
Oblix: An Efficient Oblivious Search Index

Pratyush Mishra Rishabh Poddar Jerry Chen Alessandro Chiesa Raluca Ada Popa

UC Berkeley

{pratyush, rishabhp, jerry.c, alexch, raluca.popa}@berkeley.edu

Abstract—Search indices are fundamental building blocks of
many systems, and there is great interest in running them on
encrypted data. Unfortunately, many known schemes that enable
search queries on encrypted data achieve efficiency at the expense
of security, as they reveal access patterns to the encrypted data.

In this paper we present Oblix, a search index for encrypted
data that is oblivious (provably hides access patterns), is dynamic
(supports inserts and deletes), and has good efficiency.

Oblix relies on a combination of novel oblivious-access tech-
niques and recent hardware enclave platforms (e.g., Intel SGX).
In particular, a key technical contribution is the design and
implementation of doubly-oblivious data structures, in which the
client’s accesses to its internal memory are oblivious, in addition
to accesses to its external memory at the server. These algorithms
are motivated by hardware enclaves like SGX, which leak access
patterns to both internal and external memory.

We demonstrate the usefulness of Oblix in several applications:
private contact discovery for Signal, private retrieval of public
keys for Key Transparency, and searchable encryption that hides
access patterns and result sizes.

I. INTRODUCTION

A search (or inverted) index is a fundamental building block

of many systems, and is often used for sensitive data such

as personal or corporate information. A rich line of work

[8, 12, 11, 17, 33, 36, 39, 40, 51, 52, 62, 63] aims to protect

such sensitive information by encrypting it while still allowing

search on the encrypted data. In this model, when a client

wishes to retrieve documents matching a certain keyword, the

client generates a search token for the keyword and sends it

to the server; the token hides information about the keyword,

but enables the server to identify all matching (encrypted)

documents and return them to the client, who can then decrypt.

Despite significant progress in constructing such encrypted

search indices, known schemes with good efficiency suffer from

an important limitation, namely, they leak access patterns. The

exact leakage varies from scheme to scheme, but in its basic

form it enables identification of which (encrypted) documents

match a keyword, for each searched keyword (this is leakage

profile L1 in the categorization of Cash et al. [10]).

A recent line of attacks [4, 10, 26, 30, 34, 42, 53, 79] has

demonstrated that such access pattern leakage can be used

to recover significant information about data in encrypted

indices. For example, some attacks can recover all search

queries [10, 34, 42, 79] or a significant portion of the content

of encrypted documents [4, 26]. Even hiding access patterns

can be insufficient: some attacks cleverly use the number of

documents that match a search query [10, 37], so it is important

to hide the result size as well. Clearly, preventing such leakage

would drastically improve security of encrypted search indices.

The go-to method to hide access patterns is Oblivious RAM

Apps

Private contact
discovery for

Signal (§VI-C)

Anonymizing
Google’s Key
Transparency

(§VI-D)

Oblivious
searchable

encryption (§VI-E)

Oblix

singly-oblivious doubly-oblivious

oblivious sorted
multimap (OSM) (§IV)

doubly-oblivious sorted
multimap (DOSM) (§V-C)

oblivious data structures
(ODS) (§III-B)

doubly-oblivious data
structures (DODS) (§V-B)

Path ORAM (§III-A) Path DORAM (§V-A)

Figure 1: Component stack of Oblix. Grey blocks are components that exist

before Oblix, and white blocks are Oblix’s contributions.

(ORAM) [27], but this is an expensive tool [10, 34, 50], and

thus few prior schemes try to hide access patterns [24], and

even fewer hide result sizes.

In this paper, we present Oblix (OBLivious IndeX), an

efficient search index that does not leak access patterns and

enables hiding the result size of searches. In particular, Oblix

protects against all the aforementioned attacks. At the same

time, Oblix supports updates (inserts and deletes) as well

as multiple (potentially malicious) users, properties that are

challenging to achieve for many prior schemes. While hardware

enclaves such as Intel SGX [45] are a key enabler for Oblix,

they are far from sufficient, and Oblix leverages a combination

of novel cryptographic protocols and systems techniques. Fig. 1

shows the logical layout of our techniques, as well as the three

applications that we demonstrate on top of Oblix.

A. Summary of techniques

We discuss the challenges that arose in designing our system,

and the techniques that we used to overcome them. Recall that

Path ORAM [64] (a popular and relatively efficient ORAM

scheme) consists of an ORAM client that stores the secret

key and an ORAM server holding the bulk of the data; the

ORAM client maintains a position map, mapping each item in

the search index to a location in the oblivious database, and a

stash of temporary values; see Section III-A for details.

Challenge: high round complexity. The position map has

size that is linear in the number of entries in the index. In our

applications (e.g., contact discovery for Signal), clients cannot

store it. The standard solution is to store the position map at

the ORAM server in another ORAM instance with its own

(smaller) position map, and recurse until the position map is

small enough for the client to store. However, this solution

implies that each index lookup requires a logarithmic (in the

index size) number of requests, and hence roundtrips, to the

server. These roundtrips severely degrade latency.

279

2018 IEEE Symposium on Security and Privacy

© 2018, Pratyush Mishra. Under license to IEEE.
DOI 10.1109/SP.2018.00045

Approach: Our first insight is that, by using recent hardware

enclave technology (such as Intel SGX [45]), we can improve

latency by reducing network roundtrips, as we now explain. At

the server, we place the ORAM client inside the enclave and

place the ORAM server in unprotected memory outside the

enclave. All accesses to the ORAM server are still oblivious, but

interaction between the ORAM client and server happens within

a single machine, and not over the network. In Section I-B,

we explain that hardware enclaves also let us support multiple

users. Unfortunately, simply “throwing the ORAM client inside

the enclave” is far from sufficient and, in fact, is insecure.

Challenge: hardware enclaves are not oblivious. Recent

attacks have shown that hardware enclaves like Intel SGX leak

access patterns in several ways (see Fig. 2).

First, prior work [69, 75] shows that an operating system

can observe page-level access patterns and uses this leakage

to recover encrypted document contents from the enclave.

Second, when the data grows large, it needs to be stored

on secondary storage. An attacker can then observe (page-

level) access patterns to this secondary storage. Third, an

attacker could mount an affordable hardware attack that taps

into the memory bus and reads memory addresses coming

from an enclave. We note that recent work aiming to prevent a

compromised operating system from mounting the page-fault

attack [59] does not address the second and third attacks.

In our setting, the above leakage is problematic because the

security guarantees of ORAM rely on the attacker not seeing

the access patterns of the ORAM client to its internal memory.

For Path ORAM, this means that if the attacker sees accesses

to the client’s position map or stash, it can infer access patterns

to the ORAM server, defeating the purpose of using ORAM.

Approach: We devise a two-part solution to address this

challenge. First, we avoid the need for a position map by

constructing an oblivious data structure (ODS) [74] that embeds

the position map into the data structure itself.

Second, we make the ORAM client’s accesses to its internal

state oblivious via novel oblivious algorithms. We call the

resulting ORAM scheme doubly oblivious because not only

are the accesses to the ORAM server oblivious, but so are the

accesses to the ORAM client’s internal memory. Thus, even

if the attacker observes access patterns to the client’s internal

memory, it learns nothing about the data. We design efficient

oblivious algorithms for stash eviction and for initializing the

ORAM server. These algorithms were challenging to design

because the ORAM client makes complex accesses to the stash

and (during initial setup) to the ORAM storage, and cannot rely

on any memory location being unobservable to the attacker. We

deem our doubly-oblivious algorithms for Path ORAM (called

DORAM), and also for the ODS framework (called DODS), to

be of independent interest.

Challenge: hide result sizes. Even if we hide access patterns,

we still need to hide the size of the result set for a search query.

Indeed, this information can be used to learn the contents of a

query or its result set [10, 37]. The simplistic solution is to pad

each result size to a worst-case upper bound, but this is too

expensive for many applications. For instance, when searching

documents, while most keywords might have a modest number

of matches, some popular keywords will have a large number

of matches, forcing the worst-case upper bound to be large. In

fact, Naveed [50] shows that padding to the worst-case size can

be more expensive than simply streaming the entire database

to the client, obviating the need for ORAM.

Approach: The insight is to examine how the user sees

search results in regular systems today. Many applications

do not display to users all results at once (think of web or

email searches), but only a page of r results, for some pre-

determined m (say, 20). To make these r results meaningful,

these applications show the “best” r results according to

some order of interest (relevance, chronological, or others

[54]). Ordering the results of a search query presupposes

embedding support for scoring in the search index, which is not

traditionally captured by searchable encryption (SE) schemes.

We deviate from this tradition and explicitly model scores in

the interface of our search index, which supports operations on

a scored inverted index data structure whose searches return the

r highest-scoring search results. Doing so enables us to avoid

expensive worst-case padding without compromising security,

while providing a meaningful correctness guarantee.

Challenge: ordered lists, efficiently and obliviously. We

need to design an oblivious data structure that can (efficiently)

search ordered lists, and support insertions and deletions.

Simply mapping the multimap [k ⇒ v1, v2, . . . , vn] to a regular

oblivious map ([55, 74]) [(k, 1) ⇒ v1, . . . , (k, n) ⇒ vn] is

problematic because inserts require shifting O(n) values.

Approach: We design a doubly-oblivious sorted multimap

(DOSM), a specialized data structure that efficiently supports

searching ranges in sorted lists, insertions, and deletions.

First, we design a suitable tree data structure, where inser-

tions/deletions run in time O(log n) instead of O(n) as above,

that is compatible with the ODS framework. Next, to achieve

double-obliviousness, one might consider simply employing our

DODS in place of ODS. However, ODS uses caching to fetch

tree nodes more efficiently. Replicating this feature without

leaking information about cache contents implies performing a

dummy ORAM access upon a cache hit (to give the impression

of a cache miss), thus defeating the purpose of the cache.

Instead, we carefully analyze our oblivious tree algorithms to

allow oblivious caching. For example, for certain tree operations

(such as inserts), one can predict from public information which

nodes will be accessed repeatedly (and thus must be in the

cache), and can thus safely retrieve these nodes from the cache

without a dummy ORAM access. We make a worst-case access

only when such a prediction is not possible.

B. Summary of Applications and Evaluation

We show that Oblix can scale to databases of tens of millions

of records while providing practical performance. For example,

retrieving the top 10 values mapped to a key takes only 12.7ms
for a database containing ∼ 16M records.

We point out that an important side effect of using hardware

enclaves is support for multiple users even when some users

280

processor

cores &

caches

RAM

bus enclave internal

memory

physical protection

boundary

memory

encryption

engine
address,

data
external RAM

storage
address,

data

processor

cores &

caches

RAM

bus enclave internal

memory

memory

encryption

engine
address,

data
external RAM

storage
address,

data

server-side

user 1 user 2 …

query results

gi

 a a

Figure 2: Visibility of access patterns with enclaves such as Intel SGX: the

white area is visible to the attacker, while the grey area is not. Data leaving

a hardware enclave is encrypted, but memory addresses are not encrypted.

are malicious and want to learn the queries of other users:

users submit their queries to the enclave, which executes the

queries correctly and privately for each user. A malicious user

cannot learn the query of another user. Supporting multiple

users is difficult with traditional ORAM systems because they

need users to follow an ORAM protocol correctly [6], else

they affect each other’s privacy.

We also demonstrate the viability of Oblix for three existing

applications that can benefit from private search indices. Two

of these three applications require support for multiple users.

We show how Oblix supports these applications with latencies

on the order of a few milliseconds. Since search indices are

basic building blocks, we expect Oblix to have further useful

applications.

Private contact discovery for Signal. Signal [2] is an

encrypted messaging system that recently introduced a service

for private contact discovery: users can query the service

to determine which contacts in their phone also use Signal,

without revealing their contact list to Signal’s servers. The

service performs a full scan of Signal’s database within an

SGX enclave to ensure obliviousness at the server [44]. We

show that Oblix provides a solution with lower latency. For

every contact in the user’s list, Oblix performs a logarithmic

search in the database instead of a linear scan.

Anonymizing Google’s Key transparency. Google’s Key

Transparency [1, 46] enables users to discover public keys of

other users. The service guarantees the integrity of the retrieved

public key, but does not provide anonymity: the server learns

the identity of the user whose key it returns. We show that

Oblix can be used to anonymize Key Transparency with low

latency. In particular, we show that Oblix provides an order-

of-magnitude improvement in latency compared to a baseline

approach that offers the same level of security.

