
simulated by a malicious C. The execution of Π ′ in SOT can be interpreted as
an execution of Π among honest vertices A0, B0,D0, E0, F0, and a corrupted set
{C} as shown in Fig. 6. Π is assumed to be secure against the corruption of C,
therefore A0, B0,D0, E0, F0 halt and realize OT between A0 and B0; hence B0

outputs XQ. This proves the claim. 	


Claim 6. Let A{A,D} := {A0, A1,D0,D1, B1, C1, F1, E0}, the vertices in the blue
region of Fig. 7. Then Q is independent of the view of A{A,D}.

Proof. In Fig. 7, the only vertex in the blue region with input or output to the
protocol Π ′ is A0. Also, A0,D0, A1,D1 are the only vertices to which there are
edges (red edges in the figure) from the vertices outside the blue region. Hence,
the execution of Π ′ in SOT can also be interpreted as an execution of Π by honest
B0, C0, E1, F0, and a corrupted set {A,D} that simulates A{A,D} (the vertices
in the blue region) and communicates with the honest vertices accordingly. Since
Π is secure against the corruption of {A,D}, the input Q of B0 is independent
of the view of {A,D}. Hence Q is independent of the view of A{A,D}. 	
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Fig. 6. We may visualize the execution
of Π ′ as vertices A0, B0, D0, E0, F0 fol-
lowing Π honestly and the corrupted
set {C} simulating all the vertices in
the yellow region. Since Π is secure
against the corruption of {C}, A0 and
B0 must have computed OT correctly.

Fig. 7. We may also visualize the execu-
tion of Π ′ as vertices B0, C0, F0, E1 fol-
lowing Π honestly and the corrupted set
{A, D} simulating all the vertices in the
blue region. Since Π is secure against
the corruption of {A, D}, view of all ver-
tices in the blue region is independent of
B0’s input. (Color figure online)

Claim 7. Let A{B,D} := {B0, B1,D0,D1, A1, C0, E1, F0}, the vertices in the yel-
low region of Fig. 8. X0,X1 is independent of the view of A{B,D} conditioned on
Q,XQ.

Proof. Similar to the previous claims, as shown in Fig. 8, the execution of Π ′ in
SOT can also be interpreted as an execution of Π by honest parties A0, E0, C1, F1

and a corrupted set {B,D} simulates the vertices in the yellow region (A{B,D})
and communicates with the honest vertices accordingly. Notice that the view of
this set contains the input Q and output XQ of B0. Since Π is secure against
the corruption of {B,D}, the input (X0,X1) of A0 is independent of the view
of {B,D} conditioned on its input and output. Hence (X0,X1) is independent
of the view of A{B,D} conditioned on Q,XQ. 	


We show that Claims 5, 6, and 7 lead to a contradiction. To see this, let parties
P1 and P2 simulate the vertices in the blue region (AP1) and yellow region (AP2)
respectively in Fig. 9. Let them execute Π ′ faithfully with P1 setting the input
to the simulated A0 as X0,X1 and that to the simulated B1 as 0, and P2 setting
the input to the simulated B0 as Q and that to the simulated A1 as (0, 0). Then,

(i) The output at B0 is XQ.
(ii) Q is independent of the view of AP1 .
(iii) X0,X1 is independent of the view of AP2 conditioned on Q,XQ.

Here (i) follows from Claim 5. Claim 6 implies (ii) since the vertices AP1 (the
blue region in Fig. 9) is contained in A{A,D} (the blue region in Fig. 7) and the
only vertex in A{A,D} with input or output is A0. Similarly, Claim 7 implies (iii)
because AP2 (the blue region in Fig. 9) is contained in A{B,D} (the blue region in
Fig. 8) and the only vertex in A{B,D} with input or output in A{B,D} is B0. But,
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Fig. 8. We may visualize the execution of
Π ′ as vertices A0, C1, E0, F1 following Π
honestly and the corrupted set {B, D} sim-
ulating all the vertices in the yellow region.
Since Π is secure against the corruption of
{B, D}, the view of vertices in the yellow
region must be conditionally independent
of A0’s input conditioned on B0’s input
and output. (Color figure online)

Fig. 9. P1 and P2 simulate the vertices in
the blue and yellow regions respectively
and run Π ′ faithfully by setting their
inputs as inputs to A0 and B0 respectively
to securely realize a 2-party OT, a contra-
diction. (Color figure online)

(i), (ii), and (iii) together imply that parties P1 and P2 can securely realize a
2-party OT in the semi-honest setting. Hence a protocol for OT between A and
B with perfect security w.r.t. the adversary structure {{C}, {A,D}, {B,D}}
in the graph HOT in the malicious setting implies a perfectly secure 2-party
OT protocol in the semi-honest setting. By the same line of reasoning, a pro-
tocol for statistically secure OT between A and B in the same setting would
imply a statistically secure 2-party OT protocol in the semi-honest setting.
The lemma now follows from the impossibility of statistically secure semi-honest
2-party OT. 	


