
ObliVM: A Programming Framework for
Secure Computation

Chang Liu∗, Xiao Shaun Wang∗, Kartik Nayak∗, Yan Huang† and Elaine Shi∗
∗University of Maryland and †Indiana University

{liuchang,wangxiao,kartik,elaine}@cs.umd.edu, yh33@indiana.edu

(Conference version. Full version will appear shortly.)

Abstract—We design and develop ObliVM, a programming
framework for secure computation. ObliVM offers a domain-
specific language designed for compilation of programs into
efficient oblivious representations suitable for secure computation.
ObliVM offers a powerful, expressive programming language and
user-friendly oblivious programming abstractions. We develop
various showcase applications such as data mining, streaming
algorithms, graph algorithms, genomic data analysis, and data
structures, and demonstrate the scalability of ObliVM to bigger
data sizes. We also show how ObliVM significantly reduces
development effort while retaining competitive performance for
a wide range of applications in comparison with hand-crafted
solutions. We are in the process of open-sourcing ObliVM and
our rich libraries to the community (www.oblivm.com), offering
a reusable framework to implement and distribute new crypto-
graphic algorithms.

I. INTRODUCTION

Secure computation [1], [2] is a powerful cryptographic
primitive that allows multiple parties to perform rich data ana-
lytics over their private data, while preserving each individual
or organization’s privacy. The past decade has witnessed enor-
mous progress in the practical efficiency of secure computation
protocols [3]–[8] As a result, secure computation has evolved
from being just a nice theoretical concept to having real system
prototypes [9]–[17]. Several attempts to commercialize secure
computation techniques have also been made [18], [19].

Architecting a system framework for secure computation
presents numerous challenges. First, the system must allow
non-specialist programmers without security expertise to de-
velop applications. Second, efficiency is a first-class concern
in the design space, and scalability to big data is essential in
many interesting real-life applications. Third, the framework
must be reusable: expert programmers should be able to easily
extend the system with rich, optimized libraries or customized
cryptographic protocols, and make them available to non-
specialist application developers.

We design and build ObliVM, a system framework for
automated secure multi-party computation. ObliVM is de-
signed to allow non-specialist programmers to write programs
much as they do today, and our ObliVM compiler compiles
the program to an efficient secure computation protocol. To
this end, ObliVM offers a domain-specific language that is
intended to address a fundamental representation gap, namely,
secure computation protocols (and other branches of modern
cryptography) rely on circuits as an abstraction of computa-
tion, whereas real-life developers write programs instead. In
architecting ObliVM, our main contribution is the design of

programming support and compiler techniques that facilitate
such program-to-circuit conversion while ensuring maximal
efficiency. Presently, our framework assumes a semi-honest
two-party protocol in the back end. To demonstrate an end-
to-end system, we chose to implement an improved Garbled
Circuit protocol as the back end, since it is among the most
practical protocols to date. Our ObliVM framework, including
source code and demo applications, will be open-sourced on
our project website http://www.oblivm.com.

A. Background: “Oblivious” Programs and Circuits

To aid understanding, it helps to first think about an
intuitive but somewhat imprecise view: Each variable and each
memory location is labeled either as secret or public. Any
secret variable or memory contents are secret-shared among
the two parties such that neither party sees the values. The
two parties run a cryptographic protocol to securely evaluate
each instruction, making accesses to memory (public or secret-
shared) whenever necessary. For the time being, imagine that
the cryptographic protocol used to execute each instruction se-
curely realizes an ideal functionality without leaking any unin-
tended information. Therefore, the parties can only observe the
traces during the protocol execution: 1) the program counter
(also referred to as the instruction trace); 2) addresses of all
memory accesses (also referred to as the memory trace); and 3)
the value of every public or declassified variable (similar to the
notion of a low or declassified variable in standard information
flow terminology). Imprecisely speaking, for security, it is
imperative that the program’s observable execution traces (not
including the outcome) be “oblivious” to the secret inputs. A
more formal security definition involves the use of a simulation
paradigm that is standard in the cryptography literature [20],
and is similar to the notion adopted in the SCVM work [15].

Relationship between oblivious programs and circuits. If
a program is trace-oblivious by the aforementioned informal
definition, it is then easy to convert the program into a
sequence of circuits. These circuits are allowed to take memory
accesses as inputs, however, these memory access must be
oblivious to preserve security. By contrast, if a program is
not memory-trace oblivious, then a dynamic memory access
(whose address depends on secret inputs) cannot be efficiently
made in the circuit representation – a straightforward approach
(which is implicitly taken by almost all previous works except
SCVM [15]) is to translate each dynamic memory access into
a linear scan of memory in the resulting circuit, incurring
prohibitive costs for large data sizes.

Moreover, instruction-trace obliviousness is effectively

2015 IEEE Symposium on Security and Privacy

© 2015, Chang Liu. Under license to IEEE.

DOI 10.1109/SP.2015.29

359

guaranteed by executing both branches of a secret conditional
in the resulting circuit where only one branch’s execution
takes effect. Our type system (formally defined in a separate
manuscript [21]) rejects programs that loop on secret variables
– in these cases, a maximum public bound on the loop guard
can be supplied instead.

B. ObliVM Overview and Contributions

In designing and building ObliVM, we make the following
contributions.

Programming abstractions for oblivious algorithms. The
most challenging part about ensuring a program’s oblivious-
ness is memory-trace obliviousness – therefore our discus-
sions below will focus on memory-trace obliviousness. A
straightforward approach (henceforth referred to as the generic
ORAM baseline) is to provide an Oblivious RAM (ORAM)
abstraction, and require that all arrays (whose access patterns
depend on secret inputs) be stored and accessed via ORAM.
This approach, which was effectively taken by SCVM [15],
is generic, but does not necessarily yield the most efficient
oblivious implementation for each specific program.

At the other end of the spectrum, a line of research
has focused on customized oblivious algorithms for special
tasks (sometimes also referred to as circuit structure de-
sign). For example, efficient oblivious algorithms have been
demonstrated for graph algorithms [22], [23], machine learn-
ing algorithms [24], [25], and data structures [26]–[28]. The
customized approach can outperform generic ORAM, but is
extremely costly in terms of the amount of cryptographic
expertise and time consumed.

ObliVM aims to achieve the best of both worlds by
offering oblivious programming abstractions that are both
user- and compiler friendly. These programming abstractions
are high-level programming constructs that can be under-
stood and employed by non-specialist programmers without
security expertise. Behind the scenes, ObliVM translates pro-
grams written in these abstractions into efficient oblivious
algorithms that outperform generic ORAM. When oblivious
programming abstractions are not applicable, ObliVM falls
back to employing ORAM to translate programs to efficient
circuit representations. Presently, ObliVM offers the following
oblivious programming abstractions: MapReduce abstractions,
abstractions for oblivious data structures, and a new loop
coalescing abstraction which enables novel oblivious graph
algorithms. We remark that this is by no means an exhaus-
tive list of possible programming abstractions that facilitate
obliviousness. It would be exciting future research to uncover
new oblivious programming abstractions and incorporate them
into our ObliVM framework.

An expressive programming language. ObliVM offers an ex-
pressive and versatile programming language called ObliVM-
lang. When designing ObliVM-lang, we have the following
goals.

• Non-specialist application developers find the language
intuitive.

• Expert programmers should be able to extend our frame-
work with new features. For example, an expert program-
mer should be able to introduce new, user-facing oblivious

programming abstractions by embedding them as libraries
in ObliVM-lang (see Section IV-B for an example).

• Expert programmers can implement even low-level circuit
libraries directly atop ObliVM-lang. Recall that unlike
a programming language in the traditional sense, here
the underlying cryptography fundamentally speaks only
of AND and XOR gates. Even basic instructions such
as addition, multiplication, and ORAM accesses must
be developed from scratch by an expert programmer.
In most previous frameworks, circuit libraries for these
basic operations are developed in the back end. ObliVM,
for the first time, allows the development of such cir-
cuit libraries in the source language, greatly reducing
programming complexity. Section V-A demonstrates case
studies for implementing basic arithmetic operations and
Circuit ORAM atop our source language ObliVM.

• Expert programmers can implement customized protocols
in the back end (e.g., faster protocols for performing big
integer operations or matrix operations), and export these
customized protocols to the source language as native
types and native functions.

To simultaneously realize these aforementioned goals, we
need a much more powerful and expressive programming
language than any existing language for secure computa-
tion [10], [14]–[17]. Our ObliVM-lang extends the SCVM
language by Liu et al. [15] and offers new features such as
phantom functions, generic constants, random types, as well as
native types and functions. We will show why these language
features are critical for implementing oblivious programming
abstractions and low-level circuit libraries.

Additional architectural choices. ObliVM also allows expert
programmers to develop customized cryptographic protocols
(not necessarily based on Garbled Circuit) in the back end.
These customized back end protocols can be exposed to the
source language through native types and native function calls,
making them immediately reusable by others. Section VI de-
scribes an example where an expert programmer designs a cus-
tomized protocol for BigInteger operations using additively-
homomorphic encryption. The resulting BigInteger types
and operations can then be exported into our source language
ObliVM-lang.

C. Applications and Evaluation

ObliVM’s easy programmability allowed us to develop a
suite of libraries and applications, including streaming algo-
rithms, data structures, machine learning algorithms, and graph
algorithms. These libraries and applications will be shipped
with the ObliVM framework. Our application-driven evaluation
suggests the following results:

Efficiency. We use ObliVM’s user-facing programming ab-
stractions to develop a suite of applications. We show that over
a variety of benchmarking applications, the resulting circuits
generated by ObliVM can be orders of magnitude smaller than
the generic ORAM baseline (assuming that the state-of-the-
art Circuit ORAM [29] is adopted for the baseline) under
moderately large data sizes. We also compare our ObliVM-
generated circuits with hand-crafted designs, and show that
for a variety of applications, our auto-generated circuits are
only 0.5% to 2% bigger in size than oblivious algorithms
hand-crafted by human experts.

360

Development effort. We give case studies to show how
ObliVM greatly reduces the development effort and expertise
needed to create applications over secure computation.

New oblivious algorithms. We describe a few new oblivious
algorithms that we uncover during this process of program-
ming language and algorithms co-design. Specifically, we
demonstrate new oblivious graph algorithms including obliv-
ious Depth-First-Search for dense graphs, oblivious shortest
path for sparse graphs, and an oblivious minimum spanning
tree algorithm.

D. Threat Model, Deployment, and Scope

Deployment scenarios and threat model. As mentioned,
ObliVM presently supports a two-party semi-honest protocol.
We consider the following primary deployment scenarios:

1) Two parties, Alice and Bob, each comes with their own
private data, and engage in a two-party protocol. For
example, Goldman Sachs and Bridgewater would like
to perform joint computation over their private market
research data to learn market trends.

2) One or more users break their private data (e.g., genomic
data) into secret shares, and split the shares among two
non-colluding cloud providers. The shares at each cloud
provider are completely random and reveal no infor-
mation. To perform computation over the secret-shared
data, the two cloud providers engage in a secure 2-party
computation protocol.