Oblivious searchable encryption. As discussed above, many

searchable encryption (SE) schemes suffer from a long line

of attacks [4, 10, 26, 30, 34, 42, 53, 79] that exploit access

patterns. We use Oblix to augment the security of searchable

encryption by eliminating the leakage from access patterns.

We evaluate the augmented SE scheme over the entire Enron

email corpus [19] and show that it can support reads/writes

with a latency of a few milliseconds.

II. SYSTEM OVERVIEW

We provide an overview of Oblix. Fig. 2 shows the archi-

tecture of the system: multiple users interact with a server

equipped with a hardware enclave. (While our implementation

uses Intel SGX enclaves, Oblix’s design only requires an

abstract notion of an enclave.) The data stored on the server

is encrypted with a key held in the enclave. Each user uses

remote attestation [35] to ensure that it is communicating

with a correctly-setup enclave and establishes a secure (TLS)

connection with that enclave. Over this secure channel, the

user then sends search, insert, or delete queries to the server,

which responds after running Oblix’s protocols.

Oblix exposes to applications the interface of a search index

expressed as a sorted multimap (see Fig. 1). This index maps

a key k to an array of sorted and distinct values (v1, . . . , vn).
For example, if one wants to use this index to search words in

documents, one maps each word w (the key) to a list of pairs

(si, di), where di is the identifier of the document containing

w and si is a relevance score for that document. As discussed,

the scores enable meaningful selection of the top-r documents

for a search query, and thus aid in hiding the result size by

returning a fixed number of results. Concretely, DOSM provides

the function Map.Find(k, i, j) → (vi, . . . , vj), which returns

the i-th through j-th values for a key k. The user application

can make multiple requests to the same key k for different

intervals, and Oblix does not reveal to the attacker that the

requests are for the same key or interval. Nevertheless, the

user application must exercise caution when issuing many

simultaneous requests for the same key to prevent the attacker

from correlating them due to their timing. Like in prior work

on searchable encryption, we focus only on the design of the

search index, and recommend standard and complementary

techniques [64] to retrieve documents matching a search.

A. Threat model

a) Server: We employ a general and expressive attacker

model for a hardware enclave (see Fig. 2). The attacker can

perform any hardware attack it wishes on the memory and on

the memory bus, but cannot attack the processor in any way,

and cannot glean any information from inside the processor

(including processor keys). This attacker controls the server’s

software stack outside of the enclave, including the OS.

With respect to memory access patterns, we assume that

the adversary can observe (and modify) memory addresses

and (encrypted) data on the memory bus, in memory, or in

secondary storage (as in Fig. 2). We divide access patterns

into two types: access patterns to data and access patterns

to code [69, 75]. The doubly-oblivious algorithms of Oblix

prevent leakage of both types of access patterns assuming only

a simple “oblivious swap” primitive. Our source code carefully

implements these algorithms, but we do not ensure that the final

binary hides all access patterns to code because external factors

like compiler optimizations and cache replacement policies

influence how instructions are fetched into cache. Preventing

these factors from introducing data-dependent code accesses

281

is out of the scope of this paper; complementary prior work

exists that can aid in this task [31, 41].

At the same time, Oblix considers as out of scope any

side-channel leakage from within the enclave (e.g., cache-

timing, branch predictor-based, power analysis, or other timing

attacks) [9, 32, 29, 49, 58, 71], as well as rollback attacks

[65]. Techniques to mitigate such attacks are complementary

to Oblix, and many proposed solutions [14, 16, 31, 59, 60] can

be applied to Oblix. Finally, denial-of-service attacks are out

of scope: we do not prevent a cloud provider from destroying

all client data or denying access to it. Doing so is not in the

provider’s interest, as clients can choose a different provider.

Oblix achieves protection against modification attacks (e.g.,

attacker modifies data or queries) via Merkle hash trees [47]

both by using Intel SGX’s built-in integrity tree and by

employing a separate hash tree for data stored outside. These

techniques are standard, so in the rest of this paper, we do not

elaborate further on them and focus only on how we protect

against passive attackers via our (doubly-)oblivious protocols.

b) Client: In Oblix, a client can also misbehave: the client

can release its own queries or query results if it wishes, but

it cannot affect the privacy of the queries or results of other

clients. If a client wants to protect its query privacy, the client

should faithfully follow Oblix’s protocol.

III. PRELIMINARIES

We use two cryptographic building blocks: Path ORAM [64]

and oblivious data structures [74]. In the next two sub-sections,

we recall aspects of these schemes that are relevant to this paper.

Below and throughout this paper, we consider algorithms that

receive and update a client state; we use the notation “mut st”

to emphasize that the state variable st is mutable.

A. Path ORAM

Path ORAM [64] is a type of ORAM protocol [27]. It enables

a client to perform oblivious reads and writes to external

(server) memory with low bandwidth and latency.

The external (server) memory is arranged in a binary tree

of N buckets; each bucket stores C blocks of B bits each.

The client maintains two data structures: (i) a position map

Positions, which assigns to each block identifier bid a leaf lf

in the aforementioned tree such that block bid is stored by

one of the buckets on the path from the root to lf; (ii) a stash

Stash, which maps block identifiers to blocks for all blocks

that have not yet been evicted. (The same block identifier may

appear in Positions and Stash.) When using Path ORAM for

oblivious data structures (see Section III-B), the client does not

store Positions in full, but only a small portion of it, reducing

the size of the client’s state to constant.

Below, we summarize how the client can initialize the

external memory (via ORAM.Init), and then read blocks (via

ORAM.ReadBlock), modify them, and write them back (via

ORAM.Evict). This high-level summary will be useful later.

• Initialization: ORAM.InitS(m, [bli]
n
1) → st. On input a

maximum number of blocks m, and a list of initial blocks

[bli]
n
1 (with n ≤ m), ORAM.Init initializes the server S with

2log(⌈m/C⌉) buckets, and outputs the initial client state st.

• Read a block: ORAM.ReadBlockS(mut st, bid, lf) → bl.

On input client state st, a block identifier bid, and leaf lf,

ORAM.ReadBlock fetches all blocks on the path from the

root to lf, inserts these blocks into st.Stash, and outputs the

block bl in this path having identifier bid. Furthermore, it

assigns bid a new random leaf in st.Positions (ensuring that

the next access to this block fetches a random path).

The client can arbitrarily modify the contents of blocks in Stash.

To write back modified blocks, the client runs ORAM.Evict on

input all leaves [lfi]
n
1 fetched via ORAM.ReadBlock since the

last ORAM.Evict call. Informally, eviction reconstructs paths

for these leaves using blocks in Stash, and then writes these

paths back to the server. Eviction is designed to ensure that

Stash has a bounded size, which is crucial for efficiency.

• Stash eviction: ORAM.EvictS(mut st, [lfi]
n
1). On input

client state st and a list of leaves [lfi]
n
1 , ORAM.Evict

constructs buckets on the paths defined by [lfi]
n
1 , as follows.

Proceeding layer-by-layer in the ORAM tree, starting from

the leaf layer to the root layer, for each block in Stash,

determine whether the block may reside in a bucket on this

layer (as determined by the corresponding leaf in Positions

and whether there is space in that bucket). If so, the block

is evicted from the stash into that bucket. Any blocks that

are not evicted remain in Stash. The final set of buckets is

then written back to external memory.

We define security for Path ORAM in Appendix B.

B. Framework for oblivious data structures

Oblivious data structures (ODS) [74] is a framework for

designing oblivious analogues of data structures that can be

expressed as trees of bounded degree. This property is captured

by the next definition.

Definition 1. A data structure has tree-like accesses if it is

represented via nodes storing (data and) pointers to other

nodes such that: (i) every node has a unique predecessor (a

node pointing to it); (ii) every operation accesses a unique

root node before any other node; (iii) every operation accesses

a non-root node’s predecessor before it accesses the node.

The first step of using the ODS framework is to express

the desired functionality via a data structure that has tree-like

accesses; this could mean modifying an existing data structure

or designing one from scratch.

The second step is an initialization procedure that converts

an instance of this plaintext data structure into its oblivious

counterpart as follows. The client converts plaintext data

structure nodes into ODS nodes by replacing all plaintext

pointers with ODS pointers. (These depend on the underlying

ORAM scheme. For example, when using Path ORAM, an ODS

pointer is a pair ptr = (bid, lf) consisting of a block identifier

and a leaf.) Afterwards, the client encrypts and outsources all

ODS nodes to the (untrusted) server, while retaining only the

root’s ODS pointer. Definition 1 ensures that the client does

not need to store other pointers.

282

Subsequently, when executing an operation on the data

structure, the client runs a special start procedure, then uses

an access procedure to obliviously perform all the memory

accesses required by the operation, and then runs a finalize

procedure. To access a certain node, the client follows pointers

from the root to the node; throughout, the client updates

positions and data as required by the data structure operation.

• Initialization: ODS.InitS(m, [nodei]
n
1 , irt) → (st, ptrrt). On

input a maximum number of nodes m, a list of data structure

nodes [nodei]
n
1 , and an index irt for the “root” of the data

structure in this list, ODS.Init converts the nodes in [nodei]
n
1

to ODS nodes, initializes the server and outputs initial client

state st and an ODS pointer ptrrt for the root.

• Start: ODS.Start(mut st, ptrrt). On input the current client

state st and the root’s pointer ptrrt, ODS.Start updates the

state to use rt for future invocations of ODS.Access.
• Access: ODS.AccessS(mut st, op) → res. On input the

current client state st, and operation type op, ODS.Access
outputs the operation result res (and updates the state st).

There are four operation types.

– Read: op = read(ptr) and res = node. Takes as input a

pointer and outputs the node at the pointer.

– Insert op = ins(node) and res = ptr. Takes as input a

node to insert and outputs a pointer to it.

– Delete: op = del(ptr) and res = ⊥. Takes as input a

pointer to a node to delete and outputs ⊥.

– Write: op = write(node, ptr) and res = ⊥. Takes as

input a node to write and a pointer to it, and outputs ⊥.

• Finalize: ODS.FinalizeS(mut st, node, bound) → ptrrt. On

input current client state st, the (possibly updated) data

structure root node, and an upper bound bound on the

number of ORAM.ReadBlock operations to be performed,

ODS.Finalize invokes ORAM.ReadBlock on dummy inputs

enough times to make the total number of reads equal to

bound, and outputs an updated root pointer ptrrt.

We define security of ODS schemes in Appendix C.

IV. OBLIVIOUS SORTED MULTIMAPS

Our oblivious sorted multimap (OSM) enables a client to

outsource a certain type of key-value map to an untrusted server

so that the map remains encrypted and, yet, the client can still

perform search, insert, and delete operations with small cost

(in latency and bandwidth) without revealing which key-value

pairs of the map were accessed. This notion extends previous

notions such as oblivious maps [55, 74].

The following sub-sections are organized as follows: in

Section IV-A we define sorted multimaps, the data structure

supported by OSM; in Section IV-B we define OSM schemes;

in Section IV-C we informally describe our construction of an

OSM scheme. We provide more details in Appendix A.

A. Sorted multimaps

A sorted multimap Map is a data structure that maps a key

k ∈ {0, 1}ℓk to a (possibly empty) list of sorted and distinct

values (v1, . . . , vn) with vi ∈ {0, 1}ℓv , denoted Map[k]. It

supports the following operations.

• Size: Map.Size(k) → n. On input a key k, Map.Size outputs

the number of values in the list Map[k].
• Find: Map.Find(k, i, j) → (vi, . . . , vj). On input a key k,

start index i, and end index j (no less than i), Map.Find
outputs the values between locations i and j (included) in

the list Map[k]; any requested location beyond the end of the

list Map[k] is answered with the value v := ⊥. (In particular,

the answer always consists of j − i+ 1 values.)

• Insert: Map.Insert(k, v) → ⊥. On input a key k and value v,

Map.Insert adds v to the list Map[k] (if not already present),

keeping its values sorted.

• Delete: Map.Delete(k, v) → b. On input a key k and value

v, Map.Delete removes v from the list Map[k], and outputs

1 if v was present and 0 if not.

B. Definition of OSM schemes

An OSM scheme is a tuple OSM := (Init,Find, Insert,
Delete, S) that contains algorithms for two parties, the OSM

client and the OSM server. The OSM client uses Init to initialize

the scheme with a given sorted multimap; subsequently, he may

use Find to retrieve sublists associated with a given key, as

well as use Insert and Delete to modify such lists. All of these

algorithms require interaction with the OSM server, which runs

the interactive algorithm S. We represent this interaction by

treating S as an oracle.

