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OBSERVABILITY AND CONTROLLABILITY FOR
SMOOTH NONLINEAR SYSTEMS*

A. J. VAN DER SCHAFT+®

Abstract. The definition of a smooth nonlinear system as proposed recently by Willems, is elaborated
as a natural generalization of the more common definitions of a smooth nonlinear input-output system.
Minimality for such systems can be defined in a very direct geometric way, and already implies a usual
notion of observability, namely, local weak observability. As an application of this theory, it is shown that
observable nonlinear Hamiltonian systems are necessarily controllable, and vice versa.

1. Introduction. Inthe last decade there has been important work on a differential

geometric approach to nonlinear input state—-output systems, which in local coordinates
have the form

(1.1 x=g(x, u), y =h(x),

where x is the state of the system, u is the input and y the output (for a survey see
Brockett [3]). Most of the attention has been directed to the formulation in this context
of fundamental system theoretic concepts like controllability, observability, minimality
and realization theory. Some basic papers are, for instance, Hermann-Krener [6],
Sussmann [12], and recently Jakubczyk [9].

In spite of some very natural formulations and elegant results which have been
achieved, there are certain disadvantages in the whole approach, from which we
summarize the following points.

a) Normally the equations

(1.2) x=g(x, u)

are interpreted as a family of vector fields on a manifold parametrized by u; i.e., for
every fixed 7, g(-, @) is a globally defined vector field. As noted already by Brockett
[4], Takens [15] and Willems [17] there are some serious objections to this setting.
In fact, the last author proposes another framework by looking at (1.2) as a coordinatiz-
ation of

B——— 71X

N

where B is a fiber bundle above the state space manifold X and the fibers of B are
the state dependent input spaces, while TX is as usual the tangent bundle of X (the
possible velocities at every point of X).

b) The usual definition of observability for this kind of system (cf. [6]) has some
drawbacks. In fact, observability is defined as distinguishability; i.e., for every x; and
x5 (elements of X) there exists a certain input function (in principle dependent on x,
and x,) such that the output function of the system starting from x; under the influence
of this input function is different from the output function of the system starting from
x2 under the influence of this same input function. Of course, from a practical point
of view this notion of observability is not very useful, and also is not in accord with
the usual definition of observability or reconstructibility for general systems (cf. [10]).

* Received by the editors December 3, 1980, and in final form June 5, 1981.
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SMOOTH NONLINEAR SYSTEMS 339

Hence, despite the work of Sussmann [131on universal inputs, i.e., input functions
which distinguish between every two states x; and x,, this approach remains unsatis-
factory.

¢) In the class of nonlinear systems (1.1) memoryless systems

(1.3) y=h(u)
are not included! Of course, one could extend the system (1.1) to the form
(1.4) x=g(x,u), y=h(xu),

but this gives, if one wants to regard observability as distinguishability, the following
rather complicated notion of observability. As can be seen from [2], distinguishability
of (1.4) with y e R, u e R™ and x € R" is equivalent to distinguishability of

(1.5) X=glx,u), §=hx)

where /1 :R" - (R”)™" is defined by & (x)(u) = h(x, u).

Checking the Lie algebra conditions for distinguishability as described in {6] for
the system (1.5) is not very easy!

d) As noted by Willems [17], in a description of a physical system (‘‘physical”
interpreted in a broad sense) it is often not clear how to distinguish a priori between
inputs and outputs. Especially in the case of a nonlinear system, it could be possible
that a separation of what we shall call external variables in input variables and output
variables should be interpreted only locally. An example is the (nearly) ideal diode
given by the I-V characteristic in Fig. 1. For I <0 it is natural to regard I as the
input and V as the output, while for V >0 it is natural to see V' as the input and I

T
\%

FiG. 1

as the output. Around 0 an input-output description should be given in the scattering
variables (I — V, I+ V). Moreover, in the case of nonlinear systems it can happen
that a global separation of the external variables in inputs and outputs is simply not
possible! This results in a definition of a system which is a generalization of the usual
input-output framework. It appears that various notions like the definitions of
autonomous (i.e., without inputs), memoryless, time-reversible, Hamiltonian and
gradient systems are very natural in this framework (see [16], [17]).

The organization of this paper is as follows. In § 2 we give the definition of a
nonlinear system as proposed in [17], and give some connections with the more usual
input-output settings. In § 3 we define minimality of such a system and derive local
conditions from this global definition. It is very surprising that this results in the same
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kind of conditions as given in recent papers on nonlinear disturbance decoupling; see
[71, [8] and especially the setting proposed by Nijmeijer [11]. These local conditions
imply local weak observability for systems which locally can be represented in an
input-output form without a feedthrough term. Finally, in §4 the definition of
minimality is tested in the case of Hamiltonian systems as defined in [16], and we can
derive the theorem that an ‘‘observable” full Hamiltonian system is necessarily

“controllable”, and vice versa. Surprisingly, it appears that this need not hold for
gradient systems!