3) Similar as the above, but the two servers are within
the same cloud or under the same administration. This
can serve to mitigate Advanced Persistent Threats or
insider threats, since compromise of a single machine
will no longer lead to the breach of private data. Similar
architectures have been explored in commercial products
such as RSA’s distributed credential protection [30].

In the first scenario, Alice and Bob should not learn
anything about each other’s data besides the outcome of the
computation. In the second and third scenarios, the two servers
should learn nothing about the users’ data other than the
outcome of the computation – note that the outcome of the
computation can also be easily hidden simply by XORing the
outcome with a secret random mask (like a one-time pad). We
assume that the program text (i.e., code) is public.

Scope. A subset of ObliVM’s source language ObliVM-lang
has a security type system which, roughly speaking, ensures
that the program’s execution traces are independent of secret
inputs [15], [31]. However, a formal treatment of the language
and the type system is outside the scope of this paper and
deferred to a forthcoming manuscript [21].

By designing a new language, ObliVM does not directly
retrofit legacy code. Such a design choice maximizes oppor-
tunities for compile-time optimizations. We note, however,
that in subsequent work joint with our collaborators [32],
we have implemented a MIPS CPU in ObliVM, which can
securely evaluate standard MIPS instructions in a way that
leaks only the termination channel (i.e., total runtime of
the program) – this secure MIPS CPU essentially provides
backward compatibility atop ObliVM whenever needed.

II. RELATED WORK

Existing general-purpose secure computation systems can
be classified roughly based on two mostly orthogonal dimen-
sions: 1) which “back end” secure computation protocol they
adopt – this will also decide whether the system is secure
against semi-honest or malicious adversaries, and whether the
system supports two or multiple parties; and 2) whether they
offer programming and compiler support – and if so, which
language and compiler they adopt.

A. Back End: Secure Computation Implementations

Below we discuss choices of back end secure computation
protocols and implementations. As discussed later, under real-
istic bandwidth provisioning about 1.4MB/sec, Garbled Circuit
is presently among the fastest general-purpose protocol for
secure computation. Currently, ObliVM primarily supports a
semi-honest Garbled Circuit based back end, but developers
can introduce customized gadgets for special-purpose types
and functions (e.g., operations on sets, matrices, and big
integers), and export them as native types and functions in
the source language. It would not be too hard to extend
ObliVM to support additional back end protocols such as
GMW and FHE – in particular, almost all known protocols
use a circuit abstraction (either boolean or arithmetic circuits).
An interesting direction of the future research is to create
new, compile-time optimizations that automatically selects the
optimal mix of protocols for a given program, similar to what
TASTY [13] proposed, but in a much broader sense.

Garbled Circuit (GC) implementations. The Garble Circuit
protocol was first proposed by Andrew Yao [35]. Numerous
later works improved the original protocol: Free XOR shows
that XOR gates can be computed almost “freely” [5]–[7].
Row reduction techniques show that only 2 or 3 garbled
entries (rather than 4) need to be sent across the network
per AND gate [36], [37]. A building block called Oblivious
Transfer (OT) that is necessary for Garbled Circuit protocols
was proposed and improved in a sequence of works as well [3],
[8].

Several works have implemented the Garbled Circuit pro-
tocol – we give an overview of their features and performance
characteristics in Table I.

Non-GC protocols and implementations. Besides Garbled
Circuits, several other techniques have been proposed for
general-purpose secure computation, including FHE [38],
GMW [2], schemes based on linear secret-sharing [9], [14],
etc. More discussions on non-GC protocols and implementa-
tions can be found in our online technical report [39].

B. Programming and Compiler Support

Secure computation compilers are in charge of compiling
programs to circuit representations. One subtlety must be
clarified: instead of a single circuit, here a program may be
compiled to a sequence of circuits whose inputs are oblivious
memory accesses. The number of these circuits will determine
the number of interactions of the protocol.

Circuit generation. One key question is whether the circuits
are fully materialized or generated on the fly during secure

361

GC Back End Features Garbling Speed
Bandwidth to Adopted

match compute by

Fairplay [12] Java-based ≤ 30 gates/sec 900Bps

FastGC [33] Java-based 96K gates/sec 2.8MBps
CBMC-GC [16]

PCF [10]

SCVM [15]

ObliVM-GC
Java-based

670K gates/sec, 19.6MBps ObliVM
(this paper) 1.8M gates/sec (online) 54MBps (online) GraphSC [24]

GraphSC [24] Java-based 580K gates/sec per pair of cores 16MBps per pair of cores
(extends ObliVM-GC) Parallelizable 1.4M gates/sec per pair of cores (online) 41MBps per pair of cores (online)

JustGarble [4]
C-based

11M gates/sec 315MBps TinyGarble [34]Hardware AES-NI
Garbling only, does
not run end-to-end

KSS [11]
Parallel execution

320 gates/sec per pair of cores 2.4MBps per pair of cores PCF [10]in malicious mode

Hardware AES-NI

TABLE I: Summary of known (2-party) Garbled Circuit back ends. The gates/sec metric refer specifically to AND gates, since
XOR gates are considered free [5]–[7]. Measurements for different papers are taken on off-the-shelf computers representative of
when each paper is written. ObliVM essentially adopts a much better architected and engineered version of FastGC [33]. The
focus of this paper is our language, programming abstractions, and compiler. It is our future work to extend JustGarle (C-based,
hardware AES-NI) to a fully working back end and integrate it with our language and compiler.

computation. Many first-generation secure computation com-
pilers such as Fairplay [12], TASTY [13], Sharemind [9],
CBMC-GC [16], PICCO [14], KSS12 [11] generate target
code containing the fully materialized circuits. This approach
has the following drawbacks. First, the target code size and
compile time are proportional to the circuit size. That is why
some works report large compile times (e.g., 8.2 seconds for
a circuit of size 700K in KSS12 [11]). Second, the program
must be recompiled for every input data size – possibly taking
a long time again!

Newer generations of secure computation compilers (e.g.,
PCF, Wysteria, and SCVM [10], [15], [17]) employ program-
style target code instead. Program-style target code is essen-
tially a more compact intermediate representation of circuits
– fundamentally, the succinctness comes from introducing
looping instructions in the intermediate representation, such
that the circuit need not be fully unrolled in this intermediate
representation.

The resulting program-style target code can then be se-
curely evaluated using a cryptographic protocol such as Gar-
bled Circuit or GMW. Typically these protocols perform per-
gate computation – therefore, circuits are effectively generated
on-the-fly at runtime. ObliVM also adopts program-style target
code and on-the-fly circuit generation. Specifically, the circuit
generation is pipelined using a well-known technique by
Huang et al. [33] such that the circuit is never materialized en-
tirely, and thus only a constant amount of working memory is
necessary. Further, we stress that on-the-fly circuit generation
incurs unnoticeable cost in comparison with the time required
to compute the cryptographic protocol. In ObliVM, on-the-fly
circuit generation only contributes to less than 0.1% of the
total runtime.

Finally, in a concurrent work called TinyGarble [34],
Songhori et al. show that by partially materializing a circuit,
they can have a somewhat more global view of the circuit.
Thus they show how to borrow hardware circuit synthesis

techniques to optimize the circuit size by roughly 50% to
80% in comparison with PCF [10]. TinyGarble’s techniques
are orthogonal and complementary to this work.

ORAM support. Almost all existing secure computation
compilers, including most recent ones such as Wysteria [17],
PCF [10], and TinyGarble [34], compile dynamic memory
accesses (whose addresses depend on secret inputs) to a linear
scan of memory in the circuit representation. This is com-
pletely unscalable for big data sizes. A solution to this problem
lies in Oblivious RAM (ORAM), first proposed by Goldreich
and Ostrovsky [40], [41]. To the best of our knowledge, the
only known compiler that provides ORAM support is our
prior work SCVM which ObliVM builds on. SCVM employs
the binary-tree ORAM [42] to implement dynamic memory
accesses. Presently, Circuit ORAM is the most efficient ORAM
scheme for secure computation – and ObliVM is the first to
offer a Circuit ORAM implementation.

Language expressiveness and formal security. Most existing
languages for secure computation are restrictive in nature.
Existing languages [10], [13]–[17] lack essential features such
as function calls and public loops inside secret-ifs. This
prevents the implementation of a large class of interesting
programs. We also offer several other new features such as na-
tive primitives, random types (with an affine type system), and
generic constants that were lacking in previous languages [10],
[13]–[17].

Earlier domain-specific languages [10], [13], [14], [16] for
secure computation do not aim to offer formal security. More
recent languages such as SCVM [15] and Wysteria [17] offer
formal security through new type systems. In comparison,
Wysteria’s type system is too restrictive – for example, Wyste-
ria rejects programs with public loops and function calls inside
secret-ifs. This prevents many interesting applications – for
example, it is not feasible to implement ORAM and oblivious
data structures efficiently in Wysteria. On the other hand,
Wysteria supports multiple parties, and abstractions for writing

362

code generic in number of parties. Extending to multiple
parties is future work for ObliVM.

III. PROGRAMMING LANGUAGE AND COMPILER

As mentioned earlier, we wish to design a powerful source
language ObliVM-lang such that an expert programmer can
i) develop oblivious programming abstractions as libraries and
offer them to non-specialist programmers; and ii) implement
low-level circuit gadgets atop ObliVM-lang.

ObliVM-lang builds on top of the recent SCVM source
language [15] – the only known language to date that supports
ORAM abstractions, and therefore offers scalability to big
data. In this section, we will describe new features that
ObliVM-lang offers and explain intuitions behind our security
type system which is formalized in a separate manuscript [21].

As compelling applications of ObliVM-lang, in Section IV,
we give concrete case studies and show how to implement
oblivious programming abstractions and low-level circuit li-
braries atop ObliVM-lang.

A. Language features for expressiveness and efficiency

Security labels. Except for the new random type introduced
in Section III-B, all other variables and arrays are either of
a public or secure type. secure variables are secret-shared
between the two parties such that neither party sees the value.
public variables are observable by both parties. Arrays can
be publicly or secretly indexable. For example,

• secure int10[public 1000] keys: secret array con-
tents but indices to the array must be public. This array
will be secret shared but not placed in ORAMs.

• secure int10[secure 1000] keys: This array will be
placed in a secret-shared ORAM, and we allow secret
indices into the array.

Standard features. ObliVM-lang allows programmers to use
C-style keyword struct to define record types. It also sup-
ports generic types similar to templates in C++. For example,
a binary tree with public topological structure but secret per-
node data can be defined without using pointers (assuming its
capacity is 1000 nodes):

struct KeyValueTable<T> {
secure int10[public 1000] keys;
T[public 1000] values;

};

In the above, the type int10 means that its value is a 10-bit
signed integer. Each element in the array values has a generic
type T similar to C++ templates. ObliVM-lang assumes data
of type T to be secret-shared. In the future, we will improve
the compiler to support public generic types.