• Initialization: OSM.InitS(Map) → st. On input a sorted

multimap Map, OSM.Init interacts with S in order to store

at S an “encryption” of Map, and then outputs a local state

st (to be stored by the OSM client).

The semantics of the following operations are the same as

the corresponding Map operations, where Map is the sorted

multimap stored encrypted at S by OSM.Init.

• Size: OSM.SizeS(mut st, k) → n. On input local state st

and key k, OSM.Size interacts with the server S and then

outputs an integer n.

• Find: OSM.FindS(mut st, k, i, j) → (vi, . . . , vj). On input

local state st, key k, start index i, and end index j (no less

than i), OSM.Find interacts with S and then outputs a list

of j − i+ 1 values (vi, . . . , vj).
• Insert: OSM.InsertS(mut st, k, v). On input local state st,

key k, and value v, OSM.Insert interacts with S.

• Delete: OSM.DeleteS(mut st, k, v) → b. On input local state

st, key k, and value v, OSM.Delete interacts with S and then

outputs a bit b.

Correctness. Correctness of an OSM scheme is defined via

two experiments. In the real world experiment, the adversary

has access to an oracle CReal that implements the OSM client.

In the ideal world experiment, the adversary has access to an

oracle CIdeal that implements a (plaintext) sorted multimap.

Both oracles expose to the adversary the same interface of

possible queries (Init, Size, Find, Insert, Delete). See

Fig. 3 for details on how CIdeal and CReal generate their

answers. An OSM scheme is correct if no efficient adversary

A can distinguish between these oracles, i.e., ACReal and A
CIdeal

are computationally indistinguishable as distributions.

283

Correctness Security

CReal CIdeal SReal SIdeal

Init(m,Map) store st ← OSM.InitS(m,Map) store Map store st ← OSM.InitS(Map) store st ← Sim.InitS(m, ℓk, ℓv)

Size(k) OSM.SizeS(mut st, k) → n Map.Size(k) → n OSM.SizeS(mut st, k) → n Sim.SizeS(mut st)

Find(k, i, j) OSM.FindS(mut st, k, i, j) → #—v Map.Find(k, i, j) → #—v OSM.FindS(mut st, k, i, j) → #—v Sim.FindS(mut st, j − i + 1)

Insert(k, v) OSM.InsertS(mut st, k, v) Map.Insert(k, v) → ⊥ OSM.InsertS(mut st, k, v) Sim.InsertS(mut st)

Delete(k, v) OSM.DeleteS(mut st, k, v) → b Map.Delete(k, v) → b OSM.DeleteS(mut st, k, v) → b Sim.DeleteS(mut st)

Figure 3: Correctness and security oracles for an OSM scheme. Oracle outputs are highlighted.

Security. Security of an OSM scheme is defined via two

experiments. In the real experiment, the adversary has access

to an oracle SReal that runs the OSM client and outputs nothing.

In the ideal experiment, the adversary has access to an oracle

SIdeal that runs a simulator Sim that receives only certain

subsets of the inputs. Both oracles expose to the adversary

the same interface of queries (Init, Size, Find, Insert,

Delete), and the adversary gets to observe all communication

of the oracles with the server S and all server state. See Fig. 3

for details on how SReal and SIdeal generate their answers.

An OSM scheme is secure if no efficient adversary A can

distinguish between these oracles, i.e., ASReal and A
SIdeal are

computationally indistinguishable as distributions.

C. Construction of an OSM scheme

First, we explain why oblivious maps from prior works

[55, 74] are not suitable for realizing OSM schemes; then, we

informally describe our construction of an OSM scheme. In

Appendix A we provide the detailed construction, including

pseudocode and proofs of correctness and security.

Insufficiency of oblivious maps. Suppose that, given a sorted

multimap that associates keys k to sorted lists (v1, . . . , vn),
we construct a (standard) map by associating new keys

(k, 1), . . . , (k, n) to the values v1, . . . , vn respectively. Search-

ing is simple: to find the values of a key k at indices i, . . . , j,

we fetch from the map the values associated to (k, i), . . . , (k, j).
However, if we want to insert, for a key k, a new value v′ that

is smaller than all other values in the list of k, we need to shift

every key “to the right”: (k, t) must become (k, t+1) for every

t ∈ {1, . . . , n}. This entails Ω(n) oblivious accesses, which is

expensive; even worse, doing so leaks the size of the list. Hiding

this leakage would require padding to the worst-case size of a

list, thereby making this idea even more expensive. (Indeed,

some keys might have very large lists, e.g., proportional to

the number of documents in a database!) Our approach below

sidesteps these issues by implicitly constructing a (sub-)tree

over each key’s list, ensuring that insertions have logarithmic

complexity and reveal only the total number of key-value pairs

in the map (and thus do not reveal the list’s size).

Our OSM construction. We directly construct an OSM

scheme in the oblivious data structure (ODS) framework of

[74], summarized in Section III-B. This involves two steps:

(i) construct a plaintext data structure having tree-like memory

accesses, and (ii) replace its memory accesses with oblivious

counterparts defined by the ODS framework. Recall (from

Definition 1) that an access pattern is tree-like if every data

structure operation starts from a distinguished root node, and

the graph arising from following pointers during its execution

forms a tree (there is a unique path from the root node to

all other nodes). Below we describe at a high level how to

complete the first of the two steps (the more interesting one).

A tree-like sorted multimap. We extend AVL search trees to

store multiple values for the same key, and borrow techniques

from order statistic trees to efficiently retrieve the i-th value

of a given key.

An AVL search tree is a balanced binary search tree that

implements a simple map from keys to values; it supports

searches, inserts, and deletes in worst-case logarithmic time

(via its worst-case logarithmic height). Each node in the tree

stores a key and a value; each key appears in at most one node.

(In particular, when inserting a key-value pair (k, v), if a node

with key k already exists, its value is simply overwritten to v.)

In contrast, we need a sorted multimap, which maps a key to

a sorted list of values. We still consider nodes that store a key

and a value (and other information described below), but now

allow multiple nodes to share the same key. Some operations

almost directly follow from AVL trees: (a) when inserting a

key-value pair (k, v) not already in the tree, we insert a new

new node for (k, v) via AVL tree insertion while treating the

pair (k, v) as a key; (b) deletions mirror insertions; (c) search

can be modified to retrieve the list of values associated with

a key (instead of just a single value). However, the foregoing

modifications fall short of enabling retrieval of arbitrary sublists

of the list corresponding to a key (without retrieving the full

list), as needed in a sorted multimap. To do this, we incorporate

techniques from order statistic trees, as we discuss next.

In an order statistic binary search tree, each node also stores

the number of nodes in each (left and right) child subtree. This

information can be used to efficiently find the node with the

i-th smallest key and to augment AVL insertions and deletions

to maintain this information. (See [15, Chapter 14].)

We modify this approach to obtain AVL-based sorted

multimaps in which one can efficiently find a key’s i-th value,

and thus also any sublist of values. Informally, a node with key

k stores the number of nodes that also have key k in each child

subtree (rather than all nodes, potentially with different keys, in

those subtrees); see Fig. 4. Straightforward modifications to the

insertion and deletion procedures ensure that this information

is maintained across operations. It is not hard to verify that

the resulting data structure has tree-like accesses, as required.

Correctness of the foregoing approach is reducible to the

correctness of AVL search trees and order statistic trees (our

284

modifications are minor). Insertions and deletions take time

O(log(n)), while finding the i-th through j-th values for a key

requires time O(log(n) + j − i).

key

value

l_same_key_size r_same_key_size

l_child_ptr r_child_ptr

Figure 4: Information stored in a node in our OSM construction.

Below we summarize operations for the sorted multimap

(with tree-like accesses) outlined above. Due to space reasons,

we omit a description of deletions; analogously to inserts, these

can be achieved via suitable modifications of AVL tree deletion.

• Size(k): Depth-first search for k until the first k-node, which

stores the total number of k-nodes in the tree, and return this

number. (Compare: in order statistic trees, the root stores

the number of nodes in the tree.)

• Find(k, i, j): Find paths to the i-th and j-th k-nodes and

fetch all k-nodes in the subtree bounded by these.

1) Find path to s-th k-node: Find the s-th smallest node

in the order statistic subtree consisting only of k-nodes.

That is, run a depth-first search for k as follows. When

visiting a k′-node with k′ �= k, recursively search the left

subtree (if k < k′) or right subtree (if k > k′). When

visiting a k-node, letting l be the number of k-nodes in its

left subtree: if s < l, recursively search the left subtree;

if s = l, output the path to the current node; if s > l, set

s := s− (l + 1) and recursively search the right subtree.

2) Retrieve nodes: Find the node at which the paths to the i-
th and j-th k-nodes diverge and run a breadth-first search

from this node by considering only k-nodes. That is, add

to the BFS queue only nodes that are no less than the i-th
k-node and no greater than the j-th k-node (to compare

two nodes, first compare their keys and, if equal, compare

their values). Return the resulting set of k-nodes.

• Insert(k, v): Search for the node where insertion must occur;

if this node already exists, then we are done; otherwise,

create a new node and make it the appropriate child of

the previously-visited node. Then retrace the path from the

inserted node back to the root, rebalancing as needed. The

rebalancing procedure is a modification of order statistic

AVL trees that ensures that the size information of visited

k-nodes is correctly updated (at each step of retracing, we

store the number of k-nodes seen thus far and, if the node at

the current step is a k-node, then we rebalance and update

the size of the appropriate child subtree).

We remark that our OSM construction above (coupled with

padding as discussed below) already provides a search index

that does not leak access patterns without relying on hardware

enclaves: the client stores the OSM state locally and interacts

with the remote server over the network for each OSM

operation. Leveraging hardware enclaves will enable better

performance and support for multiple users.

V. DOUBLY-OBLIVIOUS PRIMITIVES

We describe how to design client algorithms for Path ORAM,

ODS, and OSM that are themselves oblivious. We refer to the

resulting cryptographic primitives as doubly-oblivious because

not only are the client’s accesses to the server’s memory

oblivious, but also the client’s accesses to its own local memory

are oblivious. This requirement arises when running the ORAM

client inside a hardware enclave at the server because, as

discussed in Section II-A, the enclave does not hide access

patterns to this encrypted memory. Path ORAM (Section III-A),

ODS (Section III-B), and OSM schemes (Section IV) already

guarantee that the client’s accesses to external memory are

oblivious, but in current constructions the client’s accesses to

internal memory are not oblivious.

One can trivially make accesses to internal memory oblivious

by replacing each such access with a linear scan. However,

such an approach yields expensive solutions, and the challenge

lies in designing alternatives that, ideally, are almost as efficient

as the original client algorithm.

In the next few sub-sections we explain how we design

efficient data-oblivious client algorithms for Path ORAM

(Section V-A), ODS (Section V-B), and OSM schemes (Sec-

tion V-C). Table I summarizes the costs of the (standard) client

algorithms and the data-oblivious variants that we use. Our

experiments demonstrate that the overheads that arise from

double obliviousness are small (see Sections VI-A and VI-B).

A. Doubly-oblivious RAM

We now provide intuition for our construction of path doubly-

oblivious RAM (Path DORAM). We begin by describing our

construction of DORAM.ReadBlock and DORAM.Evict, and

then describe our DORAM.Init algorithm. Pseudocode for these

algorithms is provided in Appendix D.

In the rest of this section, we denote the number of buckets at

the server by N , the capacity of each bucket (in blocks) by C,

and the block size (in bits) by B. We use a linear-time function

OblSwap(b, x, y) that obviously swaps x and y if b = 1. Our

algorithms also invoke Batcher’s oblivious odd-even merge

sort, which has time complexity O(n log2 n) to sort n items.

Naive approach. A straightforward approach to achieve

double-obliviousness is to replace suitable sub-routines (e.g., a

binary search) with linear scans. Namely, ReadBlock fetches

the required path, inserts all blocks on that path into its stash,

and returns the requested block by linearly scanning the stash;

Evict constructs buckets for the path of a leaf lf as follows.