2. Definition of a smooth nonlinear system. As proposed in [17] and argued in
[16], [17], smooth (say C™) systems can be represented in the commutative diagram

B——  STXxW

N

X

(2.1)

where (all spaces are smooth manifolds) B is a fiber bundle above X with projection
7, TX is the tangent bundle of X, 7x the natural projection of TX on X and fis a
smooth map. W is the space of external variables (think of the inputs and the outputs).
X is the state space and the fiber m '(x) in B above x € X represents the space of
inputs (to be seen initially as dummy variables), which is state dependent (think of
forces acting at different points of a curved surface).

This definition formalizes the idea that at every point x € X we have a set of
possible velocities (elements of TX) and possible values of the external variables
(elements of W), namely the space

fr i (x) = T.X x W.

We denote the system (2.1) by 3(X, W, B, f). It is easily seen that in local coordinates
x for X, v for the fibers of B, w for W, and with f factored in f = (g, h), the system
is given by

(2.2) x =g(x, v), w=h(x, v).

Of course one should ask oneself how this kind of system formulation is connected
with the usual input-output setting. In fact, by adding more and more assumptions
successively to the very general formulation (2.1) we shall distinguish among three
important situations, of which the last is equivalent to the ‘“usual” interpretation of
system (1.1).

(i) Suppose the map & restricted to the fibers of B is an immersive map into W
(this is equivalent to asking that the matrix 94/dv be injective). Then:

LEMMA 2.1. Let h restricted to the fibers of B be an immersion into W. Let (X, )
and w be points in B and W respectively such that h(%, 5) = w. Then locally around
(%, 5) and w there are coordinates (x,v) for B (such that v are coordinates for the
fibers of B), coordinates (w1, wy) for W and a map f such that h has the form

2.3) (x, v) f—h>(W1, wa) = (A (x, v), v).

Proof. The lemma follows from the implicit function theorem.
Hence locally we can interpret a part of the external variables, i.e., wy, as the
outputs, and a complementary part, i.e., w,, as the inputs! When we denote wy by y



SMOOTH NONLINEAR SYSTEMS 341

and w; by u, then system (2.2) has the form (of course only locally)
(2.4) i=ynu), y=hxu)

(ii) Now we not only assume that 9h/dv is injective, which results in a local
input-output parametrization (2.4), but we also assume that the output set denoted
by Y is globally defined. Moreover, we assume that W is a fiber bundle above Y,
which we will call p: W Y, and that & is a bundle morphism (i.e., maps fibers of B
into fibers of W). Then:

LEMMA 2.2. Let h:B—-> W be a bundle morphism, which is a diffeomorphism
restricted to the fibers. Let € X and je€Y be such that h(zw ' (%)) =p '(§). Take
coordinates x around X for X and coordinates y around v for Y. Let (X, 70) be a
point in the fiber above % and let (y,7) be a point in the fiber above § such that
h(x, 0)= (3, ii). Then there are local coordinates v around © for the fibers of B,
coordinates u around i for the fibers of W and a map k: X - Y such that h has the form

(2.5) (6, 0) = (y, u) = (h(x), v).

Proof. Choose a locally trivializing chart (0, ¢) of W around j. Then ¢: p ' (0)~»
0x U, with U the standard fiber of W. Take local coordinates u around i € U. Then

(y, u) forms a coordinate system for W around (J, ). Because A is a bundle
morphism, & has the form

(x, )= (s u) = (h(x), h'(x, D).

where (x, 0) is a coordinate system for B around (X, ). Now adapt this last coordinate
system by defining

v=(h"""x,u) withx fixed.

Because h restricted to the fibers is a diffeomorphism, v is well defined and (x, v)
forms a coordinate system for B in which 4 has the form

(x,v)—;(y,u)=(ﬁ(x), u). 0

Hence under the conditions of Lemma 2.2 our system is locally (around ¥ e X
and j € Y) described by

(2.6) i=glxu), y=h®x).

This input~output formulation is essentially the same as the one proposed by Brockett
{4] and Takens [15], who take the input spaces as the fibers of a bundle above a
globally defined output space Y. In fact, this situation should be regarded as the
normal setting for nonlinear control systems.

(iii) Take the same assumptions as in (ii) and assume moreover that W is a trivial
bundle, i.e., W= Y x U, and that B is a trivial bundle, i.e., B =X X V. Because # is
a diffeomorphism on the fibers, we can identify U and V. In this case the output set
Y and the input set U are globally defined, and the system is described by

2.7) i=gxu), y=hx),

where for each fixed i, g(-, @) is a globally defined vector field on X. This is the
“usual” interpretation of (1.1).
Remarks on (1).
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1. When h restricted to the fibers of B is not an immersion we have a situation
where we could speak of “hidden inputs”. In fact, in this case there are variables in
the fibers of B which can affect the internal state behavior via the equation x = g(x, v)
but which cannot be directly identified with some of the external variables.

2. The splitting of the external variables into inputs and outputs as described in
Lemma 2.1 is of course by no means unique! This fact has interesting implications,
even in the linear case, which we shall not pursue further here.