Generic constants. Besides general types, ObliVM-lang also
supports generic constants to further improve the reusability.
Let us consider the following tree example:

struct TreeNode@m<T> {
public int@m key;
T value;
public int@m left, right;

};
struct Tree@m<T> {

TreeNode<T>[public (1<<m)-1] nodes;
public int@m root;

};

This code defines a binary search tree implementation of
a key-value store, where keys are m-bit integers. The generic
constant @m is a variable whose value will be instantiated
to a constant. It hints that m bits are enough to represent all
the position references to the array. The type int@m refers
to an integer type with m bits. Further, the capacity of array
nodes can be determined by m as well (i.e. (1<<m)-1). Note
that Zhang et al. [14] also allow specifying the length of an
integer, but require this length to be a hard-coded constant –
this necessitates modification and recompilation of the program
for different inputs. ObliVM-lang’s generic constant approach
eliminates this constraint, and thus improves reusability.

Functions. ObliVM-lang allows programmers to define
functions. For example, following the Tree defined as
above, programmers can write a function to search the
value associated with a given key in the tree as follows:

1 T Tree@m<T>.search(public int@m key) {
2 public int@m now = this.root, tk;
3 T ret;
4 while (now != -1) {
5 tk = this.nodes[now].key;
6 if (tk == key)
7 ret = this.nodes[now].value;
8 if (tk <= key)
9 now = this.nodes[now].right;

10 else
11 now = this.nodes[now].left;
12 }
13 return ret
14 };

This function is a method of a Tree object, and takes a key
as input, and returns a value of type T. The function body de-
fines three local variables now and tk of type public int@m,
and ret of type T. The definition of a local variable (e.g. now)
can be accompanied with an optional initialization expression
(e.g. this.root). When a variable (e.g. ret or tk) is not
initialized explicitly, it is initialized to be a default value
depending on its type.

The rest of the function is standard, C-like code, except
that ObliVM-lang requires exactly one return statement at
the bottom of a function whose return type is not void.
We highlight that ObliVM-lang allows arbitrary looping on a
public guard (e.g. line 4) without loop unrolling, which cannot
be compiled in previous loop-elimination-based work [9],
[11]–[14], [16].

Function types. Programmers can define a variable to have
function type, similar to function pointers in C. To avoid
the complexity of handling arbitrary higher order functions,
the input and return types of a function type must not be
function types. Further, generic types cannot be instantiated
with function types.

363

Native primitives. ObliVM-lang supports native types and
native functions. For example, ObliVM-lang’s default back
end implementation is ObliVM-GC, which is implemented
in Java. Suppose an alternative BigInteger implementation in
ObliVM-GC (e.g., using additively homomorphic encryption)
is available in a Java class called BigInteger. Programmers
can define

typedef BigInt@m = native BigInteger;

Suppose that this class supports four operations: add,
multiply, fromInt and toInt, where the first two operations
are arithmetic operations and last two operations are used
to convert between Garbled Circuit-based integers and HE-
based integers. We can expose these to the source language
by declaring:

BigInt@m BigInt@m.add(BigInt@m x,
BigInt@m y)= native BigInteger.add;

BigInt@m BigInt@m.multiply(BigInt@m x,
= BigInt@m y) native BigInteger.multiply;

BigInt@m BigInt@m.fromInt(int@m y)
= native BigInteger.fromInt;

int@m BigInt@m.toInt(BigInt@m y)
= native BigInteger.toInt;

B. Language features for security

The key requirement of ObliVM-lang is that a program’s
execution traces will not leak information. These execution
traces include a memory trace, an instruction trace, a function
stack trace, and a declassification trace. The trace definitions
are similar to Liu et al. [15]. We develop a security type system
for ObliVM-lang.

Liu et al. [15] has discussed how to prevent memory traces
and instruction traces from leaking information. We explain
the basic ideas of ObliVM-lang’s type system concerning
functions and declassifications, but defer a formal discussion
to a separate manuscript [21].

Random numbers and implicit declassifications. Many
oblivious programs such as ORAM and oblivious data struc-
tures crucially rely on randomness. In particular, their obliv-
iousness guarantee has the following nature: the joint dis-
tribution of memory traces is identical regardless of secret
inputs (these algorithms typically have a cryptographically
negligible probability of correctness failure). ObliVM-lang
supports reasoning of such “distributional” trace-obliviousness
by providing random types associated with an affine type sys-
tem. For instance, rnd32 is the type of a 32-bit random integer.
A random number will always be secret-shared between the
two parties.

To generate a random number, there is a built-in function
RND with the following signature:

rnd@m RND(public int32 m)
This function takes a public 32-bit integer m as input, and
returns m random bits. Note that rnd@m is a dependent type,
whose type depends on values, i.e. m. To avoid the complexity
of handling general dependent types, the ObliVM-lang com-
piler restricts the usage of dependent types to only this built-in
function, and handles it specially.

In our ObliVM framework, outputs of a computation can be
explicitly declassified with special syntax. Random numbers

are allowed implicit declassification – by assigning them to
public variables. Here “implicitness” means that the declassi-
fication happens not because this is a specified outcome of the
computation.

For security, we must ensure that each random number is
implicitly declassified at most once for the following reason.
When implicitly declassifying a random number, both parties
observe the random number as part of the trace. Now consider
the following example where s is a secret variable.

1 rnd32 r1 = RND(32), r2= RND(32);
2 public int32 z;
3 if (s) z = r1; // implicit declass
4 else z = r2; // implicit declass

.
XX public int32 y = r2; // NOT OK

In this program, random variables r1 and r2 are initialized
in Line 1 – these variables are assigned a fresh, random value
upon initialization. Up to Line 4 , random variables r1 and r2
are each declassified no more than once. Line XX, however,
could potentially cause r2 to be declassified more than once.
Line XX clearly is not secure since in this case the observable
public variable y and z could be correlated – depending on
which secret branch was taken earlier.

Therefore, we use an affine type system to ensure that each
random variable is implicitly declassified at most once. This
way, each time a random variable is implicitly declassified,
it will introduce a independently uniform variable to the
observable trace. In our security proof, a simulator can just
sample this random number to simulate the trace.

It turns out that the above example reflects the essence of
what is needed to implement oblivious RAM and oblivious
data structures in our source language. We refer the readers to
Sections IV and V-B for details.

Function calls and phantom functions. A straightforward
idea to prevent stack behavior from leaking information is
to enforce function calls in a public context. Then the re-
quirement is that each function’s body must satisfy memory-
and instruction-trace obliviousness. Further, by defining native
functions, ObliVM-lang implicitly assumes that their imple-
mentations satisfy memory- and instruction-trace oblivious-
ness.

Beyond this basic idea, ObliVM-lang makes a step forward
to enabling function calls within a secret if-statement by
introducing the notion of phantom function. The idea is that
each function can be executed in dual modes, a real mode
and and a phantom mode. In the real mode, all statements are
executed normal with real computation and real side effects.
In the phantom mode, the function execution merely simulates
the memory traces of the real world; no side effects take place;
and the phantom function call returns a secret-shared default
value of the specified return type. This is similar to padding
ideas used in several previous works [43], [44].

We will illustrate the use of phantom function with the
following prefixSum example. The function prefixSum(n)
accesses a global integer array a, and computes the prefix
sum of the first n + 1 elements in a. After accessing each
element (Line 3), the element in array a will be set to 0 (Line
4).

364

1 phantom secure int32 prefixSum

2 (public int32 n) {

3 secure int32 ret=a[n];

4 a[n]=0;

5 if (n != 0) ret = ret+prefixSum(n-1);

6 return ret;

7 }

The keyword phantom indicates that the function prefixSum
is a phantom function.

Consider the following code to call the phantom functions:

if (s) then x = prefixSum(n);

To ensure security, prefixSum will always be called no
matter s is true or false. When s is false, however, it must be
guaranteed that (1) elements in array a will not be assigned
to be 0; and (2) the function generates traces with the same
probability as when s is true. To this end, the compiler will
generate target code with the following signature:

prefixSum(idx, indicator)

where indicator means whether the function will be called
in the real or phantom mode. To achieve the first goal, the
global variable will be modified only if indicator is false.
The compiler will compile the code in line 4 into the following
pseudo-code:

a[idx]=mux(0, a[idx], indicator);

It is easy to see, that all instructions will be executed, and
thus the generated traces are identical regardless of the value
of indicator. Note, that such a function is not implementable
in any prior loop-unrolling based compiler, since n is provided
at runtime only.

It is worth noticing that phantom function relaxed the
restriction posed by previous memory trace oblivious type
systems [31], which do not allow looping in the secure
context (i.e. within a secret conditional). The main difficulty
in previous systems was to quantify the numbers of loop
iterations in the two branches of an if-statement, and to enforce
the two numbers to be the same. Phantom functions remove
the need of this analysis by executing both branches, with one
branched really executed, and the other executed phantomly.
As long as an adversary is unable to distinguish between a
real execution from a phantom one, the secret guard of the
if-statement will not be leaked, even when loops are virtually
present (i.e. in a phantom function).

IV. USER-FACING OBLIVIOUS PROGRAMMING

ABSTRACTIONS

Programming abstractions such as MapReduce and
GraphLab have been popularized in the parallel computing
domain. In particular, programs written for a traditional se-
quential programming paradigm are difficult to parallelize
automatically by an optimizing compiler. These new paradigms
are not only easy for users to understand and program with,
but also provide insights on the structure of the problem, and
facilitate parallelization in an automated manner.

In this section, we would like to take a similar approach
towards oblivious programming as well. The idea is to de-
velop oblivious programming abstractions that can be easily

understood and consumed by non-specialist programmers, and
our compiler can compile programs into efficient oblivious
algorithms. In comparison, if these programs were written
in a traditional imperative-style programming language like
C, compile-time optimizations would have been much more
limited.

A. MapReduce Programming Abstractions

An interesting observation is that “parallelism facilitates
obliviousness” [45], [46]. If a program (or part of a program)
can be efficiently expressed in parallel programming paradigms
such as MapReduce and GraphLab [47], [48] (with a few
additional constraints), there is an efficient oblivious algorithm
to compute this task. We stress that in this paper, we con-
sider MapReduce merely as a programming abstraction that
facilitates obliviousness – in reality we compile MapReduce
programs to sequential implementations that runs on a single
thread. Parallelizing the algorithms is outside the scope of this
paper. However, in a subsequent work GraphSC [24] jointly
with our collaborators, we do offer parallel oblivious imple-
mentations of programs written in a GraphLab abstraction –
and doing so requires the design of new, non-trivial parallel
oblivious algorithms detailed in the GraphSC paper [24].

Background: Oblivious algorithms for streaming MapRe-
duce. A streaming MapReduce program consists of two basic
operations, map and reduce.

• The map operation: takes an array denoted {αi}i∈[n]

where each αi ∈ D for some domain D, and a func-
tion mapper : D → K × V . Now map would apply
(ki, vi) := mapper(αi) to each αi, and output an array
of key-value pairs {(ki, vi)}i∈[n].

• The reduce operation: takes in an array of key-value
pairs denoted {(ki, vi)}i∈[n] and a function reducer :
K×V2 → V . For every unique key k value in this array,
let (k, vi1), (k, vi2), . . . (k, vim) denote all occurrences
with the key k. Now the reduce operation applies the
following operation in a streaming fashion:

Rk := reducer(k, . . . reducer(k, reducer(k, vi1 ,
vi2), vi3), . . . , vim)

The result of the reduce operation is an array consisting
of a pair (k,Rk) for every unique k value in the input
array.