Initialize mut inserted = 0. Then for each block bl in the stash Stash:
For each bucket bu on the path of lf (ordered from leaf upwards):
1) Let is_ancestor = 1 if bu is on the path to bl’s leaf.
2) For each i ∈ {1, . . . , C}:

a) Let cond = bu[i].is_dummy ∧ is_ancestor ∧ ¬ inserted.
b) OblSwap(cond, bl, bu[i]).
c) Set inserted := cond ∨ inserted.

Namely, for each block bl in Stash, Evict scans the list of

buckets to be written back, checks if bl can go in one of these,

and obliviously writes it to that bucket if so. When evicting

n paths after n ReadBlock calls, the stash contains roughly

S = nC log(N) blocks, and so this naive Evict procedure has

time complexity O(B · S · nC logN) = O(n2BC2 log2 N).

285

Scheme Algorithm
Client type

Standard Doubly-oblivious

Path
ORAM

Init Ti1 = O(CN logCN) O(CN log2(CN) logN)
ReadBlock Tr = O(C logN logS) O(C logN + ebl)
Evict Te = O(BS logN log(ibu)) O(ebl2 logN +BS log2 BS)

ODS

Init Ti2 = O(CN log(CN)) + Ti1
Start Ts = O(1)

Access Ta =

{

�∈ cache

∈ cache

O(log(ca)) + Tr

O(log(ca))
O(ca) + Tr

O(ca)
Finalize Tf(n) = O(ca)+Te (with ebl = n)

OSM

Init O(CN log(CN)) + Ti2
Find(m) (2h+m) · Ta + Tf(2h+m)
Size h · Ta + Tf(h)
Insert (h+ 1) · Ta + Tf(h+ 1)

B block size (in bits)

N server size (in buckets)

C bucket size (in blocks)

ebl size of ExplicitBlocks (in blocks)

ibu size of ImplicitBuckets (in buckets)

S = ebl+C · ibu, stash size (in blocks)

ca size of ODS cache (≤ ebl)

h = 1.44 log(CN), worst-case height of

AVL tree with CN nodes

Table I: Comparison of standard and doubly-oblivious client algorithms for Path ORAM, ODS, and OSM. Whenever a client algorithm invokes a subroutine,

the running time of the subroutine is for the corresponding client type. For example, DODS invokes Path DORAM algorithms.

Saving a multiplicative factor of C. We improve upon

naive eviction by splitting eviction into two steps, saving a

multiplicative factor of C. In the first step, we assign blocks

to buckets; in the second step, we write blocks to buckets.

• Block assignment. We initialize a linear-scan “bucket fullness”

map BuFu from bucket nodes (i.e., identifiers of the bucket’s

location in the ORAM tree, not the full bucket) to the number

of blocks in those buckets (i.e., the fullness of the bucket) so

that entries in BuFu are sorted by their nodes from leaf to root.

Then, for each block bl in Stash, we scan the list of buckets

to be written back (in order from leaf to root), and update

BuFu as follows. If bl should be written to a bucket bu, then

we increment BuFu[bu.node], and set bl.node := bu.node.

Otherwise, we perform dummy operations. This step has

time complexity O(S · n logN) ≈ O(n2C log2 N).
• Bucket construction. We obliviously sort Stash to group

together blocks with the same node, and construct buckets

out of these. To hide how many blocks are assigned to

buckets, we pad Stash with dummy blocks. Any unassigned

blocks are re-added to Stash. This step has time complexity

O(B · S log2(S)) ≈ O((nBC logN) log2(nBC logN)).

The overall complexity of this eviction procedure, which we call

Evicts, is O(n2C log2 N + nBC logN log2(nBC logN)) ≈
O(nC logN(n logN +B log2(nBC logN))).

Processing only requested blocks. We further improve on the

above via the following insight. Even though a user invokes

ReadBlock to request only one block, O(logN) additional

blocks are implicitly fetched and added to the stash, which

means that Evict has to process these additional blocks when

constructing buckets. Our new eviction procedure Evictf gains

in time complexity by separately processing explicitly requested

blocks (henceforth explicit blocks) and implicitly fetched blocks

(henceforth implicit blocks), as follows.

In more detail, we modify ReadBlock to scan the list of

fetched buckets, (obliviously) remove the block of interest

(say bl), and replace bl with a dummy block. It then adds

bl to a list ExplicitBlocks of previously requested explicit

blocks, and adds the updated list of fetched buckets to a list

of previously requested buckets ImplicitBuckets. For eviction,

note that blocks in (buckets in) ImplicitBuckets are already

bucketed correctly: they are already in buckets on the path to

their leaves. Hence, we can skip re-bucketing these blocks, and

can focus on re-bucketing only the blocks in ExplicitBlocks.

Concretely, Evictf , like Evicts, proceeds in two phases:

• Block assignment. We use ImplicitBuckets to compute a

pre-populated bucket fullness map BuFu. Then, for every

block in ExplicitBlocks, we update BuFu as in Evicts and

assign each block to a bucket. This step has time complexity

O(|ExplicitBlocks| · n logN).
• Bucket construction. We proceed as in Evicts.

1

The overall time complexity of Evictf is thus

O(nC logN(n/C + B log2(nBC logN))), which saves

a factor of logN
C compared to Evicts.

However, this efficiency gain comes at the expense of a lower

eviction rate; Evictf evicts fewer blocks than Evicts. This is

because Evictf only re-assigns explicit blocks, and does not

shuffle implicit blocks. Furthermore, each such explicit block

can only be assigned to a slot vacated by a previously fetched

explicit block. Together, these constraints reduce the rate of

stash eviction. As a countermeasure, our final construction of

DORAM.Evict invokes Evictf in the common case (for speed),

but invokes Evicts at fixed intervals (to empty out the stash).

Empirical evidence from our experiments, suggests that this

interval can be a fixed constant as small as 3.

Initialization. There is a naive doubly-oblivious initialization

strategy: given the initial list of n blocks [bli]
n
1 , individually

insert every block into the stash, and then use DORAM.Evict to

evict each block from the stash. However this method requires

time O(nCN). When the server is at capacity (CN ≈ n), this

grows quadratically with n, and is too large for the database

sizes that we consider. We address this problem by designing

a new doubly-oblivious initialization strategy that has time

complexity O(CN log3 N), which enables us to efficiently

handle databases with tens of millions of records.

Our algorithm proceeds layer by layer in the tree. Within each

layer, it proceeds similarly to Evict: it first assigns blocks to

buckets, and then obliviously sorts these blocks to group them

1In our implementation, instead of sorting, we write blocks to buckets via
linear scans (as in the naive approach). While this is asymptotically worse,
for our use cases this method is concretely faster.

286

into buckets. In more detail, for a given tree layer, DORAM.Init
first obliviously sorts [bli]

n
1 by the blocks’ tree nodes (initially,

just each block’s assigned leaf). Next, it scans the list to

compute the fullness of each bucket, and assigns each block to

a bucket according to this fullness. Finally, it constructs buckets

by obliviously sorting [bli]
n
1 so that blocks with the same tree

nodes are together (as before, we pad with enough dummy

blocks before to hide the number of bucketed blocks). To

proceed to the next layer, it sets the nodes of unassigned blocks

to be the parent of their current nodes. Since there are log(N)
layers, and each layer requires two oblivious sorts and a linear

scan, this algorithm has time complexity O(CN log3(N)).

Final construction. We now summarize our final construction

of Path DORAM; for detailed pseudocode see Appendix D.

• Initialization: ORAM.InitS(m, [bli]
n
1) → st. Proceed layer-

by-layer in the ORAM tree. In each layer, first assign blocks

to buckets, and then obliviously sort these blocks to group

them into buckets.

• Read a block: DORAM.ReadBlockS(mut st, bid, lf) → bl.

Fetch buckets on the path to lf. Scan this list to obliviously

replace the block bl having identifier bid with a dummy

block. Insert the modified buckets into ImplicitBuckets, and

insert bl into ExplicitBlocks. Finally, output bl.

• Eviction: DORAM.EvictS(mut st, [lfi]
n
1). Given a integer t

fixed at setup, store in st a counter c ∈ Zt. If c = 0 mod t,
invoke Evicts; else, invoke Evictf . Increment c.

Note that we have not specified how to obliviously access the

client’s position map because this can be achieved by standard

recursion techniques [64] or by using the ODS framework [74].

Stashless ORAM. The primary obstacle we faced in designing

Path DORAM was creating a doubly-oblivious stash eviction

procedure. To avoid this trouble, one might instead think to use

a stateless ORAM scheme [28]. However, this idea does not

help because all such schemes still require working space to

store blocks between reads and eviction; the adjective “stateless”

only describes permanent client storage. Obliviously accessing

this working space is expensive when it is large, but Path

ORAM only requires polylog(N) working space, compared

to space nc for 0 < c < 1 for other schemes.

B. Doubly-oblivious data structures

We describe a framework for doubly-oblivious data struc-

tures (DODS). We modify the existing framework for singly-

oblivious data structures (ODS, see Section III-B) to: (i) use

Path DORAM (see prior sub-section), instead of merely Path

ORAM, as a building block; and (ii) leverage other ideas for

efficiency. Details follow.

The ODS client. We briefly recall the construction of the

singly-oblivious data structure framework of [74]. The client

realizes a data structure operation by running ODS.Start once,

ODS.Access some number of times, and ODS.Finalize once;

throughout, the client maintains a cache with fetched nodes.

Whenever the client is queried on a node (via ODS.Access),
it looks for the node in the cache and returns it if there;

otherwise, the client performs an ORAM.ReadBlock oper-

ation to fetch the node from the server, adds it to the

cache, and returns it. Since the number of ORAM.ReadBlock
operations may be data dependent, ODS.Finalize pads this

number to a data-independent (worst-case) number with dummy

ORAM.ReadBlock operations, thereby ensuring that accesses

to the (external) memory at the server are oblivious.

Naive approach. A naive approach to make the ODS client

doubly-oblivious is to simply replace the underlying ORAM

scheme with a DORAM scheme and replace the cache with

an oblivious one. However, this does not suffice: whether the

returned node is fetched from the cache or the server depends

on the queried node, and an adversary observing accesses to

internal memory can distinguish between the two cases, even if

accesses to external memory are oblivious and their number is

data independent. A straightforward fix is to always perform

a (possibly dummy) DORAM.ReadBlock operation whenever

DODS.Access is invoked, regardless of whether the queried

node is cached or not. However, while doubly-oblivious, this

approach harms efficiency since the ODS client now may

perform unnecessary DORAM.ReadBlock operations.

Our approach. We avoid unnecessary dummy ReadBlock

operations via the observation that, in certain cases, the

adversary can predict if a node is fetched from the cache.

For example, in an AVL tree insertion, the rebalancing phase

only visits nodes that have been previously visited, and so are

in the cache. In our doubly-oblivious sorted multimap (see

Section V-C), we design insertion so that rebalancing begins

only after a fixed number of nodes have been accessed in the

previous phase, so the adversary can predict when rebalancing

begins, and thus also that the nodes accessed then are cached.

In such cases, we can forgo the dummy DORAM.ReadBlock
operation and gain efficiency. When we are not in such a case

(the information of whether a node is in the cache is not public),

we fall back to the aforementioned simple approach (of always

performing a dummy DORAM.ReadBlock).

Our framework for doubly-oblivious data structures (DODS)

formalizes the foregoing ideas, most notably by exposing a

richer interface that enables fine-grained control over memory

accesses to internal memory. Below we summarize the interface

and implementation of each algorithm of this framework.

• Initialization: DODS.InitS(m, [nodei]
n
1 , irt) → (st, ptrrt).

Equals ODS.Init, but calls DORAM.Init, not ORAM.Init.
• Start: DODS.Start(mut st, ptrrt). Equals to ODS.Start.
• Access: DODS.AccessS(mut st, op) → res.

Input now has the form “op(data, dummy, isCached)”. There

are four cases:

– dummy = 1, isCached = ?: Perform dummy ReadBlock.

– dummy = 1, isCached = 1: Fetch dummy node from the

cache without dummy ReadBlock.

– dummy = 0, isCached = 1: Fetch actual node from cache.

– dummy = 0, isCached = ?: Perform ReadBlock to fetch

real (non-dummy) node. If queried node is already cached,

perform dummy ReadBlock.

287

• Finalize: DODS.FinalizeS(mut st, node, bound) → ptrrt.

Similar to ODS.Finalize, except that it does not perform

additional dummy operations. Instead, it checks that the

number of DORAM.ReadBlock operations thus far equals

bound. Satisfying this condition is the responsibility of the

data structure designer. (Compare: in ODS the designer only

has to specify the bound; padding occurs automatically.)