Lemma 6 below shows that if ZA ∈ ZA,ZB ∈ ZB, and Z ∈ Z¬A¬B satisfy
conditions (3), (4), and (5), then any protocol for OT between A and B in G with
security w.r.t. Z may be simulated in HOT to realize OT between A and B with
security w.r.t. {{C}, {A,D}, {B,D}}. The necessity of the second condition in
Theorem 2 for the special case when (4) and (5) is satisfied will then follow from
Lemma 6.

Lemma 6. Let ZA ∈ ZA,ZB ∈ ZB, and Z ∈ Z¬A¬B be such that condi-
tions (3), (4), and (5) are satisfied. If OT between A and B in G(V, E) can
be computed with statistical security w.r.t. the malicious adversary structure
{ZA,ZB ,Z} then A and B in HOT(VHOT

, EHOT
) (Fig. 4) can realize OT with sta-

tistical security w.r.t. the malicious adversary structure {{C}, {A,D}, {B,D}}.
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Table 1. Partition of V. Here ΓA :=
ΓB(ZA ∪ Z) and ΓB := ΓA(ZB ∪ Z).

Set Definition

Z Z = ψ−1(C)

ZAB (ZA ∩ ZB) \ Z =ψ−1(D)

Z ′
A ZA \ (Z ∪ (ZA ∩ ZB)) =ψ−1(A)

Z ′
B ZB \ (Z ∪ (ZA ∩ ZB)) =ψ−1(B)

SA ΓA \ (ZA ∪ ZB ∪ Z) =ψ−1(E)

SB ΓB \ (ZA ∪ ZB ∪ Z) =ψ−1(F )

C

A BD E

B′ A′

F

I

Fig. 10. In the full version [33], we
show the necessity of the second con-
dition for the general case by showing
the impossibility of OT between A and
B in this graph with statistical security
w.r.t. the malicious adversary structure
{{C}, {A, A′, I}, {B, B′, I}}.

Proof. Consider the subsets of V defined in Table 1. We show the following:

(i) Z ′
A,Z ′

B ,Z,ZAB ,SA, and SB form a partition of V and A ∈ Z ′
A, B ∈ Z ′

B .
(ii) Let the map ψ : V → VHOT

be as given in Fig. 4, i.e., for v ∈ Z ′
A, ψ(v) = A

and so on. (i) implies that ψ is well-defined. For u, v ∈ V, edge {u, v} is in G
only if ψ(u) = ψ(v) or edge {ψ(u), ψ(v)} is present in HOT. In short, HOT

(or a subgraph of HOT) is obtained from G on applying vertex contraction
to every subset of V given in Table 1.

(iii) If Π realizes OT between A and B in G securely w.r.t. malicious adver-
sary structure {Z,ZA,ZB}, then it is also secure w.r.t. malicious adver-
sary structure {Z,Z ′

A ∪ ZAB ,Z ′
B ∪ ZAB} = {ψ−1({C}), ψ−1({A,D}),

ψ−1({B,D})}.

Assuming (i), (ii), and (iii), it is easy to see that the vertices in HOT can
simulate Π and realize OT between A and B with statistical security w.r.t. the
malicious adversary {{C}, {A,D}, {B,D}}. It remains to show (i), (ii), and (iii).

Proof of (i) – From their definitions, it can be easily verified that Z,ZAB ,Z ′
A,Z ′

B

are disjoint and that their union is Z ∪ ZA ∪ ZB . By definition of SA,SB , their
union is ΓB(ZA ∪Z)∪ΓA(ZB ∪Z)\(ZA ∪ ZB ∪ Z). By condition (3), this union
is equal to V\(Z∪ZA∪ZB). Finally, the fact that SA and SB are disjoint follows
from (4) since SA ⊆ ΓB(ZA ∪ Z) \ (ZA ∪ Z) and SB ⊆ ΓA(ZB ∪ Z).

Proof of (ii) – Note that the only edges missing in HOT are {F,A}, {F,E}
and {E,B}. We will now show that there is no edge between any vertex in
ψ−1(F ) = SB and any vertex in ψ−1(A) = Z ′

A or ψ−1(E) = SA. The fact
that there is no edge between any vertex in ψ−1(E) = SA and any vertex in
ψ−1(B) = Z ′

B follows similarly. Suppose there exists u ∈ SB and v ∈ Z ′
A ∪ SA

such that {u, v} is an edge in G. Since ZB ∪ Z ⊆ ΓA(ZB ∪ Z), we have



Oblivious Transfer in Incomplete Networks 407

ZA ∩ ΓA(ZB ∪ Z) = (ZA ∩ (ZB ∪ Z)) ∪ (ZA ∩ (ΓA(ZB ∪ Z) \ (ZB ∪ Z)))
= (ZA ∩ (ZB ∪ Z)) ∪ ∅ (by (5) since ZA ⊂ ΓB(ZA ∪ Z))
⊆ Z ∪ (ZA ∩ ZB)

=⇒ Z ′
A = ZA \ (Z ∪ (ZA ∩ ZB)) ⊆ V \ ΓA(ZB ∪ Z).