Goodrich and Mitzenmacher [45] observe that any program
written in a streaming MapReduce abstraction can be converted
to efficient oblivious algorithms, and they leverage this obser-
vation to aid the construction of an ORAM scheme.

• The map operation is inherently oblivious, and can be
done by making a linear scan over the input array.

• The reduce operation can be made oblivious through an
oblivious sorting (denoted o-sort) primitive.

◦ First, o-sort the input array in ascending order of the
key, such that all pairs with the same key are grouped
together.

◦ Next, in a single linear scan, apply the reducer
function: i) If this is the last key-value pair for some
key k, write down the result of the aggregation (k,Rk).
ii) Else, write down a dummy entry ⊥.

365

1 Pair<K,V>[public n] MapReduce@m@n<I,K,V>

2 (I[public m] data, Pair<K, V> map(I),

3 V reduce(K, V, V), V initialVal,

4 int2 cmp(K, K)) {

5 public int32 i;

6 Pair<K, V>[public m] d2;

7 for (i=0; i<m; i=i+1)

8 d2[i] = map(data[i]);

9 sort@m<K, V>(d2, 1, cmp);

10 K key = d2[0].k;

11 V val = initialVal;

12 Pair<int1, Pair<K, V>>[public m] res;

13 for (i=0; i+1<m; i=i+1) {

14 res[i].v.k = key;

15 res[i].v.v = val;

16 if (cmp(key, d2[i+1].k)==0) {

17 res[i].k.val = 1;

18 } else {

19 res[i].k.val = 0;

20 key = d2[i+1].k;

21 val = initialVal;

22 }

23 val = reduce(key, val, d2[i+1].v);

24 }

25 res[m-1].k.val = 0;

26 res[m-1].v.k = key;

27 res[m-1].v.v = val;

28 sort@m<int1, Pair<K, V>>

29 (res, 1, zeroOneCmp);

30 Pair<K, V>[public n] top;

31 for (i=0; i < n; i = i + 1)

32 top[i] = res[i].v;

33 return top;

34 }

Fig. 1: Streaming MapReduce in ObliVM-lang. See Section IV-A for oblivious algorithms for the streaming MapReduce
paradigm [45].

◦ Finally, o-sort all the resulting entries to move ⊥ to the
end.

Providing the streaming MapReduce abstraction in
ObliVM. It is easy to implement the streaming MapReduce
abstraction as a library in our source language ObliVM-lang.
The ObliVM-lang implementation of streaming MapReduce
paradigm is provided in Figure 1.

MapReduce has two generic constants, m and n, to represent
the sizes of the input and output respectively. It also has three
generic types, I for inputs’ type, K, for output keys’ type, and
V, for output values’ type. All of these three types are assumed
to be secret.

It takes five inputs, data for the input data, map for the
mapper, reduce for the reducer, initialVal for the initial
value for the reducer, and cmp to compare two keys of type K.

Lines 6-10 are the mapper phase of the algorithm, then
line 11 uses the function sort to sort the intermediate results
based on their keys. After line 11, the intermediate results with
the same key are grouped together, and line 12-29 produce the
output of the reduce phase with some dummy outputs. Finally,
lines 30-35 use oblivious sort again to eliminate those dummy
outputs, and eventually line 36 returns the final results.

Notice that in these functions, there are three arrays, data,
d2, and res. The program declares all of them to have only
public access pattern, because they are accessed by either
a sequential scan, or an oblivious sorting. In this case, the
compiler will not place these arrays into ORAM banks.

Using MapReduce. Figure 1 needs to be written by an expert
developer only once. From then on, an end user can make use
of this programming abstraction.

We further illustrate how to use the above MapReduce
program to implement a histogram. In SCVM [15], a
histogram program is as below.

for (public int i=0; i<n; ++i) c[i] = 0;
for (public int i=0; i<m; ++i) c[a[i]] ++;

This program counts the frequency of each values in
[0..n − 1] in the array a of size m. Since the program makes
dynamic memory accesses, the SCVM compiler would decide
to put the array c inside an ORAM.

An end user can write the same program using a simple
MapReduce abstraction as follows. Our ObliVM-lang compiler
would generate target code that relies on oblivious sorting
primitives rather than generic ORAM, improving the perfor-
mance by a logarithmic factor in comparison with the SCVM
implementation. In Section VII, we show that the practical
performance gain ranges from 10× to 400×.

int2 cmp(int32 x, int32 y) {
int2 r = 0;
if (x < y) r = -1;
else if (x > y) r = 1;
return r;

}
Pair<int32, int32> mapper(int32 x) {
return Pair<int32, int32>(x, 1);

}
int32 reducer(int32 k, int32 v1, int32 v2) {

return v1 + v2;
}

The top-level program can launch the computation using

c = MapReduce@m@n<int32, int32, int32>
(a, mapper, reducer, cmp, 0);

B. Programming Abstractions for Data Structures

We now explain how to provide programming abstractions
for a class of pointer-based oblivious data structures described
by Wang et al. [26]. Figure 2b gives an example, where an
expert programmer provides library support for implementing a
class of pointer-based data structures such that a non-specialist
programmer can implement data structures which will be
compiled to efficient oblivious algorithms that outperform
generic ORAM. We stress that while we give a stack example
for simplicity, this paradigm is also applicable to other pointer-
based data structures, such as AVL tree, heap, and queue.

366

1 struct StackNode@m<T> {

2 Pointer@m next;

3 T data;

4 };

5 struct Stack@m<T> {

6 Pointer@m top;

7 SecStore@m store;

8 };

9 phantom void Stack@m<T>.push(T data) {

10 StackNode@m<T> node = StackNode@m<T> (

top, data);

11 this.top = this.store.allocate();

12 store.add(top.(index, pos), node);

13 }

14 phantom T Stack@m<T>.pop() {

15 StackNode@m<T> res = store

.readAndRemove(top.(index, pos));

16 top = res.next;

17 return res.data;

18 }

(a) Oblivious stack by non-specialist programmers.

1 rnd@m RND(public int32 m) = native lib.rand;

2 struct Pointer@m {

3 int32 index;

4 rnd@m pos;

5 };

6 struct SecStore@m<T> {

7 CircuitORAM@m<T> oram;

8 int32 cnt;

9 };

10 phantom void SecStore@m<T>.add(int32 index,

int@m pos, T data) {

11 oram.add(index, pos, data);

12 }

13 phantom T SecStore@m<T>

.readAndRemove(int32 index, rnd@m pos) {

14 return oram.readAndRemove(index, pos);

15 }

16 phantom Pointer@m SecStore@m<T>.allocate() {

17 cnt = cnt + 1;

18 return Pointer@m(cnt, RND(m));

19 }

(b) Code by expert programmers to help non-specialists implement
oblivious data structures.

Fig. 2: Programming abstractions for oblivious data structures.

Implementing oblivious data structure abstractions in
ObliVM. We assume that the reader is familiar with the oblivi-
ous data structure algorithmic techniques described by Wang et
al. [26]. To support efficient data structure implementations,
an expert programmer implements two important objects (see
Figure 2b):

• A Pointer object stores two important pieces of infor-
mation: an index variable that stores the logical identifier
of the memory block pointed to (each memory block has
a globally unique index); and a pos variable that stores
the random leaf label in the ORAM tree of the memory
block.

• A SecStore object essentially implements an ORAM,
and provides the following member functions to an end-
user: The SecStore.remove function essentially is a
syntactic sugar for the ORAM’s readAndRemove inter-
face [29], [42], and the SecStore.add function is a
syntactic sugar for the ORAM’s Add interface [29], [42].
Finally, the SecStore.allocate function returns a new
Pointer object to the caller. This new Pointer object
is assigned a globally unique logical identifier (using a
counter cnt that is incremented each time), and a fresh
random chosen leaf label RND(m).

Stack implementation by a non-specialist programmer.
Given abstractions provided by the expert programmer, a non-
specialist programmer can now implement a class of data
structures such as stack, queue, heap, AVL Tree, etc. Figure 2a
gives a stack example.

Role of affine type system. We use Figure 2b as an example
to illustrate how our rnd types with their affine type system
can ensure security. As mentioned earlier, rnd types have
an affine type system. This means that each rnd can be
declassified (i.e., made public) at most once. In Figure 2b, the

oram.readAndRemove call will declassify its argument rnd@m
pos inside the implementation of the function body. From an
algorithms perspective, this is because the leaf label pos will
be revealed during the readAndRemove operation, incurring a
memory trace where the value rnd@m pos will be observable
by the adversary.

C. Loop Coalescing and New Oblivious Graph Algorithms

We introduce a new programming abstraction called loop
coalescing, and show how this programming abstraction al-
lowed us to design novel oblivious graph algorithms such as
Dijkstra’s shortest path and minimum spanning tree for sparse
graphs. Loop coalescing is non-trivial to embed as a library
in ObliVM-lang. We therefore support this programming ab-
straction by introducing special syntax and modifications to
our compiler. Specifically, we introduce a new syntax called
bounded-for loop as shown in Figure 3. For succinctness, in
this section, we will present pseudo-code.

In the program in Figure 3, the bwhile(n) and bwhile(m)
syntax at Lines 1 and 3 indicate that the outer loop will be
executed for a total of n times, whereas the inner loop will
be executed for a total of m times – over all iterations of the
outer loop.

To deal with loop coalescing, the compiler partitions the
code within an bounded-loop into code blocks, each of which
will branch at the end. The number of execution times for
each code block will be computed as the bound number for the
inner most bounded-loop that contains the code block. Then
the compiler will transform a bounded loop into a normal loop,
whose body simulates a state machine that each state contains
a code block, and the branching statement at the end of each
code block will be translated into an assignment statement that
moves the state machine into a next state. The total number of

367

1 bwhile(n) (; u<n;) {
2 total = total + 1;
3 i=s[u];
4 bwhile (m) (i<s[u+1]) {
5 // do something
6 i=i+1;
7 }
8 u=u+1;
9 }

bwhile(n) (; u<n;) {
total = total + 1;
i=s[u];
bwhile (m) (i<s[u+1]) {

// do something
i=i+1;

}
u=u+1;

}

Block 1

Block 2

Block 3

state = (u<n) ? 1 : -1;
for (__itr=0; __itr<n+m+n; __itr++) {

if (state==1) { total=total+1; i=s[u];
state = (i<s[u+1]) ? 2 : 3

} else if (state==2) { // do something
i=i+1; state = (i<s[u+1]) ? 2 : 3

} else if (state==3) {
u=u+1; state = (u<n) ? 1 : -1

} // else execution is finished
}

iterations in total

Fig. 3: Loop coalescing. The outer loop will be executed at most n times in total, the inner loop will be executed at most m
times in total – over all iterations of the outer loop. A naive approach compiler would pad the outer and inner loop to n and m
respectively, incurring O(nm) cost. Our loop coalescing technique achieves O(n+m) cost instead.