Remarks on (ii).

1. From Lemma 2.2 it is clear that the coordinatization of the fibers of the bundle
W uniquely determines, via %, the coordinatization of the fibers of B. It should be
remarked that a coordinatization of the fibers of W is locally equivalent to the existence
of an (integrable) connection on the bundle W, and that one coordinatization is linked
with another by what is essentially an output feedback transformation, i.e., a bundle
isomorphism from W into itself. Again we will not comment further on this point.

2. A beautiful example of this kind of system is the Lagrangian system (see
Takens [15]). Here the output space is equal to the configuration space Q of a
mechanical system. The state space X is the configuration space with the velocity
space, so X = TQ. The space W is equal to T*Q (the cotangent bundle of Q), with
the fibers of T*Q representing the external forces. When we denote the natural
projection of 7Q on Q by p, then B is just p*T*Q (the pullback bundle via p). Now
given a function L:7TQ - R (called the Lagrangian) we can construct a symplectic
form d(6L/dq) n dq (with (g, ¢) coordinates for TQ) on TQ which uniquely deter-
mines a map g: B - TTQ (cf. [15]). Finally, in coordinates the system is given by

(2.8) §=F@q,§)+XuZq,4), y=4,

with the vector fields F(q, ) and Z;(q, ) satisfying certain conditions. Moreover
the vector fields Z; commute, i.e., [Z;, Z;]=0 for all i, j, a fact which has a very
interesting interpretation (cf. [S], [15]).

Remark on (iii). Most cases where B can be taken as trivial are generated by a

space X such that TX is a trivial bundle. For instance, when X is a Lie group TX is
automatically trivial.

3. Minimality and observability

3.1. Minimality. We want to give a definition of minimality for a general (smooth)
nonlinear system

[ \\
4 /x i v

X > X'

DEeFINITION 3.1 (see [16]). Let (X, W, B, f) and (X', W, B’, f') be two smooth
systems. Then we say 3' = 3 if there exist surjective submersions ¢ : X » X', ®: B> B’
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such that the diagram

f
B—>TX XW

N

X

commutes.

< is called equivalent to X' (denoted X ~Y') if ¢ and @ are diffeomorphisms.

We call S minimal f ' =353 ~3,

Remark 1. This definition formalizes the idea that we call X' less complicated
than 2(2'=3X) if £’ consists of a set of trajectories in the state space, smaller than the
set of trajectories of X, but which generates the same external behavior. (The external
behavior X, of X(X, W, B, f) consists of the possible functions w:R—-> W generated
by 2(X, W, B, f). Hence, when we define

3 :={(x, w) :R-> X x W/|x absolutely continuous and (x(¢), w(¢)) € f(z~ "(x())) a.e.},

then I, is just the projection of = on W&.)

Remark 2. Notice that we only formalize the regular case by asking that @ and
¢ be surjective as well as submersive. In fact we could, for instance, allow that at
isolated points ¢ or ® are not submersive. However, we will at this time not go into
this problem, and we will treat only the regular case as described in Definition 3.1.

Remark 3. Notice that £,=3, and 2, =3, need not imply X, ~32,. This fact
leads to very interesting problems which we will not pursue further at this time.

Of course, Definition 3.1 is an elegant but rather abstract definition of minimality.
From a differential geometric point of view it is very natural to see what these conditions
of commutativity mean locally. In fact, we will see in Theorem 3.7 that locally these
conditions of commutativity do have a very direct interpretation. But first we have
to state some preparatory lemmas and theorems.

Let us look at (3.1). Because ® is a submersion it induces an involutive distribution
D on B given by

D:={Z e TB|®,Z =0}

(the foliation generated by D is of the form & '(c) with ¢ constant). In the same
way ¢ induces an involutive distribution E on X. Now the information in the diagram
(3.1) is contained in three subdiagrams (we assume f=(g, k) and /' =(g', h')):

B
I hl lh‘
W <

>B’

B
. | X
X > X'

B —> B’
I l‘ 8'1

X ——————>TX'
Cx
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LEMMA 3.2. Locally the diagrams 1, I1, 111 are equivalent, respectively, to

I': D cker dh,
(3.2) I D =E,
1. gD < TE = Tmr (D).

Proof. T' and II are trivial. For III' observe that, when ¢ induces a distribution
E on X, then ¢, induces the distribution TE on TX. O

Now we want to relate conditions I', II', III' with the theory of nonlinear
disturbance decoupling, and especially with the formulation of it given in [11]. Consider
in local coordinates the system

x=f(x)+ Y wug:(x) on amanifold X.
i=1
We can interpret this as an affine distribution on X (for each x € X, we give an affine
subspace of T,.X). We call this affine distribution A. Now define

Ap=A—A={Y-Z|Y,ZecA}

It is easily seen that A, is a distribution on X, given in local coordinates by

span {gi(x), -+, gm(x)} (the directions in which we can steer). Define A(Ao):={D|D

an involutive distribution such that D + A, is involutive}. Then in [11] it is proved that
THEOREM 3.3. Let D € A(Ao). Then the condition