SA = ΓB(ZA ∪ Z) \ (Z ∪ ZA ∪ ZB) ⊆ ΓB(ZA ∪ Z) \ (ZA ∪ Z)
=⇒ SA ⊆ V \ ΓA(ZB ∪ Z), by (4).

Hence we have v ∈ Z ′
A ∪ SA ⊆ V \ ΓA(ZB ∪ Z) and u ∈ SB ⊆ ΓA(ZB ∪ Z) \

(ZB ∪ Z). Since v ∈ V \ ΓA(ZB ∪ Z), there is a path from v to A that does not
have any vertex from ZB ∪Z. Since edge {u, v} is present in G, u has a path via
v to A that does not contain any vertex from ZB ∪ Z (note that u /∈ ZB ∪ Z).
But u ∈ SB and hence u ∈ ΓA(ZB ∪ Z), a contradiction.

Proof of (iii) – A ∈ Z ′
A and B ∈ Z ′

B are the only vertices with input or output
in Π. Also, Z ′

A ∪ ZAB ⊆ ZA and Z ′
B ∪ ZAB ⊆ ZB . Hence, if Π is secure w.r.t.

{Z,ZA,ZB}, then it is also secure w.r.t. {Z,Z ′
A ∪ ZAB ,Z ′

B ∪ ZAB}. 	


General Case: The necessity of the second condition for the general case is
proved in a similar manner. We first show that it is impossible to realize OT
between A and B in the graph shown in Fig. 10 with statistical security w.r.t. the
malicious adversary structure {{C}, {A,A′, I}, {B,B′, I}}. This is shown using
an argument similar to the one used in Lemma5 on a graph constructed by
interconnecting three copies of this graph. Then we use this observation to prove
the necessity of the second condition in Theorem 2 for the general case through
a reduction argument. This proof is included in the full version [33].

3.2 Sufficiency of Conditions

In this section, we consider a graph G(V, E) with A,B ∈ V and a malicious
adversary structure Z that satisfies the conditions in Theorem 2 and construct a
protocol Πmal that realizes OT between A and B with statistical security w.r.t.
Z. First we comment on two protocols we use extensively in this section: for
realizing secure communication and for computing OT from sampled OT.

Realizing Perfectly Secure Communication: In the previous section, we saw that
the first condition in Theorem 2 is necessary for statistically correct communi-
cation. In [28], Kumar et al. showed that this condition is sufficient for perfectly
secure communication. We will use their protocol for realizing secure commu-
nication between A and B in all the protocols that follow. This protocol is
guaranteed to be efficient if the size of Z is polynomial in n. We note here that
their protocol can be shown to be composable.

OT Computation Using Sampled OT: A sampled OT or a precomputed OT
between A and B is a functionality that generates r0, r1, c independently and
uniformly at random and sends the ordered pair (r0, r1) to A and the ordered pair



408 V. Narayanan and V. M. Prabahakaran

(c, rc) to B. The following protocol describes a well known technique for realizing
OT between A with input (x0, x1) and B with input b using this sampled OT.
The OT computed by this protocol is statistically secure as long as the sampled
OT was computed with statistical security [2].

Protocol 4 (SampledOT → OT (A : (x0, x1; r0, r1), B : (b; c, rc))).2

1. B: Sends p := b ⊕ c to A securely.
2. A: Sends (y0, y1) := (x0 ⊕ rp, x1 ⊕ r1⊕p) securely.
3. B: Stores the messages it received as (y0, y1) and outputs yb ⊕ rc.

Overview of the Section: The protocol Πmal constructed in this section executes
many sub-protocols which in turn execute other sub-protocols. Figure 11 shows
the sub-protocols that are used in the construction of each of the protocols
described in the section. All the protocols that follow, except Π,ΠA, and ΠB

have the property that they either compute OT with statistical security or abort
depending on the malicious behavior of the adversary. A protocol is said to have
aborted if both A and B output ⊥ while guaranteeing perfect privacy of the
inputs of A and B.

Πpath(C,A),path(C,B)

ΠA, ΠB

ΠZA,Z , ΠZB ,Z

ΠA, ΠB

ΠZ Πmal

IterationCombinerCombiner

Fig. 11. Protocols in each column (except the ones in blue) make calls to the protocols
in the previous column.

First we demonstrate the construction Πmal assuming the following lemma
which claims the existence of protocols ΠZ ,Z ∈ Z¬A¬B with certain properties.
We prove this lemma later in the section by giving an explicit construction for
ΠZ ,Z ∈ Z¬A¬B. The construction and analysis of ΠZ ,Z ∈ Z¬A¬B is very
similar to that of protocol Πsh described in the semi-honest section.

Lemma 7. Consider a pair of vertices A,B in G(V, E), and a malicious adver-
sary structure Z such that the conditions in Theorem2 hold. For each Z ∈
Z¬A¬B, there is a protocol ΠZ such that

(i) ΠZ computes OT between A and B with perfect security against the corrup-
tion of Z.