Algorithms Complexity
Our Complexity Generic ORAM Best Known

Sparse Graph

Dijkstra’s Algorithm O((E + V) log2 V) O((E + V) log3 V) O((E + V) log3 V) (Generic ORAM baseline [29])

Prim’s Algorithm O((E + V) log2 V) O((E + V) log3 V)
O(E log3 V

log log V
) for E = O(V logγ V), γ ≥ 0 [22]

O(E log3 V
logδ V

) for E = O(V 2log
δ V), δ ∈ (0, 1) [22]

O(E log2 V) for E = Ω(V 1+ε), ε ∈ (0, 1] [22]

Dense Graph Depth First Search O(V 2 log V) O(V 2 log2 V) O(V 2 log2 V) [49]

TABLE II: Summary of algorithmic results. All costs reported are in terms of circuit size. The asymptotic notation omits
the bit-length of each word for simplicity. Our oblivious Dijkstra’s algorithm and oblivious Prim’s algorithm can be composed
using our novel loop coalescing programming abstraction and oblivious data structures. Our oblivious DFS algorithm requires
independent novel techniques. Due to space constraint, we only describe the oblivious Dijkstra’s algorithm as an example of
loop coalescing. We defer the full description of our oblivious MST and DFS algorithms to Appendix A.

Algorithm 1 Dijkstra’ algorithm with bounded for
Secret Input: s: the source node
Secret Input: e: concatenation of adjacency lists stored in a

single ORAM array. Each vertex’s neighbors are stored
adjacent to each other.

Secret Input: s[u]: sum of out-degree over vertices from 1 to
u.

Output: dis: the shortest distance from source to each node
1: dis := [∞,∞, ...,∞]
2: PQ.push(0, s)
3: dis[s] := 0
4: bwhile(V)(!PQ.empty())
5: (dist, u) := PQ.deleteMin()
6: if(dis[u] == dist) then
7: dis[u] := −dis[u];
8: bfor(E)(i := s[u]; i < s[u+ 1]; i = i+ 1)
9: (u, v, w) := e[i];

10: newDist := dist+ w
11: if (newDist < dis[v]) then
12: dis[v] := newDist
13: PQ.insert(newDist, u)

iterations of the emitted normal loop is the summation of the
execution times for all code blocks. Figure 3 illustrates this
compilation process.

We now show how this loop coalescing technique leads to
new novel oblivious graph algorithms.

Oblivious Dijkstra shortest path for sparse graphs. It is
an open problem how to compute single source shortest path

Algorithm 2 Oblivious Dijkstra’ algorithm
Secret Input: e, s: same as Algorithm 1
Output: dis: the shortest distance from s to each node

1: dis := [∞,∞, ...,∞]; dis[source] = 0
2: PQ.push(0, s); innerLoop := false
3: for i := 0 → 2V + E do
4: if not innerLoop then
5: (dist, u) := PQ.deleteMin()
6: if dis[u] == dist then
7: dis[u] := −dis[u]; i := s[u]
8: innerloop := true;

9: else
10: if i < s[u+ 1] then
11: (u, v, w):= e[i]
12: newDist := dist+ w
13: if newDist < dis[u] then
14: dis[u] := newDist
15: PQ.insert(newDist, v′)
16: i = i+ 1
17: else
18: innerloop := false;

(SSSP) obliviously for sparse graphs more efficiently than
generic ORAM approaches. Blanton et al. [49] designed a
solution for a dense graph, but their technique cannot be
applied when the graph is sparse.

Recall that the priority-queue-based Dijkstra’s algorithm
has to update the weight whenever a shorter path is found to
any vertex. In an oblivious version of Dijkstra’s, this operation

368

dominates the overhead, as it is unclear how to realize it
more efficiently than using generic ORAMs. Our solution to
oblivious SSSP is more efficient thanks to (1) avoiding this
weight update operation, and (2) a loop coalescing technique.

Avoiding weights updating. This is accomplished by two
changes to a standard priority-queue-based Dijkstra’s algo-
rithm, i.e., lines 6-7 and line 12 in Algorithm 1. The basic idea
is, whenever a shorter distance newDist from s to a vertex
u is found, instead of updating the existing weight of u in
the heap, we insert a new pair (newDis, u) into the priority
queue. This change can result in multiple entries for the same
vertex in the queue, leading to two concerns: (1) the size of
the priority queue cannot be bounded by V ; and (2) the same
vertex might be popped and processed multiple times from
the queue. Regarding the first concern, we note the size of
the queue can be bounded by E = O(V 2) (since E = o(V 2)
for sparse graphs). Hence, each priority queue insert and
deleteMin operation can still be implemented obliviously in
O(log2 V) [26]. The second concern is resolved by the check
in lines 6-7: every vertex will be processed at most once
because dis[v] will be set negative once vertex v is processed.

Loop coalescing. In Algorithm 1, the two nested loops (line
4 and line 8) use secret data as guards. In order not to leak the
secret loop guards, a naive approach is to iterate each loop a
maximal number of times (i.e., V +E, as V alone is considered
secret).

Using our loop coalescing technique, we can derive an
oblivious Dijkstra’s algorithm that asymptotically outperforms
a generic ORAM baseline for sparse graphs. The resulting
oblivious algorithm is described in Algorithm 2. Note that at
most V vertices and E edges will be visited, we coalesce the
two loops into a single one. The code uses a state variable
innerloop to indicate whether a vertex or an edge is being
processed. Each iteration deals with one of a vertex (lines 5-8),
an edge (lines 15-18), or the end of a vertex’s edges (line 13).
So there are 2V +E iterations in total. Note the ObliVM-lang
compiler will pad the if-branches in Algorithm 2 to ensure
obliviousness. Further, an oblivious priority queue is employed
for PQ.

Cost analysis. In Algorithm 2, each iteration of the loop
(lines 3-18) makes a constant number of ORAM accesses
and two priority queue primitives (insert and deleteMin,
both implemented in O(log2 V) time). So, the total runtime is
O((V + E) log2 V).

Additional algorithmic results. Summarized in Table II,
our loop coalescing technique also immediately gives a new
oblivious Minimum Spanning Tree (MST) algorithm whose
full description is deferred to Appendix A. Additionally, in
the process of developing rich libraries for ObliVM, we also
designed a novel oblivious Depth First Search (DFS) algorithm
that asymptotically outperforms a generic ORAM baseline
for dense graphs. The new DFS requires new algorithmic
techniques, and we defer its full description to Appendix A.

1 int@(2 ∗ n) karatsubaMult@n(

int@n x, int@n y) {

2 int@2 ∗ n ret;

3 if (n < 18) {

4 ret = x*y;

5 } else {

6 int@(n− n/2) a = x$n/2˜n$;
7 int@(n/2) b = x$0˜n/2$;
8 int@(n− n/2) c = y$n/2˜n$;
9 int@(n/2) d = y$0˜n/2$;

10 int@(2 ∗ (n− n/2)) t1 =

karatsubaMult@(n− n/2)(a, c);

11 int@(2 ∗ (n/2)) t2 =

karatsubaMult@(n/2)(b, d);

12 int@(n− n/2+ 1) aPb = a + b;

13 int@(n− n/2+ 1) cPd = c + d;

14 int@(2 ∗ (n− n/2+ 1)) t3 =

karatsubaMult@(n− n/2+ 1)(aPb, cPd);

15 int@(2 ∗ n) padt1 = t1;

16 int@(2 ∗ n) padt2 = t2;

17 int@(2 ∗ n) padt3 = t3;

18 ret = (padt1<<(n/2*2)) + padt2 +

((padt3 - padt1 - padt2)<<(n/2));

19 }

20 return ret;

21 }

Fig. 4: Karatsuba multiplication in ObliVM-lang. In line 6
to line 9, x$i˜j$ is used to extract the i-th to the j-th bits
of x.

V. IMPLEMENTING RICH CIRCUIT LIBRARIES IN SOURCE

LANGUAGE

A. Case Study: Basic Arithmetic Operations

The rich language features provided by ObliVM-lang make
it possible to implement complex arithmetic operations easily
and efficiently. We give a case study to demonstrate how to
use ObliVM-lang to implement Karatsuba multiplication.

Implementing Karatsuba multiplication. Figure 4 con-
tains the implementation of Karatsuba multiplication [50] in
ObliVM-lang. Karatsuba multiplication implements the fol-
lowing recursive algorithm to compute multiplication of two
n bit numbers, x and y, taking O(nlog2 3) amount of time.
As a quick overview, the algorithm works as follows. First,
express the n-bit integers x and y as the concatenation of n

2 -

bit integers: x = a*2n/2+b, y = c*2n/2+d. Now, x*y can be
calculated as follows:

t1 = a*c; t2 = b*d; t3 = (a+b)*(c+d);
x*y = t1<<n + t2 + (t3-t1-t2)<<(n/2);

where the multiplications a*c and b*d are implemented
through a recursive call to the Karatsuba algorithm itself (until
the bit-length is small enough).

To implement Karatsuba efficiently, we need to perform
operations on a subset of bits. We hence introduce the follow-
ing syntactic sugar in ObliVM-lang: In lines 6 to 9 of Figure 4,
the syntax num$i˜j$ means extracting the part of integer num
from i-th bit to j-th bit.

369

1 #define BUCSIZE 3

2 #define STASHSIZE 33

3 struct Block@n<T>{

4 int@n id, pos;

5 T data;

6 };

7 struct CircuitOram@n<T>{

8 dummy Block@n<T>[public 1<<n+1]

[public BUCSIZE] buckets;

9 dummy Block@n<T>[public STASHSIZE] stash;

10 };

11 phantom T CircuitOram@n<T>

.readAndRemove(int@n id, rnd@n pos) {

12 public int32 pubPos = pos;

13 public int32 i = (1 << n) + pubPos;

14 T res;

15 for (public int32 k = n; k>=0; k=k-1) {

16 for (public int32 j=0;j<BUCSIZE;j=j+1)

17 if (buckets[i][j] != null &&

18 buckets[i][j].id == id){

19 res = buckets[i][j].data;

20 buckets[i][j] = null;

21 }

22 i=(i-1)/2;

23 }

24 for (public int32 i=0;i<STASHSIZE;i=i+1)

25 if (stash[i]!=null&&stash[i].id==id) {

26 res = stash[i].data;

27 stash[i] = null;

28 }

29 return res;

30 }

Fig. 5: Part of our Circuit ORAM implementation in
ObliVM-lang. In Line 12, pos with type rnd is assigned to
a public integer. Here, an implicit declassification on pos
happens. The affine type system enforces that pos can be
implicitly declassified at most once.

B. Case Study: Circuit ORAM

In Figure 5, we show part of the Circuit ORAM implemen-
tation using ObliVM-lang. Line 3 to line 6 is the definition of
a ORAM block containing two metadata fields of an index of
type int, and a position label of type rnd, along with a data
field of type <T>.

Circuit ORAM (line 7-10) is organized to contain an array
of buckets (i.e. arrays of ORAM blocks), and a stash (i.e. an
array of blocks). The dummy keyword in front of Block@n<T>
indicates the value of this type can be null. In many cases,
(e.g. Circuit ORAM implementation), using dummy keyword
leads to a more efficient circuit generation.