C. Doubly-oblivious sorted multimaps

We construct doubly-oblivious sorted multimaps (DOSM).

We modify our construction of singly-oblivious sorted mul-

timaps (OSM, see Section V-B) to: (i) use DODS (see prior

sub-section), instead of merely ODS, as a building block; and

(ii) leverage the fine-grained interface of DODS for improved

efficiency. Details follow.

Naive approach. A naive approach to make the OSM client

doubly-oblivious is to simply replace the underlying ODS

framework with the DODS framework. However, this does

not suffice: the OSM client maintains internal state (outside

the ODS framework) and its accesses to it are data dependent.

For example, OSM.Insert uses a depth-first search to find the

insertion location, and this search terminates as soon as the

location is found, which depends on the key-value pair to

insert. The adversary can learn some information about this

pair because it can observe when this termination occurs (after

this point all accesses correspond to cache accesses rather than

external memory accesses).

Our construction. To eliminate such leakage, we identify

data-dependent sub-procedures of our algorithms, and appropri-

ately pad out the number of accesses made in these procedures

to worst-case bounds that depend only on the number of key-

value pairs in the map. For example, when an algorithm initiates

a depth-first search, we ensure that the search terminates after

accessing exactly 1.44 log(n) (real or dummy) nodes, which

is the worst-case height of an AVL tree with n nodes.

Next, we design our algorithms so that that we can always

predict whether or not a given dummy access needs to return

a cached node. We can then take advantage of the fine-grained

DODS interface to avoid unnecessary dummy operations.

Below we summarize our doubly-oblivious construction (again

omitting deletions for space reasons, as in Section IV-C).

• DOSM.Init: Equals OSM.Init, but calls DODS.Init instead

of ODS.Init.
• DOSM.Size: Instead of halting the depth-first search when

the first k-node is found, perform additional DODS.Access
calls with input read(dummy = 1, isCached = ?, k) to

ensure that DORAM.ReadBlock is invoked 1.44 log(n) times

in total (the worst-case height of an AVL tree with n nodes).

• DOSM.Insert: Modify the depth-first search used to find the

insertion location so that DORAM.ReadBlock is invoked

1.44 log(n) times (as in DOSM.Size above). Also, in the

retracing step, modify the rebalancing procedure to perform

the same (real or dummy) operations regardless of the type

of rebalancing required.

• DOSM.Find: Recall that OSM.Find has two steps: find paths

to the i-th and j-th k-nodes (nodei and nodej from here on)

and fetch all k-nodes in the subtree bounded by these. We

describe how both steps can be made doubly-oblivious.

1) Find path to s-th k-node: Modify the depth-first search

so that DORAM.ReadBlock is invoked 1.44 log(n) times

(as in DOSM.Size above).

It is important to ensure that retrieving the path to nodej
after retrieving the path to nodei does not reveal where

the two paths diverge. This happens when the search

retrieves common nodes from the cache and not the server,

and is prevented by invoking DODS.Access with input

read(dummy = 0, isCached = ?, k) (this ensures that a

ReadBlock is always performed).

2) Retrieve required nodes: Find the node at which the

paths to nodei and nodej diverge (as in OSM.Find), and

then, instead of performing a simple breadth-first search

from this node, run a modified breadth-first search that

(a) uses an oblivious priority queue instead of a simple

first-in-first-out queue, and (b) terminates after visiting

2 · 1.44 log(n) + j − i nodes. Initialize this queue with

(real and dummy) keys of the nodes on paths to nodei
and nodej , in that order. When fetching the next node

from the queue, add the key of the appropriate child

to the queue with an “exploration priority” that decides

when the node gets visited. We assign priorities so that

nodes on the bounding paths are visited first, and k-nodes

in the intersection afterwards.

VI. EVALUATION AND APPLICATIONS

Implementation. We realized singly- and doubly-oblivious

versions of Oblix using ∼ 10K lines of Rust code, split across

libraries for singly- and doubly-oblivious Path ORAM, ODS,

and OSM.

Evaluation. We evaluate Oblix via a set of benchmarks

(Sections VI-A and VI-B) and via three applications: (i) private

contact discovery for the Signal messaging service (Sec-

tion VI-C); (ii) private retrieval of public keys in Key Trans-

parency (Section VI-D); (iii) oblivious searchable encryption

(Section VI-E). In each application, our results show that

Oblix is competitive with, and sometimes also improves upon,

alternate approaches with similar security guarantees. Overall,

our work shows that ORAM-based techniques, often eschewed

for their perceived large costs, can scale to large databases

(tens of millions of records) and can be effectively applied to

concrete problem domains.

We emphasize that this paper focuses on achieving low

latency, and so our experiments focus on that. In many settings

throughput is also important, and we leave to future work the

problem of achieving high throughput as well. Our techniques

ultimately leverage properties of Path ORAM, for which strong

concurrency properties, exemplified in systems such as TaoStore

[56], are known. We thus believe that improving throughput is

an exciting, and potentially viable, future project.

Experimental setup. All experiments use a server with an

Intel Xeon E3-1230 v5 CPU at 3.40GHz with 8 logical cores,

running Ubuntu 16.04. The CPU supports the Intel SGX v1

288

Figure 5: Latency of Path DORAM operations with an increasing number of

initial blocks, across different block sizes B.

instruction set, and the total memory available to enclaves is

limited to around 94MB. In experiments with Signal and Key

Transparency, we initialize Oblix with the maximum number

of key-value pairs that fit within memory, which is 64GB
in our testbed. We note that production servers are typically

equipped with larger memory sizes; we therefore extrapolate the

performance of Oblix for larger database sizes as well. Further,

since the size of key-value pairs differs across applications, we

configure the Path ORAM implementation underlying Oblix

with a different block size per application. Finally, before each

experiment, we warm up the ORAM stash via dummy requests

in order to capture steady-state performance of Oblix.

A. Path DORAM microbenchmarks

We begin by evaluating the performance of our Path DORAM

scheme (see Section V-A). Recall that during initialization,

DORAM.Init is provided as input a maximum storage size m
(in blocks), and a list of n initial blocks (with n ≤ m). We

evaluate the performance of a single operation (a ReadBlock

followed by a Evict) in our DORAM scheme for n = m ∈
{

101, . . . , 107
}

and for block sizes from 8 to 512 bytes. In

Fig. 5, we report the average latency over 1000 operations;

this latency is between tens to hundreds of microseconds.

Comparison with ZeroTrace. To put these numbers into

perspective, we compare the performance of our scheme with

that of ZeroTrace [57], which also implements a DORAM

scheme within a hardware enclave. We provide a qualitative

comparison between the two systems in Section VII; here, we

focus on performance. The source code of ZeroTrace is not

publicly available, and so we can only compare our results

with the ones reported in the paper. However, both our testbeds

use machines of similar capabilities.

Unlike Oblix, which uses the ODS framework to outsource

the client’s position map, ZeroTrace recursively stores the

position map in smaller ORAMs. Each ZeroTrace ORAM

operation thus requires recursive position map lookups. We

estimate our DORAM scheme’s performance in this setting

by measuring the access times for each level of recursion

and taking their sum. Our findings underscore the efficiency

of our Path DORAM protocols compared to ZeroTrace: with

107 blocks and a block size of 8 bytes, an ORAM operation

in Oblix takes 0.47ms compared to ZeroTrace’s 1.22ms to

1.32ms (based on the choice of the underlying ORAM scheme),

representing a speedup of ∼ 2.5×. The gap widens further as

the block size increases: for a block size of 512 bytes, Oblix

takes 0.54ms and is 4.5× to 6.5× faster than ZeroTrace.

B. DOSM microbenchmarks

We evaluate the latency of searches and inserts in our doubly-

oblivious OSM scheme (see Section V-C). Our experiments

show that latency is a few milliseconds, even when the database

contains millions of key-value pairs.

Searches. The cost of a search query depends on (i) the

total number of key-value pairs, and (ii) the number of values

requested for the queried key. We experimentally measure

latency as a function of these parameters, and report the average

latency across 100 iterations. All experiments use keys and

values of 8 bytes each, and use an underlying Path ORAM

implementation with a block size of 160 bytes.

• Increasing the number of key-value pairs. We initialize an

OSM scheme with up to 224 key-value pairs. We then issue

search queries for random keys, requesting a single value

per key. Fig. 6 shows that search time is logarithmic in

the number of key-value pairs. Moreover, even with 224

key-value pairs, search time remains low at 4.4ms.
• Increasing the number of requested values. We initialize

an OSM scheme with 214 keys each mapped to 210 values,

for a total of 224 key-value pairs. We then issue queries

for random keys, fetching an increasingly-large interval of

values. Fig. 7 shows that search time is linear in the size

of the interval. (Fetching a single value merely requires the

client to fetch a single path in the search tree, as opposed to

two paths in the general case of fetching intervals of values.)

• Increasing the number of values per key. We initialize an

OSM scheme with 2i keys each mapped to 224−i values,

for a total of 224 key-value pairs. We then issue queries

for random keys, fetching an interval of 10 values. Our

experiments confirm that search time does not depend on

the number of values per key: across different choices of i,
the latency is steady at 12.7ms.

Inserts. We initialize an OSM scheme with up to 224 key-

value pairs, and then measure the cost of inserting a random

key-value pair. Fig. 8 shows that insert time is logarithmic in

the number of key-value pairs in the database. Moreover, even

with 224 key-value pairs, insert time remains low at 5.4ms.

C. Private contact discovery in Signal

Signal [2] is a popular messaging service that offers end-to-

end message encryption. When a user downloads the Signal

application on a phone, the application communicates with

Signal servers to determine which contacts on the user’s phone

use Signal; similarly, when the user adds new contacts to the

phone, the application must determine which of these use Signal.

This process is known as contact discovery. The importance

to ensure its privacy (Signal servers do not learn the contact

list in the user’s phone) has already been documented [44].

289

Figure 6: Search time is logarithmic in the

number of key-value pairs.

Figure 7: Search time is linear in the size of

the requested interval.

Figure 8: Insert time is logarithmic in the

number of key-value pairs

Signal’s approach. Signal makes contact discovery private

via a method based on Intel SGX [44, 3], where the user sends

a list of encrypted contacts and Signal servers compare these,

within the hardware enclave, against the database of all Signal

users. In order to prevent leakage through accesses to internal

memory, the enclave first converts the list into an oblivious

hash table, and then iterates over all Signal users, looking up

each one in the hash table. Overall, if the user sends a list with

m contacts and Signal has N users, the latency is O(m2+N);
note that the latency is linear in the number of all Signal users.

Our approach. We describe how to use Oblix to achieve pri-

vate contact discovery with latency O(m logN); in particular,

we do not perform a linear scan of all Signal users. This is an

asymptotic improvement because N ≫ m (Signal has millions

of users but any user typically has no more than several hundred

contacts on a phone). Our experiments below show that these

asymptotic gains yield efficiency gains in practice.

We use Oblix to construct, and then maintain, an oblivious

index over all Signal users. When a user submits a list of

contacts, the hardware enclave iterates over the contacts in the

list, looking up each one in the oblivious index. As a result,

latency is linear in the number contacts in the list (m), but

only logarithmic in the number of all Signal users (N).

Experimental comparison. We consider databases of up to

N = 128M users. Each user is identified by a phone number

represented as an 8-byte integer (as in Signal’s implementation);

we thus initialized the index with 8-byte keys mapped to null

values. We set the Path ORAM block size to 160 bytes.

We compare the performance of Signal’s approach and our

approach by issuing contact discovery requests with lists of

different sizes (m = 1, 10, 100, 1000), and measure the latency

to process the request at the server. We report the average time

across 100 iterations per request.

Fig. 9 compares costs of Signal’s approach and our approach.

The cost in Signal’s approach comes from: (i) converting

the submitted list into an oblivious hash table, and then

(ii) performing all the lookups. As the total number N of users

grows, the latter dominates and the total cost increases linearly

with N . When N = 128M, the latency is 950− 830ms.
Fixing the number m of contacts submitted by the user,

the cost in our approach grows logarithmically in N , and so

eventually becomes lower than the cost in Signal’s approach,

as N grows; the crossover point depends on m. E.g., fixing

m = 100, if N = 88M then both approaches take ∼ 579ms;
if N = 128M then Signal’s approach degrades to 835ms while

our approach only takes 591ms (an improvement of ∼ 30%).