(ii) ΠZ is either aborted or it computes OT between A and B with statistical
security w.r.t. Z \ {Z}.

This protocol is efficient if the size of Z is polynomial in n.

2 A and B treat missing and incorrect messages as 0.
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Protocol Πmal. This protocol computes OT between A and B with statisti-
cal security with guaranteed output delivery. For each Z ∈ Z¬A¬B, A and B
attempts to compute a sampled OT by executing ΠZ with independent uniform
bits as input. If, for some Z ∈ Z¬A¬B,ΠZ succeeds in computing a sampled
OT, A and B use this sampled OT to realize the OT. Since the sampled OT
is statistically secure by Lemma 7 (ii), the OT computed using it is also sta-
tistically secure. By Lemma 7 (i), ΠZ aborts for all Z ∈ Z¬A¬B only if the
corrupted set is not in Z¬A¬B, i.e., either A or B is corrupt. In that case, B
(if honest) may output a random bit and the computation is still secure. Let
Z¬A¬B = {Z1, . . . ,Z�}, we formally describe Πmal as follows:

Protocol 5 (Πmal(A : (x0, x1), B : (b)))

1. For i = 1, . . . , �:
(a) A generates bits ri

0, r
i
1 uniformly and independently and B generates a

bit ci uniformly and executes ΠZi

(A : (ri
0, r

i
1), B : ci).

(b) If for some i ≤ �,B receives r̄i
c as output (i.e., ΠZi

does not abort) then A
and B execute SampledOT → OT

(
A : (x0, x1; ri

0, r
i
1), B : (b; ci, r̄i

c)
)
, out-

put whatever the protocol outputs and terminate.
2. If for all i ≤ �, ΠZi

aborts, then B outputs a bit uniformly at random.

Proof (Proof of the sufficiency part of Theorem 2). We show that Πmal computes
OT between A and B with statistical security w.r.t. Z. For every i = 1, . . . �, the
inputs of A and B to ΠZi

are random bits independent of their real inputs. Hence
their input remains perfectly private after the execution of ΠZi

irrespective of
whether it is aborted or not. We consider two cases.

Case 1 – For some iteration i ∈ {1, . . . , �}, ΠZi

does not abort: By Lemma 7
(ii), the sampled OT computed by ΠZi

is statistically secure, hence the OT
computed using this sampled OT is also statistically secure.

Case 2 – For i = 1, . . . �, ΠZi

aborts: By Lemma 7 (i), for any Z ∈ Z¬A¬B,
ΠZ realizes OT with perfect security against the corruption of Z. Hence, ΠZi

aborts for all i only if the corrupted set is in Z \ Z¬A¬B i.e., either A or B is
corrupted. In this case, an honest B may output a random bit and the protocol
remains perfectly secure.

Hence Πmal computes OT between A and B with statistical security w.r.t.
Z. The efficiency claim follows from the fact that Πmal runs at most |Z¬A¬B|
protocols of the kind ΠZ , each of which is efficient when Z is of size poly(n)
according to Lemma 7. 	

In the rest of this section, we prove Lemma 7 by explicitly constructing ΠZ ,Z ∈
Z¬A¬B. As a first step, we construct a protocol Πpath(C,A),path(C,B) that is defined
for C ∈ V \ {A,B}, and paths path(C,A) and path(C,B) from C to A and B,
respectively.

Protocol Πpath(C,A),path(C,B) (analogous to ΠC in Lemma 1). In this protocol ver-
tex C facilitates an OT computation between A and B by providing them with a
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sampled OT similar to protocol ΠC described in the semi-honest case. The pro-
tocol either computes OT with statistical security or aborts in a precomputation
phase unless A and a vertex in path(C,B) are corrupted simultaneously or B
and a vertex in path(C,A) are corrupted simultaneously.

The protocol has two phases; a precomputation phase and an OT compu-
tation phase. In the precomputation phase, vertex C generates a sampled OT
and distributes it to A and B by communicating with A and B along path(C,A)
and path(C,B) respectively. Unlike in the semi-honest case, the correctness of
the sampled OT has to be verified, lest A and B compute OT using an incorrect
sampled OT. If the verification succeeds, A and B enter the OT computation
phase in which they use the sampled OT to compute OT with their real inputs,
else the protocol aborts. The verification step accepts an incorrect sampled OT
with positive probability, but this probability can be made as small as needed.

Protocol 6 (Πpath(C,A),path(C,B) (A : (x0, x1), B : b))

– Precomputation Phase3
1. C: Generates uniformly random bits r0, r1, c, and chooses a0, a1 inde-

pendently and uniformly at random from F of size at least 3. Define
p0(x) := a0x + r0, and p1(x) := a1x + r1. C sends (p0, p1) to A along
path(C,A) and (c, pc) to B along path(C,B).

