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Abstract

Wireless capsule endoscopy (WCE) is a recently established imaging technology that
requires no wired device intrusion and can be used to examine the entire small intestine
non-invasively. Determining bleeding signs out of over fifty thousand WCE images is a te-
dious and expensive job by human reviewing. Our goal is to develop an automatic obscure
bleeding detection method by employing image color features and support vector machine
(SVM) classifier. This detection problem is a binary classification problem. We use SVMs
for this problem and a new feature selection procedure is proposed. Our experiments show
that SVM can be very efficient and may yield very high accuracy rate, in particular with
the new proposed feature selection.
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1 Introduction

Visualization of the small bowel has posed a challenge to gastroenterologists due to the
difficulty of physically reaching the small bowel. Traditional gastroscopies can usually
visualize the upper part and the lower part of the gastrointestinal tract. A recently
established imaging technology, known as wireless capsule endoscopy, has been proven
to be the best choice of investigation for visualizing the entire small bowel (see, e.g., [1]
and [7]). To carry out this procedure, a capsule with embedded color camera, a wireless
transmitter, a battery, and lights is swallowed by a subject. Once activated, this camera
will take over 55,000 color images during its 8-hour journey through the digestive tract.
The images are continuously transmitted to a storage device worn by this subject. After
all the images are collected, a physician will examine the images to see if any of them
contains signs of disease, e.g. bleeding, and if there is such a sign, determine where it
occurs. This reviewing process usually takes a physician a few hours to complete, the
accuracy of which also subject to the experience and concentration.

Detecting the existence of obscure bleeding in a WCE image is mathematically a
binary classification problem. Computerized diagnosis could assist physicians to review
images and identify possible signs. A well-designed computer aided diagnosis system may
finish the classification of the whole set of images in minutes. Among many classification
algorithms, such as neural networks, find similar, and decision trees, we focus our attention
on SVM. SVM methods were proposed by Vapnik in 1979 ([10], [11]) and have gained
popularity in the past two decades. Since then, it has been applied to many problems
including text categorization, face detection, and bioinformatics (see, e.g., [6], [9], and
[5]). SVM methods have also been applied to medical diagnosis, in particular, for tumor
detection in endoscopy color images ([8]). In this work, we employ the SVM method



to bleeding detection. We propose a new color feature extraction method that has been
proven effective and efficient. We compare the performance of our classifier using this
new feature extraction method with using raw data and a conventional color histogram-
based feature extraction method. Also, several kernels, including the linear, polynomial,
and radial basis function, are used for comparison. Our numerical experiments show
that SVM can be very efficient and yield very high accuracy, in particular with our new
proposed feature selection.

This paper is organized as follows. We begin in Section 2 with a brief description of
support vector machines. In Section 3 we show how color images can be fed into SVMs,
i.e., how to preprocess the data and how to select the features. In particular, we propose
a new feature selection which is important to high accuracy and efficiency. Numerical
experiment results are then presented in Section 4. We summarize our conclusions and
give directions for future research in Section 5.

2 Support Vector Machine

In its simplest (linear) form, an SVM is a hyperplane that separates a set of posi-
tive examples by maximizing the class margin. That is, given data points of the form
{(y1, x1), (y2, x2), . . . , (yl, xl)}, where the yi is either 1 or -1, a constant denoting the class
to which the point xi belongs. Each xi is an n-dimensional vector. To train an SVM, a set
of xis are pre-labeled, i.e., the yi components denote the correct classification which an
SVM needs eventually to achieve by searching for a dividing (or separating) hyperplane.
This hyperplane takes the form of w · x − b = 0, where w is the weight vector and is
perpendicular to the separating hyperplane.