Figure 9: Cost of private contact discovery in Signal vs. Oblix with an

increasing number of registered users, for address books of sizes 1 to 1000.

Dotted segments are extrapolations. Both axes scale logarithmically.

Fig. 9 also extrapolates the cost of both approaches for

databases larger than 128M users. With 1 billion users (N =
109), if m = 1000 then Signal’s approach and our approach

have similar costs (7.4 s and 7.6 s respectively); but if m = 100,

then our approach is ∼ 9× faster (0.74 s vs. Signal’s 6.7 s).
Fig. 9 further highlights the benefit of our approach for

incremental (as opposed to initial) contact discovery, where

a user inserts new contacts into the phone and the Signal

application must discover which of these are Signal users.

While for initial contact discovery m = 100 and m = 1000 are

representative values, for incremental contact discovery smaller

values such as m = 1 and m = 10 are more appropriate. For

these, our approach is up to two orders of magnitude faster.

For example, when m = 1 and N = 128M, our approach is

∼ 140× faster (5.9ms vs. Signal’s 832ms).

D. Anonymizing Google’s Key Transparency

Google’s Key Transparency (KT) [1, 46] is a scheme for

ensuring integrity of key lookups: users can safely fetch other

users’ public keys from an untrustworthy key server. To achieve

this, the service maintains a Merkle prefix tree over all user

keys and gossips the root hash among the users; up to 2d keys

can be supported if the tree height is d (d = 256 in Google’s

implementation). When a user requests a public key, the service

returns a proof of integrity that consists of the siblings of all the

nodes in the path from the root to the leaf containing the public

key. However, KT does not provide anonymity: when the server

answers a request, it knows the identity of the user whose key

it returns. We describe how to use Oblix to anonymize KT,

with an order-of-magnitude improvement in cost compared to

a baseline approach with the same level of security.

290

Figure 10: Cost of anonymous lookup in Key Transparency in baseline

approach vs. our approach. Dotted segments are extrapolations. Both axes

scale logarithmically.

Baseline approach. A simple baseline approach, similar in

spirit to Signal’s approach for private contact discovery (see

Section VI-C), is a lookup that obliviously scans the whole

Merkle tree, within the hardware enclave. Namely, we first

initialize an empty array with d buckets; each bucket has a real

slot and a dummy slot. We then iterate over all nodes in the

Merkle tree as follows: given a node at depth j, if the node is

part of the proof we write its value to the real slot in the j-th

bucket; otherwise, we write it to the dummy slot. (Writing to

either slot can itself be made oblivious.) After iterating over all

nodes, the array will contain the proof for the desired public

key. Overall, this approach has latency O(N), where N is the

total number of keys in the Merkle tree.

Our approach. We use Oblix to achieve anonymity with

lookup latency O(d logN), a significant asymptotic gain over

the baseline approach. The idea is simple: we store all Merkle

tree nodes in an oblivious index in which keys are node

identifiers and each key is mapped to a hash. As in the plaintext

case, lookup consists of retrieving O(d) nodes from the tree.

Experimental comparison. We consider databases of up to

N = 20M public keys. We use 256-bit ECDSA public keys

and use SHA-512/256 hashes to build a Merkle tree over the

keys, in line with Google’s implementation of KT. This results

in a Path ORAM block size of 256 bytes. We compare the

performance of the baseline approach and our approach by

issuing 100 lookup requests and reporting their average latency.

Fig. 10 compares the baseline approach and our approach.

The cost of the baseline approach is linear in N (number of

public keys), while that of our approach is logarithmic in N . For

small N , the baseline approach has lower cost; for N = 20M,

both approaches have comparable costs (2.1 s with Oblix vs.

2.3 s for the baseline); as N increases further, our approach

has significantly lower cost. For example, for N = 40M our

approach is 2× faster (2.3 s vs. 4.6 s) and for N = 320M our

approach is ∼ 14× faster (2.6 s vs. 37 s). These latencies are

on the order of seconds, and thus impact user experience.

E. Oblivious searchable encryption

Searchable encryption (SE) [62] enables a client to outsource

encrypted data to an untrusted server, while still being able

to search this remote data with small cost (in latency and

bandwidth). Several works [11, 12, 17, 36] extend this

functionality to support inserts and deletes to the data.

Below we first informally describe how to use Oblix to

obtain an efficient SE scheme that supports oblivious searches,

inserts, and deletes while further enabling the client to hide

result sizes. We then evaluate our scheme’s performance on

real data. (For a formal definition, construction, and proofs for

our SE scheme, see the full version.)

Our SE scheme. The plaintext data structure underlying our

SE scheme is a scored inverted index (SII). A SII maps a key k
to a (potentially empty) list of score-value pairs [(si, vi)]

n
1 :=

SII[k] that is sorted in descending order according to the scores

si. The SII is parameterized by an integer r that dictates the

“return size” of searches, as we now explain. The data structure

supports search, insert and delete operations. A SE scheme

SE := (Init, Insert,Delete,Find,Update, S) allows a client to

outsource storage of a SII to an untrusted server while still

securely preserving search, insert, and delete functionality.

• Initialization: SE.InitS(m, SII) → st. On input a maximum

number m of key-value pairs, and a scored inverted index

SII, convert SII into a sorted multimap Map, and invoke

OSM.Init(m,Map) to get OSM state stOSM. This initializes

the server S. Output the initial client state st := stOSM.

• Find: SE.FindS(mut st, k, ω) → [(si, vi)]
r
1. On input

client state st, keyword k, and search offset ω, first

compute indices i := ωr and j := (ω + 1)r and

then output OSM.FindS(mut st, k, i, j). The output equals

SII[k][ωr, . . . , (ω + 1)r].
• Insert: SE.InsertS(mut st, [(ki, si)]

n
1 , v) → ⊥. On input

client state st, key-score list [(ki, si)]
n
1 , and value v, add

(si, v) to SII[ki] (if not present) for every i by invoking

OSM.InsertS(mut st, ki, (si, v)).
• Delete: SE.DeleteS(mut st, [(ki, si)]

n
1 , v) → �b. On in-

put value v and key-score list [(ki, si)]
n
1 , remove (si, v)

from SII[ki] (if present) for every i by invoking

OSM.DeleteS(mut st, ki, (si, v)), and output a boolean vec-

tor indicating whether the i-th removal was successful.

Evaluation on Enron dataset. We evaluate the latency of

Oblix on the entire Enron email dataset [19], consisting of

∼ 528K emails. We extracted keywords from this dataset by

first stemming the words using standard stemming techniques,

and then removing 675 stopwords. We next filtered out any

words that contained non-alphabetic characters, or were ≥ 20
or ≤ 3 characters long. This gave us a total of ∼ 259K
keywords, which we used to create an inverted index having

∼ 38M key-value pairs. We initialize the underlying Path

ORAM implementation with a block size of 200 bytes. We

then measure the cost of searches and inserts in the index and

report the average of 100 iterations.

• Search. We search for the ten highest-ranking results for

the keyword appearing in the largest number of documents

(∼ 145K). We observe that on average, the search takes

20.1ms. For larger (or smaller) intervals, the time increases

(or decreases) proportionately.

• Insert. We construct a new document consisting of the 100

most popular keywords. We then assign this document an

unused document identifier, and populate the inverted index

291

with each of its constituent keywords. We observe that on

average, the total time for inserting the 100 key-value pairs

into the index is ∼ 775ms, or 7.75ms per keyword.

VII. RELATED WORK

There is a rich literature on encrypted search indices and

oblivious algorithms. We focus on works most relevant to us:

doubly-oblivious ORAM, systems that combine obliviousness

and hardware enclaves, and schemes for encrypted search.

A. Doubly-oblivious RAM

Most prior work [18, 21, 25, 38, 67, 72, 73, 78] on doubly-

oblivious RAM focuses on using ORAM for secure multi-party

computation (MPC) in the RAM model. These works focus

on challenges arising from the interactive and communication-

intensive nature of MPC. For example, one line of work [25,

38, 72, 73] expresses asymptotically efficient Tree ORAM

algorithms as circuits with small size. Another line of work

[18, 78] reduces online protocol costs by considering different

ORAM paradigms that are asymptotically worse, but offer

better concrete performance in the MPC setting. The trade-offs

made by these works (such as optimizing for circuit size, or

using asymptotically worse protocols) are not always effective

in our setting of plain execution, where accessing memory is

more expensive than performing computations.

B. Obliviousness on hardware enclaves

General-purpose programs. Several works [60, 61, 68]

modify enclaved programs to endow them with page-level

obliviousness. Such techniques can be composed with ours to

obtain oblivious programs for functionalities beyond search.

ORAM. ZeroTrace [57] uses a doubly-oblivious Path ORAM

client (corresponding to the naive client outlined in Sec-

tion V-A) in an SGX enclave to get an oblivious memory

controller. They use this to implement oblivious data structures.

However, unlike Oblix’s highly-optimized doubly-oblivious

data structures, their data structures incur linear overhead

per access. They also do not implement an efficient doubly-

oblivious initialization algorithm, precluding applications like

private contact discovery or private public-key retrieval.

ObliDB [20] uses Path ORAM and SGX enclaves to

construct an oblivious database, but some of their techniques

do not seem to be doubly-oblivious.

Works such as GhostRider [41], Tiny ORAM [22], or Shroud

[43] propose combining ORAM techniques with custom trusted

hardware. These systems use specialized hardware, whereas

our construction utilizes widely available hardware enclaves.

Furthermore, they provide poor efficiency (slow insertion and

deletion when hiding size information) and security guarantees

(result sizes leak) in the context of search.

Private information retrieval and private set intersection.

Prior works attempt to use ORAM on trusted hardware of

different kinds to achieve PIR [7, 70, 76, 77], but do not

achieve scalable implementations. Tamrakar et al. [66] propose

a protocol that utilizes hardware enclaves to achieve private

set intersection. While their implemented system is quite

performant, it is specialized for membership testing, and cannot

support richer applications like anonymous Key Transparency

or oblivious searchable encryption.

C. Search-specific schemes

Oblivious schemes. TWORAM [24] uses garbled RAM

techniques to support oblivious search. Naveed [50] proposes

the idea of hiding access patterns by storing an inverted index

in the oblivious map of [74]. However, neither work supports

inserts/deletes, neither hides result sizes, and neither provides a

system design or implementation. Even if implemented, these

schemes would suffer from the overhead of classical ORAM

protocols (as discussed in Section I). Moataz and Blass [48]

achieve substring search using ORAM techniques; one could

use their techniques to extend our work to substring search.

Chan et al. [13] propose hiding result sizes via a new differ-

ential obliviousness technique, but their security guarantees are

incomparable to ours. Asharov et al. [5] construct an ORAM

scheme with good locality but weaker obliviousness guarantees,

and use this to construct an oblivious SE scheme that does not

hide result sizes. Neither scheme considers doubly-oblivious

client algorithms, and neither provides an implementation.

Non-oblivious schemes. Fuhry et al. [23] use a enclave-based

BTree-based search index to realize a searchable encryption

scheme, but do not hide access patterns nor result sizes.

VIII. ACKNOWLEDGEMENTS

We thank Fariborz Assaderaghi, Alicia da Conceicao,

Marc Joye, Sami Nassar, Ho Wai Wong-Lam, and other

colleagues from NXP Semiconductors for valuable feedback

and discussions, Assaf Araki and Intel for supplying the Intel

SGX Cluster, Jethro Beekman for help with his Rust SGX

SDK, and our shepherd Marina Blanton and the anonymous

reviewers for valuable feedback that greatly improved this

paper. This work was supported by NXP Semiconductors, the

UC Berkeley Center for Long-Term Cybersecurity, Intel/NSF

CPS-Security grants #1505773 and #20153754, as well as

gifts to the RISELab from Ant Financial, Amazon Web

Services, CapitalOne, Ericsson, GE, Google, Huawei, Intel,

IBM, Microsoft and VMware.

REFERENCES

[1] Google’s Key Transparency. https://github.com/google/keytransparency.
[2] Signal. https://signal.org.
[3] Signal’s Contact Discovery Service. https://github.com/whispersystems/

ContactDiscoveryService/, 2017.
[4] M. A. Abdelraheem, T. Andersson, and C. Gehrmann. Inference and

record-injection attacks on searchable encrypted relational databases.
ePrint 2017/024, 2017.

[5] G. Asharov, T.-H. H. Chan, K. Nayak, R. Pass, L. Ren, and E. Shi.
Oblivious computation with data locality. ePrint 2017/772, 2017. http:
//eprint.iacr.org/2017/772.