2. A: Stores the received polynomials as p̄A
0 , p̄A

1 . B: Stores the received bit
as c̄ and polynomial as p̄B

c̄ .
3. B: Generates α uniformly at random from F \ {0}. B sends α to C along

path(C,B) and sends α to A securely.
4. C: Sends α received from B to A along path(C,A). If α is non-zero, it

sends (p0(α), p1(α)) to B along path(C,B) else it sends ⊥ to B.
5. A: If α received from B and C are identical and non-zero, A sends

(pA
0 (α), pA

1 (α)) to B securely, otherwise it sends ⊥ to B securely and
aborts by outputting ⊥.

6. B: Stores evaluations received from A as yA
0 , yA

1 and evaluations from C
as yC

0 , yC
1 . If yA

i = yC
i , i = 0, 1 and yA

c̄ = p̄B
c̄ (α):

– Then: Sends ACCEPT to A securely and stores the sampled OT
(c̄, p̄B

c̄ (0)).
– Else: Sends REJECT to A securely and aborts by outputting ⊥.

7. A: If REJECT is received from B, then it aborts by outputting ⊥ else it
stores the sampled OT (p̄A

0 (0), p̄A
1 (0)).

– OT computation Phase:
Execute SampledOT → OT

(
A : (x0, x1; p̄A

0 (0), p̄A
1 (0), B : (b; c̄, p̄B

c̄ (0))
)

and
return the output.

Lemma 8. Consider a network G(V, E), vertices A,B ∈ V and a malicious
adversary structure Z such that the conditions in Theorem2 hold. Suppose there
exists a vertex C ∈ V \ {A,B}, and paths path(C,A) and path(C,B) from C to
A and B respectively such that, for every set Z ∈ Z, at least one of the following
conditions is satisfied.
3 If A or B receives an invalid message at any stage, it sends an abort message to the

other party and aborts by outputting ⊥.



Oblivious Transfer in Incomplete Networks 411

(i) A,B /∈ Z,
(ii) A ∈ Z but path(C,B) ∩ Z = ∅,
(iii) B ∈ Z but path(C,A) ∩ Z = ∅.
Then, the protocol Πpath(C,A),path(C,B) is either aborted in the precomputation
phase while guaranteeing perfect privacy of inputs or computes OT between A
and B with statistical security w.r.t. Z with error probability 1

|F|−1 . Moreover,
this protocol is efficient as long as the size of Z is polynomial in n.

Proof. Refer to the full version [33] for the proof. 	


The probability of error in this protocol can be brought down to
(

1
|F|−1

)k

if C distributes k pairs of independent and uniformly random polynomials with
r0, r1 as constant terms and the verification steps are carried out independently
for each pair of polynomials with a fresh sample of α.

We define OT protocols ΠA,ΠB as follows. In both these protocols, A and
B interpret missing or invalid messages as 0.

Protocol 7 (ΠA(A : (x0, x1), B : b))

1. B: Sends b to A securely.
2. A: Sends xb to B securely.
3. B: Outputs xb.

Protocol 8 (ΠB(A : (x0, x1), B : b))

1. A: Sends (x0, x1) to B securely.
2. B: Outputs xb.

It is easy to see that ΠA is perfectly secure as long as A is honest and
communication between A and B is secure, similarly ΠB is perfectly secure as
long as B is honest and communication between A and B is secure. Specifically, if
A,B satisfy the conditions in Theorem 2 for an adversary structure Z, then ΠA is
secure w.r.t. ZB∪Z¬A¬B and ΠB is secure w.r.t. ZA∪Z¬A¬B. These protocols are
also efficient as long as | Z |= poly(n) since the secure communication between
A and B can be carried out efficiently.

We construct the protocol ΠZ corresponding to each Z ∈ Z¬A¬B in two
steps along the lines of the construction of OT protocol Πsh in the semi-honest
case. In the first step, the protocol will be secure w.r.t. some specific adversary
structures. Then we use these protocols to construct a protocol for the general
case. In both these protocols, similar to the semi-honest case, we invoke the idea
of compiling many protocols that are not individually secure w.r.t. the adversary
structure to create a protocol that is secure. For this, we use an OT combiner
for malicious setting as described in [23].

Lemma 9 [23, Corollary 7]
Given a malicious adversary structure Z and protocols Π1, . . . , Πm realizing

OT between A and B such that against the corruption of every set Z ∈ Z, a
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majority of protocols Π1, . . . , Πm are statistically secure, there is a hybrid proto-
col Combinermal(Π1, . . . , Πm) that makes calls to Π1, . . . , Πm and computes OT
between A and B with statistical security w.r.t. Z. Moreover, if m is polynomial
in n and each Πi is efficient for i ∈ [m], then the combiner is efficient.

In the first step, for Z ∈ Z¬A¬B and ZA ∈ ZA (ZB ∈ ZB , respectively), we
construct a protocol ΠZ,ZA (ΠZ,ZB , respectively) that runs in two stages. It
is either aborted in the first stage or computes OT between A and B with
security w.r.t. the adversary structure {ZA}∪Z¬A¬B ∪ZB ({ZB}∪Z¬A¬B ∪ZA,
respectively). The protocol has the additional property that it computes OT
with perfect security against the corruption of Z.