In the linearly separable cases, two parallel hyperplanes, i.e., w · x − b = −1 and
w · x − b = 1, are generated so that there are no training samples lie in between and
the distance of these two planes are maximized. This can be formularized as a quadratic
programming (QP) problem:

min 1/2 ‖w‖2, subject to yi(w · xi − b) ≥ 1, 1 ≤ i ≤ l. (1)

This QP problem is clearly convex and its dual form is

min 1/2 αT Qα − eT α, subject to yT α = 0 and α ≥ 0, (2)

where Q is an l × l matrix with Qij = yiyj xi · xj and e is the vector of all ones. If α is a
solution of the dual problem (2), then w = Σl

i=1 yiαixi is a solution of the primal problem
(1). Those vectors xi corresponding to αi > 0 lie on the margin and are called the support
vectors. Once (1) or (2) is solved, new items (vectors) can be classified by computing w ·x
where w is a solution to (1) or from (2) and x is a new instance vector to be classified.

In the non-linearly separable cases, Cortes and Vapnik ([4]) proposed a modification
(called the soft margin) to the QP formulation that allows, but penalizes, examples that
fall on the wrong side of the decision boundary. Another extension to the non-linear
classifiers was proposed by Boser et al. ([2]). A more general form of the QP problem (1)
with soft margin and nonlinear classifier is as follows:

min 1/2 ‖w‖2 + CξT e, subject to yi(w · φ(xi) − b) ≥ 1 − ξi and ξi ≥ 0, 1 ≤ i ≤ l, (3)

where ξ represents the training error and the parameter C adjusts the training error and
the regularization term 1/2 ‖w‖2. The function φ is a mapping from �n to a higher



dimensional space. Practically, kernel functions are used to perform the mapping. The
kernel functions are represented in the product form: K(xi, xj) = φ(xi) · φ(xj). Some
common kernel functions include

Linear: k(xi, xj) = xi · xj

Polynomial (homogeneous): k(xi, xj) = (xi · xj)d

Radial Basis Function: k(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0

3 Image Representation and Feature Selection

WCE images are color images with a dimension of 255-by-255. A widely used means of
describing color images is the RGB (Red-Green-Blue) space. Three matrices are used to
store the intensity of the red, green, and blue colors. The dynamic range of the inten-
sity values is [0, 255]. These three matrices are the color components and are denoted
by M1, M2, and M3. The pixel at row i and column j can be denoted by the triplet
(M1(i, j), M2(i, j), M3(i, j)). Figure 1 shows the RGB color space mapped to a unit cube
(X - red, Y - green, Z - blue).
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Figure 1: The RBG Color Space Mapped to a Unit Cube

Four sample WCE images are shown in Figure 2. The top row illustrates images
without bleeding signs; the bottom row shows two images with bleeding signs. It is clear
that although the view is reddish overall, the bleeding region is more saturated. Therefore
color is an important feature to detect existence of bleeding.

A naive and straightforward representation of a color image as an input instance for
the SVM would be a vector consisting of all the entries of the three RGB matrices, lined
up in a row-by-row order. That would result in a vector with 195,075 components (it
requires about 1.56MB memory space when each element is represented with eight bytes.)
This would be prohibitive when the number of training vectors is large.

To reduce the size of input vectors, we first downsample the images by k (k =
3, 9, 17, 21, 25 and 29, respectively). That is, we divide an image into k-by-k blocks and
keep only the intensity value at the center of a block. The region of interest excludes
the filling pixels, i.e., the pixels outside the circular region of interest (see Figure 2) are



Figure 2: Sample WCE Images. A and B are the non-bleeding samples. C and D are the
bleeding samples.

all dark and insignificant. We use only those pixels inside the circle. All the selected
pixels are lined up in a row-by-row order, and the entries from all three RGB matrices are
used. The downsampling and cropping operations tremendously reduce the data size. For
example, the resulting vector from a given image with k = 3 will have 13,254 components
and require about 106,032 bytes of memory space, which is about 1/15 of the original size.
Vectors obtained by this reduction will be called the “Raw Vectors”, to be used as input
instances for the SVM.

Feature selection (or subset selection) ([12]) is a process commonly used in machine
learning, wherein a subset of the features available from the data are selected for applica-
tion of a learning algorithm. Feature selection is necessary either because it is computa-
tionally infeasible to use all available features, or because of problems of estimation when
limited data samples (but a large number of features) are present. For some cases, feature
selection is critical to classification accuracy and speed.