(3.3) [A,D]=D+A4o

(we call such a D € A(Ao) A (mod Ap) invariant) is equivalent to the two conditions
a) there exists a vector field F € A such that [F,D]< D;
b) there exist vector fields B; € Ag such that span {B;}= A, and [B;,, D]< D.
With the aid of this theorem the disturbance decoupling problem is readily solved.
The key to connecting our situation with this theory is given by the concept of
the extended system, which is of interest in itself.
DEFINITION 3.4 (extended system). Let

f
B ——3TX xW

N

X

Then we define the extended system of 2(X, W, B, f) as follows: We define A, as the
vertical tangent space of B, i.e.,

Ao={Z € TB|m,Z =0}.
Note that A, is automatically involutive.
Now take a point (¥, 7)€ B. Then g(X, ©) is an element of T:X. Now define
A(.f, l-)-) = {Z c T(g’ 5)B|7T*Z = g(.f, 5)}.

So A(x, 0) consists of the possible lifts of g(%, &) in (%, 0). Then it is easy to see
that A is an affine distribution on B, and that A—A = A, We call the affine system
(A, Ap) on B constructed in this way, together with the output function h : B > W, the
extended system X°(X, W, B, f).
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We have the following:

LEMMA 3.5,

a) Let D be an involutive distribution on B such that D N Ay has constant dimension.
Then 1, D is a well-defined and involutive distribution on X if and only if D+ Ay is
an involutive distribution.

b) Let D be an involutive distribution on B and let D N Ag have constant dimension.
Then the following two conditions are equivalent:

i) w4 D is a well-defined and involutive distribution on X, and g,D < Tmw,D.

ii) [A, D]= D +A,.

Proof. a) Let D+ A, be involutive. Because D and A, are involutive this is
equivalent to [D, Ag]< D +Ao. Applying Theorem 3.3 to this case gives a basis
{Zy,++,2Z} of D such that [Z;, Ap]J= Ap. In coordinates (x, u) for B, this last
expression is equivalent to Z;(x, u) =(Z;.(x), Z..(x, u)), where Z;, and Z;,, are the
components of Z; in the x- and u-directions, respectively. Hence ., D =

span{Z,, - - + , Z.}and is easily seen to be involutive. The converse statement is trivial.
b) Assume 1i); then there exist coordinates (x,u) for B such that D=
{8/0xy,++ -, d/0x;} (the integral manifolds of D are contained in the sections u =

constant). Then g, D < Tw, D is equivalent to

0x; j¢comp

with i=1,---,k and j=k+1,---,n (n is the dimension of X). From these
expressions [A, D] D + A, readily follows. The converse statement is based on the
same argument. a

Now we are prepared to state the main theorem of this section. First we have to
give another definition.

DEerFINITION 3.6 (local minimality). Let (X, W, B, f) be a smooth system. Let
xe€X. Then (X, W, B, f) is called locally minimal (around %) if when D and E are
distributions (around %) which satisfy conditions I', IT', III' of Lemma 3.2, then D
and E must be the zero distributions.

It is readily seen from Definition 3.1 that minimality of (X, W, B, f) locally
implies local minimality (locally every involutive distribution can be factored out).

Combining L.emma 3.2, Definition 3.4 and LLemma 3.5 we can state:

THEOREM 3.7. (X, W, B, f = (g, h)) is locally minimal if and only if the extended
system 2°(X, W, B, f = (g, h)) satisfies the condition that there exist no nonzero involutive
distribution D on B such that

(i) [AaD]CD+AO,
(i) D <ker dh.

Remark 1. It is very surprising that the condition of minimality locally comes
down to a condition on the extended system, which is in some sense an infinitesimal
version of the original system.

Remark 2. Actually there is a conceptual algorithm to check local minimality
(cf. [11]). Define

A7 (Ao+ D):={vector fields Z on B|[[A, Z]< Ay +D}.
Then we can define the sequence {D*}, © =0,1,2,- - as follows:
D° =ker dh,
D*=D* "NA " (A¢+D*™, w=1,2,-

3.4



346 A. J. VAN DER SCHAFT

Then {D*},u=0,1,2,: -, is a decreasing sequence of involutive distributions, and
for some k =dim(ker dh) D* = D* for all w = k. Then D" is the maximal involutive
distribution which satisfies

) [A, D¥]e D*+ A,
(i) D* cker dh.

From Theorem 3.7 it follows that (X, W, B, f) is locally minimal if and only if D* = 0!
Notice that the maximum numbers of steps needed in this algorithm is equal to the
dimension of ker dh, and hence at least smaller than dim B.