[6] M. Backes, A. Herzberg, A. Kate, and I. Pryvalov. Anonymous RAM.
In ESORICS ’16.

[7] S. Bakiras and K. F. Nikolopoulos. Adjusting the trade-off between
privacy guarantees and computational cost in secure hardware PIR. In
SDM ’11.

[8] R. Bost. Σoϕoς: Forward secure searchable encryption. In CCS ’16.
[9] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and

A. Sadeghi. Software grand exposure: SGX cache attacks are practical.
In WOOT ’17.

292

[10] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks
against searchable encryption. In CCS ’15.

[11] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. Dynamic searchable encryption in very-large databases: Data
structures and implementation. In NDSS ’14.

[12] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.
Highly-scalable searchable symmetric encryption with support for boolean
queries. In CRYPTO ’13.

[13] T.-H. H. Chan, K.-M. Chung, B. Maggs, and E. Shi. Foundations
of differentially oblivious algorithms. ePrint 2017/1033, 2017. https:
//eprint.iacr.org/2017/1033.

[14] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting Privileged Side-
Channel Attacks in Shielded Execution with Déjà Vu. In AsiaCCS ’17.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms, 3rd Edition. MIT Press, 2009.

[16] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal hardware
extensions for strong software isolation. In USENIX Security ’16.

[17] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions.
In CCS ’06.

[18] J. Doerner and A. Shelat. Scaling ORAM for secure computation. In
CCS ’17.

[19] Enron email dataset. https://www.cs.cmu.edu/~./enron/.

[20] S. Eskandarian and M. Zaharia. An oblivious general-purpose SQL
database for the cloud. ArXiv, Report 1710.00458, 2017. http://arxiv.
org/abs/1710.00458.

[21] S. Faber, S. Jarecki, S. Kentros, and B. Wei. Three-Party ORAM for
secure computation. In ASIACRYPT ’15.

[22] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, E. Stefanov, D. Serpanos,
and S. Devadas. A low-latency, low-area hardware oblivious RAM
controller. In FCCM ’15.

[23] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and
A. Sadeghi. HardIDX: Practical and secure index with SGX. In
DBSec ‘17.

[24] S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: Efficient
oblivious RAM in two rounds with applications to searchable encryption.
In CRYPTO ’16.

[25] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and
D. Wichs. Optimizing ORAM and using it efficiently for secure
computation. In PETS ’13.

[26] M. Giaruad, A. Anzala-Yamajako, O. Bernard, and P. Lafourcase.
Practical passive leakage-abuse attacks against symmetric searchable
encryption. In ICETE ’17.

[27] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious RAMs. J. ACM, 1996.

[28] M. T. Goorish, M. Michael, O. Ohrimenko, and T. Roberto. Privacy-
preserving group data access via stateless oblivious RAM simulation. In
SODA ’12.

[29] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache Attacks on
Intel SGX. In EUROSEC ’17.

[30] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov.
Breaking web applications built on top of encrypted data. In CCS ’16.

[31] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa.
Strong and efficient cache side-channel protection using hardware
transactional memory. In USENIX Security ’17.

[32] M. Hähnel, W. Cui, and M. Peinado. High-resolution side channels for
untrusted operating systems. In ATC ’2017.

[33] W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song. ShadowCrypt:
Encrypted web applications for everyone. In CCS ’14.

[34] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation. In NDSS ’12.

[35] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. McKeen. Intel
software guard extensions: EPID provisioning and attestation services.

[36] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable
symmetric encryption. In CCS ’12.

[37] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks on
secure outsourced databases. In CCS ’16.

[38] M. Keller and P. Scholl. Efficient, oblivious data structures for MPC. In
ASIACRYPT ’14.

[39] K. Kurosawa. Garbled searchable symmetric encryption. In FC ’14.

[40] B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva.
Mimesis Aegis: A mimicry privacy shield - a system’s approach to data
privacy on public cloud. In USENIX Security ’14.

[41] C. Liu, A. Harris, M. Maas, M. W. Hicks, M. Tiwari, and E. Shi.
Ghostrider: A hardware-software system for memory trace oblivious
computation. In ASPLOS ’15.

[42] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan. Search pattern leakage
in searchable encryption: Attacks and new construction. Information

Sciences, 2014.

[43] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman.
Shroud: ensuring private access to large-scale data in the data center. In
FAST ’13.

[44] Marlinspike, Moxie. Technology preview: Private contact discovery for
Signal. https://signal.org/blog/private-contact-discovery/, 2017.

[45] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In HASP ’13.

[46] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J.
Freedman. CONIKS: bringing key transparency to end users. In USENIX

Security ’15.

[47] R. C. Merkle. A certified digital signature. In CRYPTO ’89.

[48] T. Moataz and E.-O. Blass. Oblivious substring search with updates.
ePrint 2015/722, 2015. http://eprint.iacr.org/2015/722.

[49] A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How SGX
amplifies the power of cache attacks. In CHES ’17.

[50] M. Naveed. The fallacy of composition of oblivious RAM and searchable
encryption. ePrint 2015/668, 2015.

[51] M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic searchable
encryption via blind storage. In SP ’14.

[52] W. Ogata, K. Koiwa, A. Kanaoka, and S. Matsuo. Toward practical
searchable symmetric encryption. In IWSEC ’13.

[53] D. Pouliot and C. V. Wright. The shadow nemesis: Inference attacks on
efficiently deployable, efficiently searchable encryption. In CCS ’16.

[54] Relevance scores: Understanding and customizing. https://docs.marklogic.
com/guide/search-dev/relevance.

[55] D. S. Roche, A. J. A. Aviv, and S. G. Choi. A practical oblivious map
data structure with secure deletion and history independence. In SP ’16.

[56] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro. TaoStore:
Overcoming asynchronicity in oblivious data storage. In SP ’16.

[57] S. Sasy, S. Gorbunov, and C. W. Fletcher. Zerotrace : Oblivious memory
primitives from Intel SGX. ePrint 2017/549, 2017. http://eprint.iacr.org/
2017/549.

[58] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware
Guard Extension: Using SGX to conceal cache attacks. In DIMVA ’17.

[59] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating
controlled-channel attacks against enclave programs. In NDSS ’17.

[60] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing page
faults from telling your secrets. In AsiaCCS ’16.

[61] R. Sinha, S. K. Rajamani, and S. A. Seshia. A compiler and verifier for
page access oblivious computation. In ESEC/FSE ’17.

[62] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In SP ’00.

[63] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable
encryption with small leakage. In NDSS ’14.

[64] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path ORAM: an extremely simple oblivious RAM protocol.
In CCS ’13.

[65] R. Strackx and F. Piessens. Ariadne: a minimal approach to state
continuity. In USENIX Security ’16.

[66] S. Tamrakar, J. Liu, A. Paverd, J. Ekberg, B. Pinkas, and N. Asokan. The
circle game: Scalable private membership test using trusted hardware.
In AsiaCCS ’17.

[67] T. Toft. Secure data structures based on multi-party computation. In
PODC ’11.

[68] S. Tople and P. Saxena. On the trade-offs in oblivious execution
techniques. In DIMVA ’17.

[69] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling your secrets without page faults: Stealthy page table-based attacks
on enclaved execution. In USENIX Security ’17.

[70] P. Wang, H. Wang, and J. Pieprzyk. Secure coprocessor-based private
information retrieval without periodical preprocessing. In AISC ’10.

[71] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,
and C. A. Gunter. Leaky Cauldron on the Dark Land: Understanding
memory side-channel hazards in SGX. In CCS ’17.

[72] X. S. Wang, T. Chan, and E. Shi. Circuit ORAM: On tightness of the
goldreich-ostrovsky lower bound. In CCS ’15.

293

[73] X. S. Wang, Y. Huang, T. Chan, A. Shelat, and E. Shi. SCORAM:
oblivious RAM for secure computation. In CCS ’14.

[74] X. S. Wang, K. Nayak, C. Liu, T. H. Chan, E. Shi, E. Stefanov, and
Y. Huang. Oblivious data structures. In CCS ’14.

[75] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In SP ’15.

[76] Y. Yang, X. Ding, R. H. Deng, and F. Bao. An efficient PIR construction
using trusted hardware. In ISW ’08.

[77] X. Yu, C. Fletcher, L. Ren, M. van Dijk, and S. Devadas. Efficient private
information retrieval using secure hardware. MIT Tech Report 509, 2013.
http://csg.csail.mit.edu/pubs/memos/Memo-509/memo509.pdf.

[78] S. Zahur, X. S. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans,
and J. Katz. Revisiting Square-Root ORAM: efficient random access in
multi-party computation. In SP ’16.

[79] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong
to us: The power of file-injection attacks on searchable encryption. In
USENIX Security ’16.

APPENDIX A

CONSTRUCTION OF AN OSM SCHEME

We now provide details for our construction of an OSM sch-

eme from Section IV-C. We first provide detailed pseudocode

(Fig. 11) for our construction, and then provide correctness

and security proofs for the same.

Theorem 1. The OSM scheme from Section IV-C is correct

as per the security definition in Section IV-B.

Proof. The oblivious sorted multimap scheme is correct assum-

ing the correctness of the plaintext sorted multimap and the

oblivious data structures framework of [74] are correct. It is

easy to verify the correctness of the plaintext sorted multimap,

since it is a small modification to order statistic trees and

AVL trees. The sorted multimap also satisfies Definition 1, and

hence can be used with the ODS framework.

Theorem 2. The OSM scheme from Section IV-C is secure as

per the security definition in Section IV-B.

Proof. We construct a simulator Sim (Fig. 15) that uses the

ODS simulator SimODS as a black box. The view of an ad-

versary interacting with the simulator oracle SIdeal instantiated

with Sim is indistinguishable from an adversary interacting with

SReal because the simulator pads the number of access to the

appropriate amount, and so the adversary sees the same number

of read and write memory accesses to the server regardless of

the query input.

Sim.InitS(m, �k, �v):
1) l := calc_node_size(�k, �v).
2) stODS ← SimODS.Init

S(m, l).
3) Store st := (�k, �v, stODS).

Sim.SizeS():
1) Let b := 1.44 log(m).
2) SimODS.Access

S(mut stODS, b).

Sim.InsertS():
1) Let b := 1.44 log(m) + 1.

2) SimODS.Access
S(mut stODS, b).

Sim.FindS(r):
1) Let b := 2× 1.44 log(m) + r.

2) SimODS.Access
S(mut stODS, b).

Figure 15: Simulator for our OSM construction.

APPENDIX B

SECURITY OF PATH ORAM

Security for Path ORAM is defined via two experiments:

one in which an adversary interacts with an oracle SReal acting

as a proxy to the scheme, and another in which the adversary

interacts with an oracle SIdeal that acts as a proxy to a simulator

Sim that only gets some of the inputs. Both oracles expose to

the adversary the same interface (see Fig. 16): the adversary

can make an Init query that specifies the initial blocks (and a

maximum number of blocks), and then can make any number

of Read or Evict queries, with the restriction that the input

to any Evict query is the list of all leaves fetched since the

previous such call. The adversary may observe accesses to the

server made by the oracles as a result of these invocations. Path

ORAM is secure if the adversary cannot distinguish between

the two experiments.

APPENDIX C

SECURITY OF AN ODS SCHEME

Security of an ODS scheme defined via two experiments:

one in which an adversary interacts with an oracle SReal

OSM.InitS(m,Map):
1) Let Tree = Map.New();
2) For (k, v) ∈ Map: Tree.Insert(k, v).
3) Let rt = Tree.root().
4) Let i = 1.
5) If rt �= ⊥, for each node in Tree:

a) If node = rt: irt = i.
b) i := i+ 1.

6) Let (ptrrt, stODS) := ODS.Init(m,Tree, irt).
7) Output st = (ptrrt, rt, stODS).

OSM.SizeS(mut st, k):
1) Let rootKey := st.rt.key.
2) Let ptr := st.ptrrt.
3) ODS.StartS(mut st.stODS, st.ptrrt)
4) Let size := 0.
5) While rootKey �= ⊥:

a) Let curNode ← ODS.AccessS(mut st.stODS, read(ptr)).
b) If rootKey = k: set size := curNode.size(); break.
c) Else if rootKey < k:

i) rootKey := curNode.leftKey().
ii) ptr := curNode.lChild().

d) Else:
i) rootKey := curNode.rightKey().

ii) ptr := curNode.rChild().
6) Let bound := 1.44 · log(osmClient.treeSize).
7) st.ptrrt := ODS.FinalizeS(mut st.stODS, st.rt, bound).
8) Output size.