Protocol ΠZ,ZA (analogous to ΠZA in Lemma 3). The protocol involves only the
vertices in V \ Z, hence it is perfectly secure against the corruption of Z. It is a
combiner of a set of protocols of the kind defined in Protocol 6 and copies of ΠA.
It runs in two phases. In the first phase, A and B compute and store sufficient
number of sampled OTs for each protocol of the kind Πpath(C,A),path(C,B) used in
the combiner by running their precomputation phases. ΠZ,ZB is aborted if any
of the precomputation phases abort. Otherwise, A and B proceed to compute
the combiner with each call to Πpath(C,A),path(C,B) being realized by executing the
OT computation phase of Protocol 6. Analysis of this protocol is very similar to
ΠZA described in Lemma 3. Since the protocol ΠZ,ZB is similar, with the roles
of A and B reversed, we omit its description.

Consider the adversary structure {ZA} ∪ Z¬A¬B ∪ ZB , such that A ∈ ZA

and a set Z ∈ Z¬A¬B. For every ZB ∈ ZB , there exists a vertex CZB
and

paths pathZB
(CZB

, B) and pathZB
(CZB

, A) such that pathZB
(CZB

, A) does not
have any vertex from set ZB ∪ Z and pathZB

(CZB
, B) does not have any vertex

from set ZA ∪ Z. Otherwise, for each vertex v ∈ V, we have v ∈ ΓA(ZB ∪ Z)
or v ∈ ΓB(ZA ∪ Z). This would lead to the contradiction that ΓA(ZB ∪ Z) ∪
ΓB(ZA ∪ Z) = V. Note that, since CZB

/∈ ΓA(ZB ∪ Z) ∪ ΓB(ZA ∪ Z), it can not
be A or B, hence Π

pathZi
B
(CZi

B
,A),pathZi

B
(CZi

B
,B)

are well-defined.
Let ZB = {Z1

B , . . . ,Z�B
B }. Consider the protocols Π1, . . . , Π2�B−1, where

Πi := Π
pathZi

B
(CZi

B
,A),pathZi

B
(CZi

B
,B)

, for 1 ≤ i ≤ �B ,

Πi := ΠA, for �B + 1 ≤ j ≤ 2�B − 1.

Consider the combiner of these 2�B − 1 protocols for OT between A and B.
Let Calls(Πi) represent the number of calls made to the protocol Πi during an
execution of the combiner. Then we construct the protocol ΠZ,ZA as follows.

Protocol 9 (ΠZ,ZA(A : (x0, x1), B : b))

1. For 1 ≤ i ≤ �B , perform Calls(Πi) number of independent executions of the
precomputation phase of Π

pathZi
B
(CZi

B
,A),pathZi

B
(CZi

B
,B)

.
2. If any of the executions is aborted: abort the protocol otherwise execute the

protocol Combinermal(Π1, . . . ,Π2�B−1) with (x0, x1) and b as input from A
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and B respectively and output what the combiner outputs.
Note: Every call to Πi, 1 ≤ i ≤ �B is realized by executing the OT computa-
tion phase of Π

pathZi
B
(CZi

B
,A),pathZi

B
(CZi

B
,B)

with the sampled OT from step 1.
All other protocols in the combiner are copies of ΠA, which are executed
online.

Lemma 10. Consider a pair of vertices A,B in a graph G(V, E), and a mali-
cious adversary structure Z = {ZA} ∪ Z¬A¬B ∪ ZB where A ∈ ZA (Z =
ZA ∪ Z¬A¬B ∪ {ZB} where B ∈ ZB, respectively) such that the conditions in
Theorem2 hold. Let Z ∈ Z¬A¬B, then the following hold:

(i) ΠZ,ZA (ΠZ,ZB , respectively) computes OT between A and B with perfect
security against the corruption of Z.

(ii) ΠZ,ZA (ΠZ,ZB , respectively) is either aborted in step 1 or computes OT
between A and B with statistical security w.r.t. Z \ {Z}.

The protocol ΠZ,ZA (ΠZ,ZB , respectively) is efficient if the size of Z is polyno-
mial in n.

Proof. Refer to the full version [33] for the proof. 	


Protocol ΠZ (analogous to Πsh in the proof of Theorem 1). Now we are ready
to prove Lemma 7 which will complete the proof of the sufficiency of Theo-
rem 2. We do this by constructing ΠZ for each Z ∈ Z¬A¬B using protocols
ΠZ,ZA ,ZA ∈ ZA, ΠZ,ZB ,ZB ∈ ZB and copies of ΠA and ΠB . This protocol
realizes OT between A and B with perfect security against corruption of Z and
guarantees statistical security w.r.t. Z\{Z} whenever it is not aborted. The con-
struction of this protocol and its analysis is similar to the construction of Πsh

from ΠZA ,ZA ∈ ZA,ΠZB ,ZA ∈ ZB and copies of ΠA,ΠB in the semi-honest
case (Proof of Theorem 1). Let ZA = {Z1

A, . . . ,Z�A
A } and ZB = {Z1

B , . . . ,Z�B
B }.