3.2. Observability. It is natural to suppose that our definition of minimality has
something to do with controllability and observability. However, because the definition
of a nonlinear system (2.1) also includes autonomous systems, (i.e., no inputs),

minimality cannot be expected to imply, in general, some kind of controllability. In
fact an autonomous linear system

X = Ax, y=0Cx

is easily seen to be minimal if and only if (A, C) is observable (cf. [17]). Moreover,
it seems natural to define a notion of observability only in the case that the system
(2.1) has at least a local input-output representation; i.e., we make the standing

assumption that (8//dv) is injective (see Lemma 2.1). Therefore, locally we have as
our system

(3.5) (=(2.5) i=glxu), y=hxu)

for every possible input-output coordinatization (y, u) of W (see Remark (i) 2 in § 2).
For such an input-output system local minimality implies the following notion of
observability, which we will call local distinguishability.

ProvrosITIiON 3.8. Choose a local input-output parametrization as in (3.5). Then
local minimality implies that the only involutive distribution E on X which satisfies

i) [g(-,u), E]=E forallu (E isinvariant under g(-, u)),

ii) Eckerdh(-,u) for all u (d.h means differentiation with respect to x) is
the zero distribution.

Proof. Let E be a distribution on X which satisfies i) and ii). Then we can lift E
in a trivial way to a distribution D on B by requiring that the integral manifolds of
D be contained in the sections u =constant. Then one can see that D satisfies
[A, D]e D + A and D < ker dh. Hence D=0 and E =0. a

Remark. Itis easily seen that, under the condition (34/0v) injective, local minimal-
ity is in fact equivalent to the condition in Proposition 3.8. This is because (9h/ov)
injective implies that there cannot be a distribution D on B such that D N A, # 0 and
D < ker dh. So from Lemma 3.5 a) it follows that the only involutive distributions D
with D < ker dh and D+ Aq involutive are of the form Ey,, with E an involutive
distribution on X,

Actually, for nonlinear systems which can be represented in the input—output
form without a feedthrough term (2.6), we can state the following:

COROLLARY. Suppose there exists an input-output coordinatization

(3.6) (=(2.6) t=glxu), y=hx),

Then local minimality implies local weak observability (cf. [6],[12]).
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Proof. Ascanbe seen from Proposition 3.8, local minimality in this more restricted
case implies that the only involutive distribution E on X which satisfies

i) lg(-,u), EJ<E forall u,
ii) Ec kerdh

is the zero distribution. It can be readily seen [cf. 8] that the biggest distribution which
satisfies i) and ii) is given by the null space of the codistribution P generated by
elements of the form

Le.uvLe(.u? *+* Lo, u*y dh, with u’ arbitrary.

Because this distribution has to be zero, the codistribution P equals TFX, in every
x € X. This is, apart from singularities (which we don’t want to consider), equivalent
to local weak observability as defined in [6].

Moreover, let (3.6) be locally weakly observable. Then all feedback transforma-
tions u+>v = a(x, u) which leave the form (3.6} invariant (i.e., y is only the function
x) are exactly the output feedback transformations u+—v = a(y, u). It can be easily
seen in local coordinates that after such output feedback is applied the modified system
is still locally weakly observable. O

In Proposition 3.8 and its corollary we have shown that local minimality implies
a notion of observability which generalizes the usual notion of local weak observability.
Now we will define a much stronger notion. Let us denote the (defined only locally)
vector field % = g(x, i1) for fixed # by g” and the function h(x, i) by h” (with g
and £ as in (3.5)).

DEeFINITION 3.9. Let 3(X, W, B, f) = (g, h) be a smooth nonlinear system. It is

called strongly observable if for every possible input-output coordinatization (3.5) the
autonomous system

(3.7) x=g"(x), y=h"&x)

with & constant is locally weakly observable (for a definition see [6] or [12]), for
all a.

Remark. Let=(X, W, B, f = (g, h)) be strongly observable. Take one input-output
coordinatization (y, u). The system has the form (in these coordinates)

i=gxu), y=hixu).

Because the system is strongly observable, every constant input—function (constant in
this coordinatization) distinguishes between two nearby states. However, in every
other input-output coordinatization every constant (i.e., in this coordinatization) input
function also distinguishes. This implies that in the first coordinatization every C*
input function distinguishes. Because the C* input functions are dense in a reasonable
set of input functions, every input function in this coordinatization distinguishes.
ProvrosiTIiON 3.10. Consider the Pfaffian system constructed as follows:

P=dh"+Lgsdh® + Lgz(Lgadh™)+ +++ + L%V dh"®,

with n the dimension of X and L,= the Lie derivative with respect to g" As is well
known from [6), the condition that the Pfaffian system P as defined above satisfies the
condition P, =T*X for all x € X (the so called observability rank condition) implies
that the system

X=g"(x), y=h"()
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is locally weakly observable. Hence, when the observability rank condition is satisfied
for all i, the system is strongly observable.

We will call the Pfaffian system P the observability codistribution.

Remark 1. As is known from [6], local weak observability of the system

i=g"(x), y=h"(x)

implies that the observability rank condition (i.e., dim P, = T*X) is satisfied almost
everywhere (in fact, in the analytic case everywhere). Because we don’t want to go
into singularity problems, for us local weak observability and the observability rank
condition are the same.