Line 11-30 demonstrates how readAndRemove can be im-
plemented. Taking the input of an secret integer index id, and
a random position label pos, the label pos is first declassified
into public. Then affine type system allows declassifying pos
once, i.e. pos is never used for the rest of the program.
Further in a function calling readAndRemove with inputs arg1
and arg2, arg2 cannot be used either for the rest of the
program. This is crucial to enforce that every position labels
will use revealed only once after its generation, and, to our
best knowledge, no prior work enables such an enforcement

in a compiler.

VI. BACK END ARCHITECTURE

Our compiler emits code to a Java-based secure computa-
tion back end called ObliVM-GC. We defer details of ObliVM-
GC to our online full version [39].

VII. EVALUATION

A. Metrics and Experiment Setup

Number of AND gates. In Garbled Circuit-based secure
computation, functions are represented in boolean circuits
consisting of XOR and AND gates. Due to well-known Free
XOR techniques [5]–[7], the cost of evaluating XOR gates
are insignificant in comparison with AND gates. Therefore, a
primary performance metric is the number of AND gates. This
metric is platform independent, i.e., independent of the artifacts
of the underlying software implementation, or the hardware
configurations where the benchmark numbers are measured.
This metric facilitates a fair comparison with existing works
based on boolean circuits, and is one of the most popular
metrics used in earlier works [10], [11], [15], [16], [25], [26],
[33], [51], [52].

Wall-clock runtime. Unless noted otherwise, all wall-clock
numbers are measured by executing the protocols between two
Amazon EC2 machines of types c4.8xlarge and c3.8xlarge.
This metric is platform and implementation dependent, and
therefore we will explain how to best interpret wallclock
runtimes, and how these runtimes will be affected by the
underlying software and hardware configurations.

Compilation time. For all programs we ran, the compilation
time is under 1 second. Therefore, we do not separately report
the compilation time for each program.

B. Comparison with Previous Automated Approaches

The first general-purpose secure computation system, Fair-
play, was built in 2004 [12]. Since then, several improved
systems were built [9]–[11], [13], [14], [16], [33]. Except
for our prior work SCVM [15], existing systems provide no
support for ORAM – and therefore, each dynamic memory
access would be compiled to a linear scan of memory.

We now evaluate the speedup ObliVM achieves relative to
previous approaches. To illustrate the sources of the speedup,
we consider the following sequence of progressive baselines.
We start from Baseline 1 which is representative of a state-of-
the-art automated secure computation system. We then add one
feature at a time to the baseline, resulting in the next baseline,
until we arrive at Baseline 5 which is essentially our ObliVM
system.

• Baseline 1: A state-of-the-art automated system with
no ORAM support. Baseline 1 is intended to char-
acterize a state-of-the-art automated secure computation
system with no ORAM support. We assume a compiler
that can detect public memory accesses (whose addresses
are statically inferrable), and directly make such memory
accesses. For each each dynamic memory access (whose
address depends on secret inputs), a linear scan of mem-
ory is employed. Baseline 1 is effectively a lower-bound

370

Oblivious programming abstractions and
compiler optimizations demonstrated Parameters for Figure 6 Parameters for Table IV

and Table V
Dijkstra’s Algorithm Loop coalescing abstraction (see

Section IV-C).
V = 214, E = 3V V = 210, E = 3V

MST
Heap

Oblivious data structure abstraction (see
Section IV-B).

N = 227,K = 32, V = 480
N = 223,K = 32, V = 992Map/Set

Binary Search N = 223,K = 32, V = 992
AMS Sketch Compile-time optimizations: split data into

separate ORAMs [15].
ε = 6× 10−5, δ = 2−20 ε = 2.4× 10−4, δ = 2−20

Count Min Sketch ε = 3× 10−6, δ = 2−20

K-Means MapReduce abstraction (see Section IV-A). N = 218 N = 216

TABLE III: List of applications used in Figures 6. For graph algorithms, V,E stand for number of vertices and edges; for data
structures, N,K, V stand for capacity, bit-length of key and bit-length of value; for streaming algorithms, ε, δ stand for relative
error and failure probability; for K-Means, N stands for number of points.

estimate of the cost incurred by CMBC-GC [16], a state-
of-the-art system in 2012.

• Baseline 2: With GO-ORAM [40]. In Baseline 2, we
implement the GO-ORAM scheme on top of Baseline 1.
Dynamic memory accesses made by a program will be
compiled to GO-ORAM accesses. We make no additional
compile-time optimizations.

• Baseline 3: With Circuit ORAM [29]. Baseline 3 is
essentially the same as Baseline 2 except that we now
replace the ORAM scheme with a state-of-the-art Circuit
ORAM scheme [29].

• Baseline 4: Language and compiler. Baseline 4 assumes
that the ObliVM language and compiler are additionally
employed (on top of Baseline 3), resulting in additional
savings due to our compile-time optimizations as well as
our oblivious programming abstractions.

• Baseline 5: Back end optimizations. In Baseline 5, we
employ additional back end optimizations atop Baseline 4.
Baseline 5 reflects the performance of the actual ObliVM
system.

We consider a set of applications in our evaluation as
described in Table III. We select several applications to
showcase our oblivious programming abstractions, including
MapReduce, loop coalescing, and oblivious data structure
abstractions. For all applications, we choose moderately large
data sizes ranging from 768KB to 10GB. For data structures
(e.g., Heap, Map/Set) and binary search, for Baseline 1, we
assume that each operation (e.g., search, add, delete) is done
with a single linear scan. For Baseline 2 and 3, we assume that
a typical sub-linear implementation is adopted. For all other
applications, we assume that Baseline 1 to 3 adopt the most
straightforward implementation of the algorithm.

Results. Figure 6 shows the speedup we achieve relative
to a state-of-the-art automated system that does not employ
ORAM [16]. This speedup comes from the following sources:

No ORAM to GO-ORAM: For most of the cases, the data
size considered was not big enough for GO-ORAM to be
competitive to a linear-scan ORAM. The only exception was
AMS sketch, where we chose a large sketch size. In this
case, using GO-ORAM would result in a 300× speedup in
comparison with no ORAM (i.e., linear-scan for each dynamic
memory access). This part of the speedup is reflected in purple
in Figure 6. Here the speedup stems from a reduction in circuit
size (as measured by the number of AND gates).

Circuit ORAM: The red parts in Figure 6 reflect the
multiplicative speedup attained when we instead use Circuit
ORAM (as opposed to no ORAM or GO-ORAM, whichever
is faster). This way, we achieve an additional 51× to 530
performance gains – reflected by a reduction in the total circuit
size.

Language and compiler: As reflected by the blue bars
in Figure 6, our oblivious programming abstractions and
compile-time optimizations bring an additional 2× to 2500×
performance savings on top of a generic Circuit ORAM-
based approach. This speedup is also measurable in terms of
reduction in the circuit size.

Back end optimizations: Our ObliVM-GC is a better
architected and more optimized version of its predeces-
sor FastGC [33] which is employed by CMBC-GC [16].
FastGC [33] reported a garbling speed of 96K AND gates/sec,
whereas ObliVM garbles at 670K AND gates/sec on a com-
parable machine. In total, we achieve an 7× overall speedup
compared with FastGC [33].

We stress, however, that ObliVM’s main contribution is not
the back end implementation. In fact, it would be faster to hook
up ObliVM’s language and compiler with a JustGarble-like
system that employs a C-based implementation and hardware
AES-NI. However, presently JustGarble does not provide a
fully working end-to-end protocol. Therefore, it is an important
direction of future work to extend JustGarble to a fully working
protocol, and integrate it into ObliVM.

Comparison with SCVM. In comparison with SCVM,
ObliVM’s offers the following new features: 1) new oblivious
programming abstractions; 2) Circuit ORAM implementation
that is 20× to 30× times faster than SCVM’s binary-tree
ORAM implementation for 4MB to 4GB data sizes; and 3)
ability to implement low-level gadgets including the ORAM
algorithm itself in the source language.

In the online full version [39], we give a detailed compar-
ison with an SCVM-like system. Since the design of efficient
ORAM algorithms is mainly the contribution of the Circuit
ORAM paper [29], here we focus on evaluating the gains from
programming abstractions. Therefore, instead of comparing
with SCVM per se, we compare with SCVM + Circuit ORAM
instead (i.e., SCVM with its ORAM implementation updated
to the latest Circuit ORAM).

371

Fig. 6: Sources of speedup in comparison with state-of-the-art in 2012 [16]: an in-depth look.

C. ObliVM vs. Hand-Crafted Solutions

We show that ObliVM achieves competitive performance
relative to hand-crafted solutions for a wide class of common
tasks. We also show that ObliVM significantly reduces devel-
opment effort in comparison with previous secure computation
frameworks.

Competitive performance. For a set of applications, includ-
ing Heap, Map/Set, AMS Sketch, Count-Min Sketch, and
K-Means, we compared implementations auto-generated by
ObliVM with implementations hand-crafted by human experts.
Here the human experts are authors of this paper. We assume
that the human experts have wisdom of employing the most
efficient, state-of-the-art oblivious algorithms when designing
circuits for these algorithms. For example, Histogram and K-
Means algorithms are implemented with oblivious sorting pro-
tocols instead of generic ORAM. Heap and Map/Set employ
state-of-the-art oblivious data structure techniques [26]. The
graph algorithms including Dijkstra and MST employ novel
oblivious algorithms proposed in this paper. In comparison, our
ObliVM programs for the same applications do not require spe-
cial security expertise to create. The programmer simply has to
express these tasks in the programming abstractions we offer
whenever possible. Over the suite of application benchmarks
we consider, our ObliVM programs are competitive to hand-
crafted implementations – and the performance difference is
only 0.5%− 2% throughout.

We remark that the hand-crafted circuits are not necessarily
the optimal circuits for each computation task. However, they
do represent asymptotically the best known algorithms (or new
algorithms that are direct implications of this paper). It is
conceivable that circuit optimization techniques such as those
proposed in TinyGarble [34] can further reduce circuit sizes
by a small constant factor (e.g., 50%). We leave this part as
an interesting direction of future research.

Developer effort. We use two concrete case studies to demon-
strate the significant reduction of developer effort enabled by
ObliVM.

Case study: ridge regression. Ridge regression [53] takes

as input a large number of data points and finds the best-fit
linear curve for these points. The algorithm is an important
building block in various machine-learning tasks [52]. Previ-
ously, Nikolaenko et al. [52] developed a system to securely
evaluate ridge regression, using the FastGC framework [33],
which took them roughly three weeks [54]. In contrast, we
spent two student·hours to accomplish the same task using
ObliVM. In addition to the speedup gain from ObliVM-GC
back end, our optimized libraries result in 3× smaller circuits
with aligned parameters. We defer the detailed comparison to
the online technical report [39].

Case study: oblivious data structures. Oblivious AVL tree
(i.e, the Map/Set data structure) is an example algorithm that
was previously too complex to program as circuits, but now
becomes very easy with ObliVM. In an earlier work [26], we
designed an oblivious AVL tree algorithm, but were unable to
implement it due to high programming complexity. Now, with
ObliVM, we implement an AVL tree with 311 lines of code
in ObliVM-lang, consuming under 10 student·hours (including
the implementation as well as debugging).

We stress that it is not possible to implement oblivious AVL
tree in previous languages for secure computation, including
the state-of-the-art Wysteria [17].