Color histogram ([13]) is a widely used feature in many applications. For example, In
remote sensing, color histograms are typical features used for classifying different ground
regions from aerial or satellite photographs. In computer vision, color histograms has been
employed to solve the problem of object recognition. Our first feature selection is to use
color histogram with k bins (k = 8, 16, 32, 64, 128, and 256, respectively). We would not
use more bins since our initial tests showed that the classification accuracy would go down
when more bins were used. These vectors are “short”. For example, when 256 bins are
used, a resulting vector will have 768 components. We call these vectors the “Histogram
Vectors”.

A color histogram is a representation of the distribution of colors in an image, derived
by counting the number of pixels of each of given set of color ranges. The histogram
provides a compact summarization of the distribution of data in an image, and is invariant



with translation and rotation about the viewing axis. The main drawback of histograms
for classification is that the representation is dependent of the color of the object being
studied, ignoring its shape and texture.

Our proposed feature selection is based on the special nature of the bleeding detection
problem and an observation of the RGB color space showing in Figure 1. To have a
detailed description, let again the three RGB matrices be M1, M2, and M3 for a given
image. It is clear that the color WCE images contain colors mainly at the bottom of the
color space cube (refer to Figure 1). Hence, the blue color, or the matrix M3 representing
the intensity of blue, plays a less significant role in classification and can be suppressed.
In addition, what we are interested in is whether there is a bleeding. Therefore, what
matters is the ratio of the red intensity over the green intensity. In other words, for the
ij-th pixel, the ratio M1(i, j)/M2(i, j) determines whether it is likely a bleeding spot or
not. Our feature selection is to use these ratios. Given an image, we first downsample
it again, calculate the componentwise ratios of M1 over M2, then sort the ratios into a
vector. The resulting vectors have a dimension of 5811 and we call them the “Original
Ratio Vectors”.

To make a sensible comparison with the histogram vectors, we use ratio vectors with
about the same number of components, selected using an evenly spaced manner. For
example, let an original ratio vector be v. To compare with the histogram vectors with
768 components (i.e., 256 bins), we use v = v(4 : 8 : 5811); where the number 8 comes
from round(5811/768) = 8. We will call these vector the “Ratio Vectors”.

4 Numerical Test Results

We have 800 color images from the WCE, all have been manually classified by specialists.
Four hundreds of them show a sign of bleeding and the other four hundreds contains
health regions. From each image, three types of vectors, Raw, Histogram, and Ratio, were
generated using the procedure described in Section 3.

The SVM package LIBSVM ([3]) was used for our experiments. (There are sev-
eral good SVM packages available on the Internet free for academic use. See http :
//www.support−vector−machines.org/SV M soft.html for a list.) We used the default
settings of LIBSVM. All the computations were performed on a Dell workstation with
dual Xeon CPUs, 8GB memory and running a Linux. Matlab 7.4 was used.

We used the three types of vectors (Raw, Histogram, and Ratio) as the input for the
SVM. Three kernels, linear, polynomial, and redial basis function, were used for compar-
ison. For a given combination of vector type and kernel, we had 100 runs and for each
run, we randomly selected 80% of the vectors as the training data and the rest 20% as the
testing data for accuracy and time analysis. Therefore, about 640 vectors are for training
and 160 vectors for testing.

To evaluate accuracy, the two commonly used statistical measures for binary classi-
fication, sensitivity and specificity, are used. Sensitivity, or recall rate, is a measure of
how well a binary classification test correctly identifies a condition, e.g., picking up on a
disease in a medical screening test. A sensitivity of 100% means that the test recognizes
all sick people as such. Sensitivity is calculated by

Sensitivity =
number of True Positives

number of True Positives + number of False Negatives
.

where the true positives are those cases that contain bleeding sign and are correctly iden-
tified by the classifier. Whereas false negatives are those that also contain bleeding sign



but failed to be correctly identified by the classifier.