Consider the following set of protocols

(Π1,1,Π1,2), . . . , (Π�A,1,Π�A,2),(Π�A+1,1,Π�A+1,2), . . . , (Π�A+�B ,1,Π�A+�B ,2),

where (Πi,1,Πi,2) := (ΠZ,ZA ,ΠB), for 1 ≤ i ≤ �A,

(Π�A+i,1,Π�A+i,2) := (ΠZ,ZB ,ΠA), for 1 ≤ i ≤ �B .

Let Calls(Πi,j) represent the maximum number of calls made to the protocol
Πi,j during any execution of Combinermal(Π1,1,Π1,2, . . . , Π�A+�B ,1,Π�A+�B ,2).

Protocol 10 (ΠZ(A : (x0, x1), B : b))

– Precomputation Phase
1. For 1 ≤ i ≤ �A: Execute Calls(Πi,1) instances of ΠZ,ZA with uniformly

random independent bits as inputs by A and B.
(a) If any of the executions abort: abort the protocol.
(b) Else: Store the sampled OT from each execution.
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2. For 1 ≤ i ≤ �B : Execute Calls(Π�A+i,1) instances of ΠZ,ZB with uniformly
random independent bits as inputs by A and B.
(a) If any of the executions abort: abort the protocol.
(b) Else: Store the sampled OT from each execution.

– OT Computation Phase
1. Run Combinermal(Π1,1,Π1,2, . . . , Π�A+�B ,1,Π�A+�B ,2) and output what

the combiner outputs. Calls to Πi,1, 1 ≤ i ≤ �A + �B are realized by
computing OT using the sampled OT from the corresponding protocol.

Proof (Proof of Lemma 7). The protocol involves only vertices in V\Z, hence it is
perfectly secure against the corruption of Z. Consider any set Z ′ ∈ Z\{Z}. If the
protocol aborts during the precomputation phase, the inputs of honest vertices
are private since the real inputs are not used in this phase. Suppose the protocol
is not aborted in the precomputation phase. Using the same argument we used
in the proof of security of Πsh in the semi-honest case, one could verify that
against the corruption of any Z ′ ∈ Z \ {Z}, a majority of the protocols used
in the combiner is secure. Hence, the combiner computes OT with statistical
security by Lemma 9. Moreover, if the size of Z is polynomial in n, then the
protocols that are combined are all efficient by Lemma 10 and properties of
ΠA,ΠB . Since, ΠZ is a combiner of 2(|ZA| + |ZB |) protocols, Lemma 9 implies
that it is efficient in this case. This proves the lemma. 	


4 Discussion

In this section we address some of the limitations of our results and scope for
further improvements.

• In the semi-honest case, Theorem 1 provides a complete characterization of
incomplete networks that allow a given pair of parties to compute OT. Fur-
thermore, this result implies the more general result (Corollary 1) regarding
the characterization of networks in which a given subset may realize MPC. As
we previously observed, this generalizes the result by Hirt and Maurer [24] on
feasibility of MPC with respect to a general adversary structure in complete
networks.
However, in the malicious case, our characterization is limited to the notion
of statistical security. Our results leave open the possibility that the neces-
sary and sufficient condition for OT with perfect security between a given
pair of parties in an incomplete network might be different from the one in
Theorem 2. As previously observed, our characterization directly extends to
statistically secure computation of 2-party functionalities with output only at
one party. However, the problem of 2-party secure computation with output
at both parties remains open. Although our current technique using OT com-
biners is unable to realize secure computation (with fairness), we conjecture
that the conditions in Theorem2 might be sufficient for statistically secure
MPC of such functionalities too.
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Fig. 12. Consider the problem of MPC among the parties {A, B, C} with statistical
security w.r.t. the malicious adversary structure Z = {{A}, {B}, {C}}. Every pair of
parties in {A, B, C} satisfies the conditions in Theorem 2, hence the condition given
in Corollary 2 is satisfied. However, an argument almost identical to the one presented
by Fischer et al. in [15] can be used to show the impossibility of Byzantine agreement
among {A, B, C} in this network. This shows that the conditions given in Corollary 2
are not sufficient for a given subset of parties in an incomplete network to do MPC with
statistical security w.r.t. a given adversary structure, with guaranteed output delivery.

Corollary 2 only partially solves the problem of the characterization of net-
works in which a given subset of parties may realize statistically secure MPC.
The characterization of networks in which a given subset of parties may realize
statistically secure MPC without abort and with fairness (guaranteed output
delivery) still remains open. The example given in Fig. 12 shows that the
necessary and sufficient condition for this must be strictly stronger than the
condition given in Corollary 2. We also leave open the problem of whether the
conditions in Corollary 2 are sufficient for a given subset of parties to realize
statistically secure MPC with fairness, but with abort.