Remark 2. It is easily seen that when for one input—output coordinatization the
observability rank condition for all u is satisfied, then for every input-output coor-
dinatization the observability rank condition for all u is satisfied. This follows from
the fact that the observability rank condition is an open condition.

3.3. Controllability. The aim of this section is to define a kind of controllability
which is ““dual” to the definition of local distinguishability (Proposition 3.8) and which
we shall use in the following section. The notion of controllability we shall use is the
so-called “‘strong accessibility”’, introduced in [14].

DEerFiNtTION 3.11. Let £ = g(x, u) be a nonlinear system in local coordinates.
Define R(T, xo) as the set of points reachable from x¢ in exactly time T'; in other words,

R(T, xo) = {x; € X|3 state trajectory x(¢) generated by g
such that x(0) = x¢ and x(T) = x1}.

We call the system strongly accessible if for all x, € X, and for all T >0 the set R(T, x,)
has a nonempty interior.
For systems of the form (in local coordinates)

(3.9) £=f0)+ 5 ugi(x)

(i.e., affine systems) we can define A as the smallest Lie algebra which contains
{g1,* '+, gm} and which is invariant under f (i.e., [f, Al= A). It is known (cf. [14])
that A, = T.X for every x € X implies that the system (3.8) is strongly accessible. In
fact, when the system is analytic, strong accessibility and the rank condition A, = T, X
for every x € X, are equivalent. We will call A the controllability distribution and the
rank condition the controllability rank condition. Now it is clear that for affine systems
(3.8) this kind of controllability is an elegant ‘‘dual’ of local weak observability.

We know that the extended system (see Definition 3.4) is an affine system. Hence
for this system we can apply the rank condition described above. This makes sense
because the strong accessibility of 2(X, W, B, f) is very much related to the strong
accessibility of 2°(X, W, B, f), as can be seen from the following two propositions.

ProrosiTioN 3.12. If X°(X, W, B,f=(g, h)) is strongly accessible, then
(X, W, B, f=(g, h)) is strongly accessible.

Proof. 1In local coordinates the dynamics of 3° and X are given by

I x=g(x,u) (2),
x=g(x, v) (=),

v=u.

I1
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Now it is trivial that when for 3° we can steer to a point x; then we also can for =
(even with an input that is smoother). 0

The converse is harder:

ProposiTioN 3.13. Let 2(X, W, B, f=(g, h)) be strongly accessible. Assume
moreover that the fibers of B are connected. Then also 3°(X, W, B, f = (g, h)) is strongly
accessible.

Proof (sketch, see also [4]). Take the same representation of = and X° as in the
proof of Proposition 3.12. Let xo€ X and let x; be in the (nonempty) interior of
Rs(xo, T') (the reachable set of system X). Then it is possible that x, is reachable from
Xo by an input function v(¢f) which cannot be generated by the differential equation
o = u (with u for instance L?). However, we know that the set of the v generated in
this way is dense in, for instance L>. (For this we certainly need that the fibers of B
are connected.) Because we only have to prove that the interior of a set is nonempty,
this makes no difference. Now it is obvious from the equations

x=g(x,v), D=u
that if we can reach an open set in the x-part of the (extended) state, then this is
surely possible in the whole (x, v)-state. [J
4. Hamiltonian and gradient systems
4.1. Hamiltonian systems. A linear input-output system
x=Ax+Bu, y=Cx+Du
is called Hamiltonian if
ATT+JA=0,
BTJ=C, whereJ isthe symplectic form (;) _I),
D=DT" (see [16]),
and is called a gradient system if
TA=A'T,
TB=C", whereTisa nonsingular symmetric matrix,
D=D"  (see[18)).

It can be easily checked that for both kind of systems observability implies controllabil-
ity, and vice versa.

We want to see whether we can derive a similar result for nonlinear Hamiltonian
and gradient systems as defined in [16]. We start with the Hamiltonian case.

1. Let

B——>TM><W

N

be a smooth system.

Now take M a symplectic manifold with symplectic form o (see [1]). Because M
is a symplectic manifold we can also define in a canonical way a symplectic form,
denoted by w, on TM (see [16]). Darboux’s theorem tells us that we can find coordinates
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(q: p:) for M and (q;, ps, 4, p;) for TM such that
w=Y dgndp;, and w= Y dq;ndp;+dg; ndp.
i=1 i=1

Now also take W a symplectic manifold with symplectic form w°.

Finally, we can make TM x W into a symplectic manifold by defining the symplec-
tic form

Q=gfo -nie’ (the minus sign is a matter of convention)

with 7, and , the natural projections of TM X W on TM and W respectively.
DEeFINITION 4.1 (see [16, Def. 4.1]). 2(M, W, B, f) with M and W as above is

called full Hamiltonian if f(B) is a Lagrangian submanifold of (TM x W, Q)
ProposITION 4.2 (see [16, Prop. 4.2]). Let 3(M, W, B, f) be full Hamiltonian.