Specificity is a measure of how well a binary classification test correctly identifies the
negative cases. For example, given a medical test that determines if a person has a certain
disease, the specificity of the test to the disease is the probability that the test indicates
‘negative’ if the person does not have the disease. A specificity of 100% means that the
test recognizes all healthy people as healthy. Specificity is defined by the formula

Specificity =
number of True Negatives

number of True Negatives + number of False Positives
.

Our experiment results are reported in the following tables. The number n is the
number of components of each vector.

n\Kernels Linear Polynomial Radial
Sensitivity (%)
141 97.57 (93.51) 97.56 (91.85) 92.72 (84.68)
270 98.72 (94.43) 97.29 (92.23) 87.28 (72.87)
705 99.03 (95.40) 98.12 (92.85) 93.51 (55.95)
1473 99.30 (95.96) 98.73 (93.99) 91.42 (50.81)
4770 99.25 (95.96) 98.68 (90.83) 82.20 (50.0)
13254 99.22 (95.96) 98.72 (90.93) 64.11 (0.0)
Specificity (%)
141 97.60 (90.91) 95.73 (89.90) 98.67 (94.30)
270 97.76 (92.11) 96.35 (89.06) 99.23 (87.94)
705 98.14 (92.69) 96.89 (89.90) 66.12 (54.89)
1473 98.51 (93.42) 97.25 (93.66) 62.96 (52.14)
4770 98.38 (93.42) 97.12 (93.10) 65.00 (0.0)
13254 98.26 (93.42) 97.06 (93.10) 55.24 (0.0)

Table 1: Accuracy (Mean (and Min) of 100 Runs) Using the Raw Vectors

Table 1, 2, and 3 list the average and the minimum accuracy from our experiments.
They are the results using 20% of the sample as testing data and 100 runs. The best
average sensitivity result was achieved using ratio vectors and polynomial kernel. The
best average specificity result was also achieved using ratio vectors and polynomial kernel.
Overall, the employment of radial kernel gave less accuracy then the other two kernels, in
particular when the raw and histogram vectors were used. The minimum accuracy results
demonstrate a similar trend.



n\Kernels Linear Polynomial Radial
Sensitivity (%)
24 96.54 (90.41) 97.72 (92.51) 98.04 (93.76)
48 97.26 (90.81) 97.36 (92.44) 98.21 (93.98)
96 98.37 (94.52) 97.40 (92.60) 98.97 (95.98)
192 98.21 (92.78) 96.99 (91.24) 99.64 (97.24)
384 95.46 (90.42) 95.87 (90.59) 81.52 (0.0)
768 92.33 (85.22) 93.63 (86.60) 31.06 (0.0)
Specificity (%)
24 92.60 (87.09) 97.33 (93.59) 96.14 (90.25)
48 92.75 (87.35) 97.86 (92.62) 96.96 (92.60)
96 93.68 (88.25) 97.92 (93.43) 93.54 (86.97)
192 95.08 (89.41) 97.60 (92.30) 78.13(70.0)
384 95.47 (88.91) 96.79 (89.85) 63.69 (0.0)
768 94.62 (85.92) 95.32 (88.79) 46.03 (0.0)

Table 2: Accuracy (Mean (and Min) of 100 Runs) Using the Histogram Vectors

n\Kernels Linear Polynomial Radial
Sensitivity (%)
24 100.0 (100.0) 99.73 (98.39) 98.51 (90.09)
48 99.44 (97.0) 99.64 (97.47) 95.87 (85.57)
95 94.18 (88.04) 99.62 (96.83) 98.31 (92.22)
192 95.83 (87.37) 99.42 (96.59) 99.24 (92.77)
379 99.56 (96.12) 98.65 (94.61) 99.23 (95.24)
695 99.64 (96.51) 99.15 (95.56) 98.83 (93.90)
Specificity (%)
24 86.41 (79.79) 98.89 (95.29) 92.11 (84.45)
48 89.09 (81.48) 99.58 (97.33) 98.35 (92.91)
95 98.54 (94.27) 99.49 (97.11) 97.74 (90.67)
192 98.78 (94.31) 99.17 (95.77) 99.03 (94.60)
379 96.91 (91.77) 98.99 (95.70) 98.93 (96.05)
695 96.17 (96.20) 98.68 (96.20) 99.04 (96.05)