• Section 2.3 addresses efficiency for threshold adversarial structures when the
threshold is a constant or when n = 2t+O(1). Except for these cases, the com-
munication complexity of our protocols are polynomial in the size of adversary
structure. Efficiency of the protocol in the case of large adversary structures
is an important aspect which needs further study. Being the first work on this
problem, our focus has been mostly on the characterization. We hope that
future work will address the efficiency question more thoroughly; we believe
this might require a different set of tools.

• Protocols for general adversary structures often have the following property:
if they are secure against the corruption of a set of parties, then they would
be secure against the corruption of a subset of these parties. This is not
true, in general, for the protocols we construct, neither in the semi-honest
nor in the malicious setting. Consider a graph G(V, E), where V = {A,B, 1}
and E = {{A, 1}, {1, B}}. It can be verified that semi-honest OT is feasible
between A and B with security against corruption of vertices {A, 1}. However,
OT between A and B is impossible with security against the corruption of
vertex 1, as SMT between A and B with security against such a corruption



416 V. Narayanan and V. M. Prabahakaran

itself is impossible. As a consequence, unlike most protocols constructed for
general adversary structures, our protocols are not efficient in the number
of maximal sets in the adversary structure. However, a more limited form of
monotonicity does hold for our protocols. It is easy to see from the conditions
in both Theorems 2 and 1 that if a set ZA ⊂ V such that A ∈ ZA is present
in the adversary structure, then we may as well throw in sets of the kind
Z ′

A ⊂ ZA such that A ∈ Z ′
A and this larger adversary structure will satisfy the

conditions stated in both these Theorems if and only if the adversary structure
we started out with satisfied these conditions. Similarly, if B ∈ CB ⊂ V is
present in the adversary structure, we may as well throw in sets of the kind
Z ′

B ⊂ CB such that B ∈ Z ′
B . Also, if Z such that A,B /∈ Z is present in

the adversary structure, then throwing in every subset of Z will not make
any difference. Indeed, with some modifications, our protocols can be made
efficient w.r.t. the size of ‘maximal’ adversary structure in the above sense.
Another consequence of this lack of monotonicity is that our protocols do not,
in general, continue to be secure when the adversary is adaptive rather than
static (see [10, Chap. 4.5]). To see this, we again consider the graph G(V, E),
where V = {A,B, 1} and E = {{A, 1}, {1, B}} along with the adversary
structure {{A, 1}}. Semi-honest OT between A and B is feasible w.r.t this
adversary structure when the adversary is static. However, there exists no
protocol that is secure against an adaptive adversary who corrupts 1 at the
beginning of the protocol and waits for B to output before corrupting A.

Acknowledgments. We acknowledge useful discussions with Manoj Prabhakaran,
IIT Bombay.
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26. Jakoby, A., Lískiewicz, M., Reischuk, R.: Private computations in networks: topol-
ogy versus randomness. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607,
pp. 121–132. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-
3 12

27. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

28. Kumar, M.V.N.A., et al.: On perfectly secure communication over arbitrary net-
works. In: PODC, pp. 193–202 (2002)

29. Kumaresan, R., Raghuraman, S., Sealfon, A.: Network oblivious transfer. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 366–396. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 13

30. Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message trans-
mission scheme. IEEE Trans. Inf. Theor. 55(11), 5223–5232 (2009)

31. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4, 382–401 (1982)

32. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-
fer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404–418. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 22

33. Narayanan, V., Prabahakaran, V.M.: Oblivious Transfer in Incomplete Networks.
Cryptology ePrint Archive, Report 2018/875. https://eprint.iacr.org/2018/875
(2018)

34. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: STOC, pp. 73–85 (1989)

35. Sayeed, M.H., Abu-Amara, H.: Efficient perfectly secure message transmission in
synchronous networks. J. Inf. Comput. 126(1), 53–61 (1996)

36. Spini, G., Zémor, G.: Perfectly secure message transmission in two rounds. In:
Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 286–304. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 12

37. Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message
transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 33

38. Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In:
PODC, pp. 83–89 (1992)

39. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72540-4 32

https://doi.org/10.1007/3-540-36494-3_12
https://doi.org/10.1007/3-540-36494-3_12
https://doi.org/10.1007/978-3-662-53008-5_13
https://doi.org/10.1007/978-3-540-70936-7_22
https://eprint.iacr.org/2018/875
https://doi.org/10.1007/978-3-662-53641-4_12
https://doi.org/10.1007/978-3-540-28628-8_33
https://doi.org/10.1007/978-3-540-72540-4_32
https://doi.org/10.1007/978-3-540-72540-4_32

	Oblivious Transfer in Incomplete Networks
	1 Introduction
	1.1 Our Model and Results
	1.2 Technical Overview
	1.3 Related Work

	2 Semi-honest Case
	2.1 Necessity of Conditions
	2.2 Sufficiency of Conditions
	2.3 Efficiency of t-privacy

	3 Malicious Case
	3.1 Necessity of Conditions
	3.2 Sufficiency of Conditions

	4 Discussion
	References