Then there exist coordinates for TM as above, coordinates {y1, " *, Yms U1, " * * » Um} fOr
W and a function H(q1, ** * , @us P15 * * * s Dus U1, * * * » Um) SUCh that the system is locally
described by
oH
qi=_’ i=1"”;na
op;
,__oH
Di aq,-’
4.1 H
a .
yi=c¢— =1, ,m, with¢;==1,
au,-

Remark. We see that in this case the freedom in the input—-output parametrization
is restricted to the so called canonical coordinates for w°, i.e., only coordinates (y, u)
such that w° = Z¢; dy; A du;.

From Proposition 4.2 the following proposition easily follows:

PROPOSITION 4.3,

a) Let (M, W, B, f) be locally minimal. Then f must be an immersion.

b) Let (M, W, B, f = (g, h)) be full Hamiltonian and assume f is an immersion.
Then h restricted to the fibers of B must be an immersion.

Proof. a) From the definition of (M, W, B, f) it follows that we only have to
prove that f restricted to the fibers is an immersion. Now suppose that f restricted to
the fibers is not an immersion. Then the distribution ker d.f < Ao with d, the derivative
in the direction of the fiber is not equal to zero and satisfies (trivially) the conditions
of Lemma 3.2, i.e., a contradiction.

b) Take a local input-output coordinatization (y, u) as in Proposition 4.2. Then
the whole system is parametrized by the “input variables” u, * * -, u,. Therefore the
image of h restricted to the fibers has to be of dimension m and the image of g
restricted to the fibers has to be of dimension at most m. Because f restricted to the
fibers is an immersion, it is clear that the dimension of the fibers of B must be m and
so h restricted to the fibers is an immersion. O

Now we can state the main theorem of this section.

THEOREM 4.4. Let (M, W, B, f = (g, h)) be a full Hamiltonian system. Suppose
f is an immersion. Then, for every input-output coordinatization of (M, W, B, f) as in
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Proposition 4.2,

., oH
qi=a—p’ aH
(4.2) i i=1,.--’n, yjzcj-—-——’ j:l’...,m’
,__oH auf
pi o4

the following is true (see Proposition 3.8):
(4.2) is strongly accessible & (4.2) is locally distinguishable.

CoRrROLLARY. If (M, W, B, ) is locally minimal, then it follows from Proposition
4.3 that f is an immersion. Moreover, it follows from Proposition 3.8 that (4.2) is locally
distinguishable. Therefore, by Theorem 4.4, the system (4.2) is also strongly accessible.
Proof. Let us denote by X}, the vector field

oH _ oH

- api, P 6q,~.

q:

As is proved in Proposition 3.8, local distinguishability of (4.2), or equivalently local
minimality, comes down to the following. Let O be the vector space of functions
spanned by {u1,* **, um, 0H/0u1, * * -, 3H/du,} (for simplicity take ¢; =1). Now add
to O all the functions generated by taking Lie derivatives of functions in O with respect
to the vector fields (on B) Xy and 98/du,, -« , 8/du,,. We denote the vector space
spanned by all these functions by O. We shall give O the following notation:

,***,—,+invariance under Xy and —

oH oH ]
o ={ y T s Ume }'
“h “ Ol ou;

ouq

Then local distinguishability of (4.2) is equivalent to
dO(x, u)=T¥ B forevery (x,u)eB.

We can rewrite 0H/du; as L,a, H. Also itis easy to prove that d, (Ls/su ) = Lo (dH),
i=1,+,m (d, denotes differentiation with respect to x). Therefore:

dO ={duy, -, dUm, d(Lsjau,H), "+ , d(Ls/au, H)+invariance under Xz and d/du;}
={duy, ", dip, de(Lsjou, H), " * + , dx(Lasan, H)+invariance under X;; and 3/9u;}

={duy,* **, Aty Lojsu,dxH, * * + , Lassy, dH +invariance under Xy and 4/du;}
Now we turn to strong accessibility. As proved in Propositions 3.12 and 3.13, strong
accessibility of (4.2) is equivalent to strong accessibility of the extended system of
(4.2). Therefore when we define the vector space of vector fields A by the vector

fields adding all the Lie derivatives of the vector fields 8/6u, - -+, 8/0u., with respect
to Xy and 8/0u;, i=1,- -+, m,ie.,

0 0 . : 3
A= {-—, -+ +,—, +invariance under Xy and ———},
aul aum aui

then we have to show that

Alx,u)=T B forevery(x,u)eB.
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(A is the controllability distribution of the extended system.) It immediately follows
that

A= {—a—, SR L, Losou, Xet * * * 5 Lojou,, Xu, +invariance under Xy and —a—}
ou, aum U;
Now we will show that the map a:TM - T*M, defined by a(Y)=w(Y, —), with
Y € TM, together with the map which sends 8/d0u; to du, i =1, + +, m, is an isomorph-
ism between A and dO, and therefore A(x, u)= T, B if and only if dO(x, u)=
T%. . B. The following observations are sufficient:
1) a(XH) = dxH

i) a (La/au,—XH) = La/au,a (X)) = La/au;(dxH)'

iii) Because Lx,w =0 and also L;/;,w =0, and because Lie brackets of Hamil-
tonian vector fields (Hamiltonian with respect to the degenerate form w on B) are
again Hamiltonian, A is generated by Hamiltonian vector fields.

iv) Take an arbitrary Hamiltonian vector field X in A. Then:

CK(LXHXG) = LXHa (XG) because LXH(U = 0,
o (La/au,.XG) = La/au‘.a (XG) because La/aul.(l) =0.