Table 3: Accuracy (Mean (and Min) of 100 Runs) Using the Ratio Vectors

Efficiency is another concern in the application, especially in the real-time scenario.
Table 4 and 5 list the average time spent on training an SVM and applying the trained
SVM to the testing data. Obviously, the size of the input data affects the overall time.
The number of iteration to parameter convergence also plays an important role. The
results are the average over 100 runs. Eighty percent of samples (or 640 feature vectors)
were used in training. Twenty percent of samples (or 160 feature vectors) were used in
testing. The time cost in testing phase (Table 5) was the average time used to classify one
testing image. The fastest training was using Ratio vector and polynomial kernel. We are
more interested in the time spent in testing. Using Ratio vector, we achieved about two
hundredth of a millisecond to finish a classification with an SVM based on linear kernel.
Recall that the WCE device takes two images per second. At this rate, our classifier can
easily handle real-time precessing requirement.



n\Kernels Linear Polynomial Radial
Raw Vectors
141 0.0423 0.0357 0.1768
270 0.0659 0.0592 0.3414
705 0.1899 0.1538 0.9187
1473 0.3396 0.3171 1.9636
4770 1.1020 1.0158 6.0138
13254 3.0351 2.7742 16.6591
Histogram Vectors
24 0.0129 0.0146 0.0245
48 0.0204 0.0185 0.0487
96 0.0341 0.0302 0.1196
192 0.0631 0.0605 0.2616
384 0.1475 0.1615 0.5446
768 0.4362 0.6203 1.3303
Ratio Vectors
24 0.0138 0.0092 0.0186
48 0.0207 0.0113 0.0211
95 0.0252 0.0147 0.0347
192 0.0418 0.0308 0.0819
379 0.0798 0.0561 0.1959
695 0.1385 0.1132 0.3951

Table 4: Time (Average of 100 Runs) to Train about 640 Vectors (in Seconds)

n\Kernels Linear Polynomial Radial
Raw Vectors
141 0.1260 0.0974 0.6961
270 0.1762 0.1423 1.1954
705 0.7545 0.5437 3.0558
1473 0.6557 0.6294 6.5463
4770 2.3883 2.3578 21.1762
13254 6.7275 6.5028 58.9883
Histogram Vectors
24 0.0468 0.0349 0.0751
48 0.1061 0.0617 0.2741
96 0.0919 0.0958 0.3633
192 0.2014 0.2162 0.9465
384 0.3699 0.5044 1.7978
768 0.8481 1.4634 4.9275
Ratio Vectors
24 0.0558 0.0301 0.0720
48 0.0685 0.0386 0.0825
95 0.0890 0.0170 0.1164
192 0.1397 0.0552 0.2794
379 0.2740 0.1067 0.6738
695 0.6120 0.3335 1.2079

Table 5: Time (Average of about 16,000 Cases) to Classify an Image (in Milliseconds)



To highlight, the best overall combination is the following.

• Best combination: Ratio vectors with 95 components and polynomial kernel —
sensitivity is 99.62 (mean) and 96.83 (min); specificity is 99.49 (mean) and 97.11
(min); average time to train an SVM (640 vectors) is 0.0147 seconds; average time
to classify an image is 0.017 milliseconds.

5 Concluding Remarks

In this article, we described a new method to detect obscure bleeding sign in WCE images
using color feature selection and SVMs. Our proposed method (ratio vectors) for feature
selection tremendously reduces the data size without compromising the classification accu-
racy. The ratio vectors, generated by the new proposed feature selection procedure, yield
the best overall accuracy and efficiency. In addition, the ratio vectors do not seem to be
sensitive to the choice of the kernels. The trained SVMs were very efficient for identifying
bleeding signs, in particular when the polynomial kernel is used.

To make it practically viable, our next step is to improve the sensitivity measure to
100%. We plan to collect a large amount of data and study other image feature selection
methods. Extension to other applications, such as tumor detection, will also be explored.
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