D. End-to-End Application Performance

Currently in ObliVM-GC, we implemented a standard
garbling scheme with Garbled Row Reduction [36] and Fre-
eXOR [5]. We also implemented an OT extension protocol
proposed by Ishai et al. [3] and a basic OT protocol by Naor
and Pinkas [55].

Setup. For evaluation, here we consider a scenario where a
client secret shares its data between two non-colluding cloud
providers a priori. For cases where inputs are a large dataset
(e.g., Heap, Map/Set, etc), depending on the application, the
client may sometimes need to place the inputs in an ORAM,
and secret-share the resulting ORAM among the two cloud
providers. We do not measure this setup cost in our evaluation
– this cost can depend highly on the available bandwidth

372

Program Input size
CMBC-GC ObliVM Framework ObliVM + JustGarble

(estimate) (estimate)
#AND Total #AND Total Online Total Online
gates time gates time time time time

Basic instructions

Integer addition 1024 bits 2977 31ms 1024 1.7ms 0.6ms 0.12ms 0.05ms
Integer mult. 1024 bits 6.4M 66.4s 572K 833ms 274ms 69.4ms 28.9ms

Integer Comparison 16384 bits 32K 335.7ms 16384 26ms 8.58ms 1.96ms 0.82ms
Floating point addition 64 bits 10K 104ms 3035 4.32ms 1.45ms 0.36ms 0.15ms

Floating point mult. 64 bits 10K 104ms 4312 6.29ms 2.02ms 0.52ms 0.22ms
Hamming distance 1600 bits 30K 310ms 3200 5.07ms 1.71ms 0.39ms 0.16ms

Linear or super-linear algorithms

K-Means 0.5MB 550B 66d 2269M 62.1min 23.6min 4.58min 1.9min
Dijkstra’s Algorithm 48KB 755B 91d 10B 12.6h 3.09h 20.4min 8.5min

MST 48KB 755B 91d 9.6B 12.4h 3h 19.6min 8.2min
Histogram 0.25MB 137B 16.5d 866M 21.5min 8.56min 1.7min 42.5s

Sublinear-time algorithms

Heap 1GB 32B 3.9d 12.5M 59.3s 10.42s 1.5s 625ms
Map/Set 1GB 32B 3.9d 23.9M 117.2s 20.67s 2.9s 1.2s

Binary Search 1GB 32B 3.9d 1562K 7.36s 1.34s 189ms 78.8ms
Count Min Sketch 0.31GB 9.9B 30.8h 8088K 20.77s 6.4s 0.98s 0.41s

AMS Sketch 1.25GB 40B 5.18d 9949K 36.76s 9.95s 1.21s 504ms

TABLE IV: Application performance. Actual measured numbers are in bold. The remainder are estimated numbers and should
be interpreted with care. ObliVM numbers for basic instructions and sublinear-time algorithms are the mean of 20 runs. Since
for all these applications, our measurements have small spread (all runs are within 6% from the mean), we use a single run for
linear-time and super-linear algorithms (the same for Table V).

between the client and the two cloud providers. Therefore, our
evaluation begins assuming this one-time setup has completed.

End-to-end application performance. In Table IV, we con-
sider three types of applications, basic instructions (e.g., ad-
dition, multiplication, and floating point operations); linear
or super-linear algorithms (e.g., Dijkstra, K-Means, Minimum
Spanning Tree, and Histogram); and sublinear-time algorithms
(e.g., Heap, Map/Set, Binary Search, Count Min Sketch, AMS
Sketch). We report the circuit size, online and total costs for
a variety of applications at typical data sizes.

In Table IV, we also compare ObliVM with a state-of-
the-art automated secure computation system CMBC-GC [16].
We note that the authors of CMBC-GC did not run all of
these application benchmarks, so we project the performance
of CMBC-GC using the following estimate: we first change
our compiler to adopt a linear scan of memory upon dynamic
memory accesses – this allows us to obtain an estimate of
the circuit size CMBC-GC would have obtained for the same
applications. For the set of application benchmarks (e.g., K-
Means, MST, etc) CMBC-GC did report in their paper, we
confirmed that our circuit size estimates are always a lower
bound of what CMBC-GC reported. We then estimate the
runtime of CMBC-GC based on their reported 96K AND
gates per sec – assuming that a network bandwidth of at least
2.8MBps is provisioned.

As mentioned earlier, the focus of this paper is our lan-
guage and compiler, not the back end cryptographic implemen-
tation. It should be relatively easy to integrate our language
and compiler with a JustGarble-like back end that employs
hardware AES-NI. In Table IV, we also give an estimate

of the performance we anticipate if we ran our ObliVM-
generated circuits over a JustGarble-like back end. This is
calculated using our circuit sizes and the 11M AND gates/sec
performance number reported by JustGarble [4].

• Online cost. To measure online cost, we assume that
all work that is independent of input data is performed
offline, including garbling and input-independent OT pre-
processing. Our present ObliVM implementation achieves
an online speed of 1.8M gates/sec consuming roughly
54MBps network bandwidth.

• Offline cost. When no work is deferred to an offline phase,
ObliVM achieves a garbling speed of 670K gates/sec
consuming 19MBps network bandwidth.

Slowdown relative to a non-secure baseline. For complete-
ness, we now describe ObliVM’s slowdown in comparison
with a non-secure baseline where computation is performed
in cleartext. As shown in Table V, our slowdown relative to a
non-secure baseline is application dependent, and ranges from
45× to 9.3× 106×. We also present the estimated slowdown
if a JustGarble-like back end is used for ObliVM-generated
circuits. These numbers are estimated based on our circuit
sizes as well as the reported 11M AND gates/sec performance
metric reported by JustGarble [4].

In particular, we elaborate on the following interest-
ing cases. First, the distributed genome-wide association
study(GWAS) application is Task 1 in the iDash secure ge-
nomic analysis competition [56], with total data size 380KB.
This task achieves a small slowdown, because part of the
computation is done locally – specifically, Alice and Bob each
performs some local preprocessing to obtain the alle frequen-

373

Task K-Means Distributed GWAS Binary Search AMS Sketch Hamming dist.
Cleartext Time 0.4ms 40ms 10μs 80μs 0.3μs

Online Total Online Total Online Total Online Total Online Total

ObliVM
24min 62min 1.8s 5.2s 1.3s 7.4s 9.5s 36.8s 1.71ms 5.07msRuntime

Slowdown 3.6× 106 9.3× 106 45 130 1.3× 105 7.4× 105 1.2× 105 4.6× 105 6× 103 1.7× 104

ObliVM+JustGB
1.9min 4.58min 0.14s 0.28s 78.8ms 189ms 0.5s 1.2s 0.16ms 0.39ms(estimate)

Slowdown 2.9× 105 6.9× 105 3.5 7 7.9× 103 1.9× 104 6.3× 103 1.5× 104 5.3× 102 1.3× 103

TABLE V: Slowdown of secure computation compared with non-secure, cleartext computation. Parameter choices are the
same as Table IV. Online cost only includes operations that are input-dependent. All time measurements assume data are pre-
loaded to the memory. ObliVM requires a bandwidth of 19MBps. Numbers for JustGarble are estimated using ObliVM-generated
circuit sizes assuming 315MBps bandwidth.

cies of their own data, before engaging in a secure computation
protocol to compute χ2-statistics. For details, we refer the
reader to our online short note on how we implemented the
competition tasks. On the other hand, benchmarks with floating
point operations such as K-Means incur a relatively larger
slowdown because modern processors have special floating
point instructions which makes it favorable to the insecure
baseline.

VIII. CONCLUSION, SUBSEQUENT AND FUTURE WORK

We design ObliVM, a programming framework for auto-
mated secure computation. Additional examples can be found
at our project website http://www.oblivm.com, including pop-
ular streaming algorithms, graph algorithms, data structures,
machine learning algorithms, secure genome analysis [56], etc.

A. Subsequent Works and Adoption of ObliVM

To the best of our knowledge, our framework is al-
ready being adopted in other projects. First, the GraphSC
work [24] extends our ObliVM-GC framework to support
parallel execution of gadgets on modern architectures with
inherent parallelism, such as multi-core processor architec-
tures, and compute clusters. Because of ObliVM-GC’s clean
architecture, it was not too much work for GraphSC’s par-
allel extension, which required about 1200 more lines of
code on top of ObliVM-GC. Second, our collaborators (and
a subset of the authors of this paper) are implementing a
MIPS processor over our ObliVM framework. Such a MIPS
processor will allow maximum backward compatibility: code
written in any language can be compiled to a MIPS processor
using a stock compiler, and then evaluated securely. Third,
a group of networking researchers have used our ObliVM-
GC framework to develop privacy-preserving software-defined
networking applications [57]. Fourth, we used our ObliVM
framework to participate in the iDash Secure Genome Analysis
Competition [56], [58]. Finally, Wagner et al. also use our
ObliVM framework to develop privacy-preserving applications
on human microbiomes [59].

B. Future Work

In future work, we will implement a C-based Garbled
Circuit back end similar to JustGarble [4], such that we can
exploit hardware AES-NI features of modern processors. We

will also implement the state-of-the-art OT optimizations [8]. It
will also be interesting to provide support for multiple parties
and malicious security. Since ObliVM is designed to be good at
compiling programs to compact circuits, it will be interesting
to extend ObliVM to support other cryptographic back ends
such as fully homomorphic encryption, program obfuscation
and verifiable computation.

ACKNOWLEDGMENTS

We are indebted to Michael Hicks and Jonathan Katz for
their continual support of the project. We are especially thank-
ful towards Andrew Myers for his thoughtful feedback during
the revision of the paper. We also gratefully acknowledge Srini
Devadas, Christopher Fletcher, Ling Ren, Albert Kwon, abhi
shelat, Dov Gordon, Nina Taft, Udi Weinsberg, Stratis Ioanni-
dis, and Kevin Sekniqi for their insightful inputs and various
forms of support. We thank the anonymous reviewers for their
insightful feedback. This research is partially supported by
NSF grants CNS-1464113, CNS-1314857, a Sloan Fellowship,
Google Research Awards, and a subcontract from the DARPA
PROCEED program.

REFERENCES

[1] A. C.-C. Yao, “Protocols for secure computations (extended abstract),”
in FOCS, 1982.

[2] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in STOC, 1987.

[3] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending Oblivious
Transfers Efficiently,” in CRYPTO 2003, 2003.

[4] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
Garbling from a Fixed-Key Blockcipher,” in S & P, 2013.

[5] V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications,” in ICALP, 2008.

[6] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou, “On the security
of the “free-xor” technique,” in TCC, 2012.

[7] B. Applebaum, “Garbling xor gates “for free” in the standard model,”
in TCC, 2013.

[8] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More Efficient
Oblivious Transfer and Extensions for Faster Secure Computation,” ser.
CCS ’13, 2013.

[9] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A Framework
for Fast Privacy-Preserving Computations,” in ESORICS, 2008.

[10] B. Kreuter, B. Mood, A. Shelat, and K. Butler, “PCF: A portable circuit
format for scalable two-party secure computation,” in Usenix Security,
2013.

[11] B. Kreuter, a. shelat, and C.-H. Shen, “Billion-gate secure computation
with malicious adversaries,” in USENIX Security, 2012.