This easily gives the induction argument that A is mapped onto dO. 0

Remark 1. It is also possible to derive a duality result for strong observability
(see Definition 3.9). The notion of dual controllability appears to be stronger than
that of strong accessibility. However we will leave this for the moment.

Remark 2. Of course duality between strong accessibility and local distinguisha-
bility is closely related to the existence of a Lie algebra morphism between a Lie
algebra of Hamiltonian vector fields equipped with the Lie bracket and a Lie algebra
of Hamilton functions provided with the Poisson bracket (cf.[1]). We will explore
this relationship in a future paper [19].

Remark 3. Consider the expression {#dH/du, H"} with {-,-} the Poisson
bracket on M and H" a function on M defined by H*(q, p)==H(q, p, ii). This
expression equals

m _ _ _ m _ d N

Z u]'{h;", Hu}:: z u; Zi—h;l,

i=1 =1 t
with @ = (i, ,i,) and hi(q, p)=jth componentof (3H/du)(q, p, i), and has
a direct interpretation in the sense that when we interpret u as the external force and
y as the position (see [16]) the expressions equal the instantaneous external work.

4.2. Gradient systems. Following [16] a system X(M, W, B, f) is called a full

gradient system if
(i) M is a Riemannian manifold with (possibly indefinite) metric (-, - );
(ii) W is a symplectic manifold with symplectic from »°;
(iii) (-, -) induces a bundle isomorphism a between TM and T*M by setting
a(X):=(X, —),for X e TM.

Because T*M has a canonical 2-form ), TM has the symplectic form «*Q. Then
TM X W is also a symplectic manifold with symplectic form wfa*Q—n%w*(7; and
1, are the natural projections of TM X W on TM and W respectively).

Now we ask that f(B) be a Lagrangian submanifold of (TM X W, mfa*o — miw°).

ProOPOSITION 4.6. Parallel to Proposition 4.2 we can prove that locally this
definition reduces to the existence of coordinates {x1,+,x,} for M and {y1,* ", Ym,
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U, , Uy} for Wand the existence of a potential function V(x, u) such that
A%
G(x)x=—(x,u),
ax
4.3)

A% .
y,-=c,-(—9;j(x, u) withe;==1

and w® =Xc; dy; n du; (so (y, u) are canonical coordinates). G (x) represents the Rieman -
nian metric {+, ).

Now one could suppose, guided by the similarity in definition of Hamiltonian
and gradient systems, and also by the linear situation as sketched before, that Theorem
4.3 should have an analogue in the gradient case. However it is easy to construct an
example of a nonlinear gradient system which is strongly observable but not strongly
accessible.

COUNTEREXAMPLE. Take V(xi,xs, X3, u)=ex1x,+xsu+u’, and as Rie-
mannian metric the Euclidean metric on R®. This generates a gradient system

Xy =e"x=g1(x), Xr=e"x1:=gy(x) Ez=eCxixtui=ga(x)+uy,

y=x3tu=hx)+u,
which is locally weakly observable because

i) dh = dxs,
it) Lodh =d(e™x1x2) = e™xy dx1+ e x1 dxa+ e x1x, dxs.
Because dh = dxs and e is merely a factor >0 we only have to consider x; dx,+ x» dx;.
iii) Lo(x1dxa+x2dx;)=d(x1 e™x1+ x5 ™x2)

=e"3(x1 dx1+ x5 dx,) + (factors in dx3).

Now because x; dx,+ x> dx; and x; dx; + x, dx, form a basis of T*R? in almost every
(x1, x2) € R? the observability codistribution has full dimension, and so the system is
locally weakly observable (even strongly observable, as can be readily seen). But the
system is not strongly accessible, because

[ 6] s d 4o d 4 o* a
, | =e P xy—t+e 3 x) —te i x, —=4g.
& aX3 ? dx1 ! dax2 12 0x3 &

Therefore the controllability distribution has dimension at most two.

5. Conclusion. We have shown that the definition of a smooth nonlinear system
in §2 can be readily interpreted as a generalization of more usual input—output
formulations. Further we can define a natural notion of minimality for such systems
which implies the usual definition of observability for nonlinear systems. It would be
interesting to look for a natural realization theory in this context. The definition of
minimality suggests a more local theory than the realization theory of nonlinear
input—output systems as developed in [9]. This aspect (see also [17]) is presently under
investigation. We also expect to find a natural interpretation of the definition of strong
observability in such a realization theory. The results of § 4 indicate hat, contrary to
the linear case, nonlinear gradient systems may be, at least from a system theoretic
point of view, more complex than nonlinear Hamiltonian systems.
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