OSM.InsertS(mut st, k, v):
1) Let ptrrt := st.ptrrt.
2) Let stODS := st.stODS.
3) Let (rt′, . . .) ← OSM.InsHelperS(mut st, k, v, ptrrt) (Fig. 13).
4) Let pad := 1.44 · log(osmClient.treeSize) + 1.

5) st.ptrrt := ODS.FinalizeS(mut stODS, rt
′, pad).

OSM.FindS(st, k, i, j):
1) Let ptrrt := st.ptrrt.
2) Let stODS := st.stODS.
3) Let (rt′, #—v) ← OSM.FindHelperS(mut st, k, v, ptrrt) (Fig. 12).
4) Let pad := 1.44 · log(osmClient.treeSize) + 1.

5) st.ptrrt := ODS.FinalizeS(mut stODS, rt
′, pad).

6) Output #—v .

Figure 11: Construction of a sorted multimap.

294

OSM.FindHelperS(mut st, k, i, j)
1) Let stODS := st.stODS.
2) if rootKey �= ⊥:

a) Find path to i-th k-node:
lower ← OSM.GetAtIndexS(mut st, k, i).

b) Find path to j-th k-node:
upper ← OSM.GetAtIndexS(mut st, k, j).

c) Find node with index i: first := last(lower).
d) Find node with index j: last := last(upper).

Compute the node at the intersection of the two paths:
e) Let intersection := ⊥.
f) For i ∈ {0, . . . ,min(lower.len, upper.len)}:

if lower[i] = upper[i]: set intersection := lower[i].

Find nodes that lie between the two paths:
g) If intersection �= ⊥:

i) Initialize empty queue workQueue.
ii) Initialize empty list of matching nodes results.

iii) workQueue.push(intersection.ptr).
iv) While workQueue is not empty:

A) Let ptr := workQueue.pop().
B) curNode := ODS.AccessS(mut stODS, read(ptr)).
C) If curNode < first and curNode < last:

workQueue.push(curNode.rChild).
D) Else if curNode > first and curNode > last:

workQueue.push(curNode.lChild).
E) Else:

workQueue.push(curNode.rChild);
workQueue.push(curNode.lChild).

v) If (first ≤ curNode ≤ last) and (curNode.key = k):
result.push(curNode).

h) Return results.
3) Else, return empty list.

Figure 12

OSM.InsHelperS(mut st, k, v, ptr)
1) Let stODS := st.stODS.
2) if ptr �= ⊥:

a) let curNode := ODS.AccessS(mut stODS, read(ptr)).
b) If k = curNode.key and v = curNode.value: return.
c) Else if k < curNode.key:

i) Let
(child, kc, size, keySize) = OSM.InsHelperS(mut st, k, v, curNode.lChild).

ii) If curNode.key = kc: curNode.lSize := size.
iii) If curNode.key = k: curNode.lSize := size; keySize := curNode.size.
iv) curNode.lChild := ptr

c
.

v) ODS.AccessS(mut stODS, write(ptr, curNode)).
vi) Return (BalanceS(mut st, curNode.key, ptr), keySize).

d) Else:
i) Let

(child, kc, size, keySize) = OSM.InsHelperS(mut st, k, v, curNode.rChild).
ii) If curNode.key = kc: curNode.rSize := size.

iii) If curNode.key = k: curNode.rSize := size; keySize := curNode.size.
iv) curNode.rChild := ptr

c
.

v) ODS.AccessS(mut stODS, write(ptr, curNode)).
vi) Return (BalanceS(mut st, curNode.key, ptr), keySize).

3) Else:
a) Construct new node

node :=

⎛

⎜

⎝

Key k Value v
lChild = ⊥ rChild = ⊥
lSize = 0 rSize = 0
leftHeight = 0 rightHeight = 0

⎞

⎟

.

b) st.treeSize = st.treeSize+ 1.
c) Let ptr

c
← ODS.AccessS(mut stODS, ins(node)).

d) (node.key, ptr
c
, node.size(), node.size())

Figure 13

OSM.GetAtIndexS(mut st, k, i)
1) Let stODS := st.stODS.
2) Let curKey := st.rootKey.
3) Let ptr := st.ptrrt.
4) Initialize empty list path.
5) While curKey �= ⊥:

a) Let curNode := ODS.AccessS(mut stODS, read(ptr)).
b) If the current node is a k-node, i.e. k = curKey:

i) If i = curNode.lSize():
A) path.Insert(curNode)
B) Break out of loop.

ii) Else if i < curNode.lSize():
A) curKey := curNode.leftKey().
B) ptr := curNode.lChild().

iii) Else:
A) curKey := curNode.rightKey().
B) ptr := curNode.rChild().
C) i := i− curNode.lSize() + 1.

Ignore non-k-nodes for indexing purposes.

c) Else if k < curKey:
i) curKey := curNode.leftKey().

ii) ptr := curNode.lChild().
d) Else:

i) curKey := curNode.rightKey().
ii) ptr := curNode.rChild().

e) path.Insert(curNode)
6) Return path.

Figure 14

implementing the ODS scheme, and another in which he

interacts with an oracle SIdeal that acts as a proxy to a simulator

Sim that only gets some of the inputs. Both oracles expose to

the adversary the same interface (see Fig. 17): the adversary

first invokes the oracle on Init, and then makes any number

Security

SReal SIdeal

Init(m, [bli]
n
1
) store

st ← ORAM.InitS(m, [bli]
n
1
)

store

st ← Sim.InitS(m, |bl1|)

Read(bid) ORAM.ReadBlockS(mut st, bid) Sim.ReadBlockS(mut st)

Evict([lfi]
n
1
) ORAM.EvictS(mut st, [lfi]

n
1
) Sim.EvictS(mut st, n)

Figure 16: Real and ideal oracles for Path ORAM.

of Access calls to the oracle. The adversary is allowed to

observe the server accesses made by the oracles as a result of

these invocations. An ODS scheme is secure if the adversary

cannot distinguish between the two experiments.

APPENDIX D

CONSTRUCTION OF PATH DORAM

We expand upon our description of Path DORAM in

Section V-A by providing pseudocode for our construction

in Fig. 18.

295

Security

SReal SIdeal

Init

DS
[DSopj]

s
1

m
[nodei]

n
1

irt

1) Check that sequentially executing operations in [DSopj]
s
1

results in nodes [nodei]
n
1

with root at index irt.
2) Store (st, ptrrt) ← ODS.InitS(m, [nodei]

n
1
, irt).

Store st ← Sim.InitS(m, |Node1|).

Access(DSop)

1) Start ODS: ODS.StartS(mut st, ptrrt).

2) Invoke the data structure DS on DSop, replacing plaintext

pointer accesses with corresponding ODS pointer accesses.

3) Let the current root node be node.

4) Store ptr′rt ← ODS.Finalize(mut st, node, bound).

Sim.AccessS(mut st, bound).

Figure 17: Real and ideal oracles for ODS.

DORAM.ReadBlockS(mut st, bid, lf) → bl
1) Fetch from S the list of buckets Bu that are on the path to lf.
2) Let mut ans be a dummy block.
3) For each bucket bu ∈ Bu:

a) For each i ∈ {1, . . . , C}:
i) Let cond := (bu[i].bid = bid).

ii) OblSwap(cond, ans, bu[i])
b) Insert bu into st.ImplicitBuckets.

4) Insert ans into st.ExplicitBlocks and output ans.

DORAM.InitS(m, [bli]
n

1
)

1) Let treeSize := ComputeTreeSize(m,C).
2) Let layer size (in buckets) s := (treeSize+ 1)/2.
3) Initialize empty list of buckets buckets.
4) Initialize block list blocks := [bli]

n

1
.

5) For each layer in the ORAM tree:
a) Let k := blocks.len().
b) Let D be a list of sC dummy blocks.
c) For the i-th chunk of C blocks in D, set the node of each block in this

chunk to be the i-th tree node in the current layer.
d) Append D to blocks (so that blocks.len() = k + sC).
e) Annotate each block in blocks with a boolean flag indicating whether

or not it is dummy.
f) Obliviously prepare blocks for bucketing: obliviously sort blocks so

that all same-node blocks are grouped together, and within every such
group, dummy blocks are sorted to the end of the group. The groups
are sorted in ascending node order.

g) Let ctr := 0.
h) Let cur_node := ⊥.
i) For each bl in blocks, try to assign it to a bucket in current layer:

i) Let b := bl.node = cur_node.
ii) ctr := b · (ctr + 1).

iii) cur_node := bl.node.
iv) bl.in_bucket := ctr < C;

j) Obliviously collect all bucketed blocks together: obliviously sort
blocks so that blocks with in_bucket = false are last, and the remaining
blocks are sorted in ascending order of their node.

k) Construct s buckets from the first sC blocks in blocks, and append
these to buckets.

l) Remove bucketed blocks: blocks := blocks[sC . . . sC + k].
m) For each remaining block bl in blocks, update its assigned node:

bl.node := bl.node.parent().
n) Update layer size: s := s/2.

6) Create ExplicitBlocks from the remaining blocks in blocks.
7) Encrypt and upload each bucket in buckets to S.
8) Output st := (ImplicitBuckets = ⊥,ExplicitBlocks).

DORAM.EvictS(mut st, [lfi]
n

1
)

1) If st.NumWrites = 0 (mod t): DORAM.Evicts
S(st, [lfi]

n

1
).

2) Else: DORAM.Evictf
S(st, [lfi]

n

1
).

3) Set st.NumWrites := st.NumWrites+ 1.

DORAM.Evicts
S(mut st, [lfi]

n

1
)

1) Initialize blocks := st.ExplicitBlocks.
2) Append blocks (in each bucket) in st.ImplicitBuckets to blocks.
3) Let Nodes be the list of nodes comprising paths to [lfi]

n

1
.

4) Initialize bucket fullness map BuFu so that for each node ∈ Nodes,
BuFu[node] = 0.

5) Assign blocks to buckets: for each block bl in blocks:
a) Let assigned_node := ⊥ and let assigned_flag := 0.
b) For each node node in path to bl.lf:

i) Let is_free := (BuFu[node] �= ⊥) ∧ (BuFu[node] < C).
ii) Let cond := is_free ∧ ¬ assigned_flag.

iii) Increment BuFu[node] by cond.
iv) OblSwap(cond, assigned_node, node).
v) OblSwap(cond, assigned_flag, 1).

c) Set bl.node := assigned_node.
6) Append dummy blocks: Append |ImplicitBuckets| · C dummy blocks

(having node ⊥) to blocks.
7) Construct buckets: obliviously sort blocks by bl.node, sorting blocks

with node ⊥ to the end.
8) From the first |Nodes| · C elements of blocks, construct the buckets to

be written back. Truncate the remainder of blocks at at maximum stash
size, and insert these blocks into st.ExplicitBlocks.

DORAM.Evictf
S(mut st, [lfi]

n

1
)

1) Let Nodes be the list of nodes comprising paths to [lfi]
n

1
.

2) Initialize bucket fullness map BuFu so that for each node ∈ Nodes,
BuFu[node] = 0.

3) Assign blocks to buckets: for each block bl in st.ExplicitBlocks:
a) Let assigned_node := ⊥ and let assigned_flag := 0.
b) For each node node in path to bl.lf:

i) Let is_free := BuFu[node] �= ⊥ ∧ BuFu[node] < C.
ii) Let cond := is_free ∧ (assigned_flag = 0).

iii) Increment BuFu[node] by cond.
iv) OblSwap(cond, assigned_node, node).
v) OblSwap(cond, assigned_flag, 1).

c) Set bl.node := assigned_node.
4) Insert blocks into buckets:

5) Initialize empty list blocks.
6) Append all blocks in ExplicitBlocks to blocks.
7) For each bucket bu ∈ st.ImplicitBuckets:

a) For each block bl in bu:
i) Set bl.node := bu.node.

ii) Insert bl into blocks.
8) Construct buckets from blocks by oblivious sorting as in Evicts.
9) Write back constructed buckets to S, and insert any remaining blocks into

st.ExplicitBlocks.

Figure 18: Algorithms for Path doubly-oblivious RAM (for bucket size C).

296