374

[12] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay: a secure two-
party computation system,” in USENIX Security, 2004.

[13] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“Tasty: tool for automating secure two-party computations,” in CCS,
2010.

[14] Y. Zhang, A. Steele, and M. Blanton, “PICCO: a general-purpose
compiler for private distributed computation,” in CCS, 2013.

[15] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks, “Automating Efficient
RAM-model Secure Computation,” in S & P, May 2014.

[16] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure Two-party
Computations in ANSI C,” in CCS, 2012.

[17] A. Rastogi, M. A. Hammer, and M. Hicks, “Wysteria: A Programming
Language for Generic, Mixed-Mode Multiparty Computations,” in S &
P, 2014.

[18] “Partisia,” http://www.partisia.dk/.

[19] “Dyadic security,” http://www.dyadicsec.com/.

[20] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” Journal of Cryptology, 2000.

[21] C. Liu, X. S. Wang, M. Hicks, and E. Shi, “Formalizing the ObliVM
language,” Manuscript in preparation, 2015.

[22] M. T. Goodrich and J. A. Simons, “Data-Oblivious Graph Algorithms
in Outsourced External Memory,” CoRR, vol. abs/1409.0597, 2014.

[23] J. Brickell and V. Shmatikov, “Privacy-preserving graph algorithms in
the semi-honest model,” in ASIACRYPT, 2005.

[24] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi,
“GraphSC: Parallel Secure Computation Made Easy,” in IEEE S & P,
2015.

[25] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh, “Privacy-preserving matrix factorization,” in CCS, 2013.

[26] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious Data Structures,” in CCS, 2014.

[27] M. Keller and P. Scholl, “Efficient, oblivious data structures for MPC,”
in Asiacrypt, 2014.

[28] J. C. Mitchell and J. Zimmerman, “Data-Oblivious Data Structures,” in
STACS, 2014, pp. 554–565.

[29] X. S. Wang, T.-H. H. Chan, and E. Shi, “Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound,” Cryptology ePrint Archive,
Report 2014/672, 2014.

[30] “Rsa distributed credential protection,” http://www.emc.com/security/
rsa-distributed-credential-protection.htm.

[31] C. Liu, M. Hicks, and E. Shi, “Memory trace oblivious program
execution,” ser. CSF ’13, 2013, pp. 51–65.

[32] S. D. Gordon, A. McIntosh, J. Katz, E. Shi, and X. S. Wang, “Secure
computation of MIPS machine code,” Manuscript, 2015.

[33] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits,” in Usenix Security Symposium,
2011.

[34] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly Compressed and Scalable Sequen-
tial Garbled Circuits,” in IEEE S & P, 2015.

[35] A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS, 1986.

[36] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” ser. EC ’99, 1999.

[37] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole: Reduc-
ing data transfer in garbled circuits using half gates,” in EUROCRYPT,
2015.

[38] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC, 2009.

[39] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A
programming framework for secure computation,” 2015, http://www.cs.
umd.edu/∼elaine/docs/oblivmtr.pdf.

[40] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” J. ACM, 1996.

[41] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious RAMs,” in STOC, 1987.

[42] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM with
O((logN)3) worst-case cost,” in ASIACRYPT, 2011.

[43] J. Agat, “Transforming out timing leaks,” in POPL, 2000.

[44] A. Russo, J. Hughes, D. A. Naumann, and A. Sabelfeld, “Closing
internal timing channels by transformation,” in ASIAN, 2006.

[45] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access of
outsourced data via oblivious RAM simulation,” in ICALP, 2011.

[46] D. Dachman-Soled, C. Liu, C. Papamanthou, E. Shi, and U. Vishkin,
“Oblivious network RAM,” Cryptology ePrint Archive, Report
2015/073, 2015, http://eprint.iacr.org/.

[47] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD, 2010.

[48] “Graphlab,” http://graphlab.org.

[49] M. Blanton, A. Steele, and M. Alisagari, “Data-oblivious graph algo-
rithms for secure computation and outsourcing,” in ASIA CCS, 2013.

[50] A. A. Karatsuba, “The Complexity of Computations,” 1995.

[51] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi, “SCO-
RAM: Oblivious RAM for Secure Computation,” in CCS, 2014.

[52] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions
of records,” in S & P, 2013.

[53] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2001.

[54] “Private communication,” 2014.

[55] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
SODA, 2001.

[56] http://humangenomeprivacy.org/2015.

[57] N. A. Jagadeesan, R. Pal, K. Nadikuditi, Y. Huang, E. Shi, and M. Yu,
“A secure computation framework for SDNs,” in HotSDN, 2014.

[58] X. S. Wang, C. Liu, K. Nayak, Y. Huang, and E. Shi, “idash secure
genome analysis competition using oblivm,” Cryptology ePrint Archive,
Report 2015/191, 2015, http://eprint.iacr.org/.

[59] J. Wagner, J. Paulson, X. S. Wang, H. Corrada-Bravo, and B. Bhat-
tacharjee, “Privacy-preserving human microbiome analysis using secure
computation,” Manuscript, 2015.

[60] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in)security of hash-
based oblivious RAM and a new balancing scheme,” in SODA, 2012.

APPENDIX A
ADDITIONAL OBLIVIOUS ALGORITHM

A. Additional Oblivious Graph Algorithm

It is has been an open question how to construct an Oblivi-
ous Depth First Search (ODFS) algorithm that outperforms one
built on generic ORAMs [22]. Here we answer this question
for dense graphs. We present O((E + V) log V) time ODFS
algorithm. In comparison, a generic-ORAM based oblivious
solution would take O((E+V) log2 V) time (ignoring possible
log log factors) [29], [60].

The challenge is that in standard DFS, we need to verify
whether a vertex has been visited every time we explore a new
edge. Typically, this is done by storing a bit-array that supports
dynamic access. To make it oblivious would require placing
this bit-array inside an ORAM, thus incurring O(log2 V) cost
per access, and O(E log2 V) time over all O(E) accesses.

To solve this problem, instead of verifying if a vertex has
been visited, we maintain a tovisit list of vertexes, which
preserves the same traversal order as DFS. When new vertexes
are added to this list, we guarantee that each vertex appears
in the list at most once using an oblivious sorting algorithm.
Algorithm 3 presents our oblivious DFS algorithm, and defines
the inputs, outputs, and how they are stored.

Since DFS explores the latest visited vertex first, so we
maintain a stack-like tovisit array, where the top of the stack

375

Algorithm 3 Oblivious DFS
Secret Input: s: starting vertex;
Secret Input: E: adjacency matrix, stored in an ORAM of V
blocks, each block being one row of the matrix.
Output: order: DFS traversal order // not in ORAM

1: tovisit:=[(s, 0), ⊥, ..., ⊥]; // not in ORAM
2: for i = 1 → |V | do
3: (u, depth) := tovisit[1];
4: tovisit[1] := (u,∞); // mark as visited
5: order[i] := u;
6: edge := E[u];
7: for v := 1 → |V | do
8: if edge[v] == 1 then // (u, v) is an edge
9: add[v] := (v, i); // add is not in ORAM

10: else // (u, v) is not an edge
11: add[v] := ⊥;

12: tovisit.Merge(add) ;

13: return order

(2,) (3,1) (1,)

(1,) (2,) (3,1)

(1,) (2,)

1.1 Merge and Sort

2.Sort and trim

(1,) (2,)

1.2 De-duplicate

add tovisit

Fig. 7: Oblivious DFS Example: illustration of
tovisit.Merge(add).

is stored in position 1. Each cell of tovisit is a pair (u,
depth):

• (u, depth = ∞): indicates that vertex u has been
expanded, and will not be expanded again.

• (u, depth �= ∞): indicates that vertex u was reached at
depth depth. The bigger the depth, the sooner u should
be expanded.

Each iteration of the main loop (Lines 2-12) reads the
top of the stack-like tovisit array, and expands the vertex
encountered. The most interesting part of the algorithm is Line
12, highlighted in red. In this step, the newly reached vertices
in this iteration, stored in the add array, will be added to the
tovisit array in a non-trivial manner as explained below. At
the end of each iteration (i.e., after executing Line 12), the
following invariants hold for the array tovisit:

• Sorted by depth. All entries in tovisit are sorted by
their depth in decreasing order. This ensures an entry
added last (with largest depth) will be “popped” first.

• Visited vertexes will never be expanded. All entries with
a ∞ depth come after those with a finite depth.

• No duplicates. Any two entries (v, d) and (v, d′) where
(d > d′) will be combined into (v, d).

• Fixed length. The length of tovisit is exactly V .

Algorithm 4 Minimum Spanning Tree with bounded for
Secret Input: s: the source node
Secret Input: e: concatenation of adjacency lists stored in a

single ORAM array. Each vertex’s neighbors are stored
adjacent to each other.

Secret Input: s[u]: sum of out-degree over vertices from 1 to
u.

Output: dis: the shortest distance from source to each node
1: explored := [false, false, ..., false]
2: PQ.push(0, s)
3: res := 0
4: bwhile(V)(!PQ.empty())
5: (weight, u) := PQ.deleteMin()
6: if(!explored[u]) then
7: res:= res + weight
8: explored[u] := true
9: bfor(E)(i := s[u]; i < s[u+ 1]; i = i+ 1)

10: (u, v, w) = e[i];
11: PQ.insert(w, v)

The merge operation (Line 12). The operation is performed
with two oblivious sorts. See Figure 7 for an illustrated
example.

1) O-sort and deduplicate. This sorting groups all entries
for the same vertex together, with the depth field in
descending order (∞ comes first). All ⊥ entries are
moved to the end. Then, for all entries with the same
vertex number (which are adjacent), we keep only the first
one (which has the largest depth value) while overwriting
others with ⊥.

2) O-sort and trim. This sorting will (a) push all ⊥ entries to
the end; (b) push all ∞ entries to the end; and (c) sort all
remaining entries in descending order of depth. Discard
everything but the first V entries.

Cost analysis. The inner loop (lines 8-11) runs in constant
time, and will run V 2 times. Lines 3-5 also run in constant
time, but will only run V times. Line 6 is an ORAM read,
and it will run V times. Since the ORAM’s block size is
V = ω(log2 V), each ORAM read has an amortized cost
of O(V log V). Finally, Line 12, which will run V times,
consists of four oblivious sortings over an O(V)-size array,
thus costs O(V log V). Hence, the overall cost of our algorithm
is O(V 2 log V).

B. Oblivious Minimum Spanning Tree

In Algorithm 4, we show the pseudo-code for minimum
spanning tree algorithm written using ObliVM-lang with our
new loop coalescing abstraction. The algorithm is very similar
to the standard textbook implementation except for the an-
notations used for bounded-for loops in Lines 4 and 9. As
described in Section IV-C, the inner loop (Line 9 to Line
11) will only execute O(V + E) times over all iterations
of the outer loop. Further, each execution of the inner loop
requires circuits of size O(log2 V), using latest oblivious
data structures [26] and Circuit ORAM [29]. So the overall
complexity is O((V +E) log2 V). We defer further discussions
about minimum spanning tree algorithm to our online full
version [39].

376

