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Observability and controllability are essential concepts to the design of predictive observer models and

feedback controllers of networked systems. For example, noncontrollable mathematical models of real

systems have subspaces that influence model behavior, but cannot be controlled by an input. Such

subspaces can be difficult to determine in complex nonlinear networks. Since almost all of the present

theory was developed for linear networks without symmetries, here we present a numerical and group

representational framework, to quantify the observability and controllability of nonlinear networks with

explicit symmetries that shows the connection between symmetries and nonlinear measures of observ-

ability and controllability. We numerically observe and theoretically predict that not all symmetries have

the same effect on network observation and control. Our analysis shows that the presence of symmetry in a

network may decrease observability and controllability, although networks containing only rotational

symmetries remain controllable and observable. These results alter our view of the nature of observability

and controllability in complex networks, change our understanding of structural controllability, and affect

the design of mathematical models to observe and control such networks.

DOI: 10.1103/PhysRevX.5.011005 Subject Areas: Biological Physics, Complex Systems,

Nonlinear Dynamics

I. INTRODUCTION

An observer model of a natural system has many useful

applications in science and engineering, including under-

standing and predicting weather or controlling dynamics

from robotics to neuronal systems [1]. A fundamental

question that arises when utilizing filters to estimate the

future states of a system is how to choose a model and

measurement function that faithfully captures the system

dynamics and can predict future states [2,3]. An observer is

a model of a system or process that assimilates data from

the natural system being modeled [4] and reconstructs

unmeasured or inaccessible variables. In linear systems, the

key concept to employ a well-designed observer is

observability, which quantifies whether there is sufficient

information contained in the measurement to adequately

reconstruct the full system dynamics [5,6].

An important problem when studying networks is how

best to observe and control the entire network when only

limited observation and control input nodes are available.

In classic work, Lin [7] described the topologies of graph-

directed linear networks that were structurally controllable.

Incorporating Lin’s framework, Liu et al. [8] described an

efficient strategy to count the number of control points

required for a complex network, which have an interesting

dependence on time constant [9]. Structural observability

is dual to structural controllability [10]. In Ref. [11], the

requirements of structural observability incorporated explicit

use of transitive components of directed graphs—fully

connected subgraphs where paths lead from any node to

any other node—to identify the minimal number of sites

required to observe from a network.

All of these prior works depend critically on the

dynamics being linear and generic, in the sense that

network connections are essentially random. Joly [12]

showed that transitive generic networks with nonlinear

nodal dynamics are observable from any node.
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Nevertheless, symmetries are present in natural networks,

as evident from their known structures [13] as well as the

presence of synchrony. Recently, Golubitsky et al. [14]

proved the rigid phase conjecture—that the presence of

synchrony in networks implies the presence of symmetries

and vice versa. In particular, synchrony is an intrinsic

component of brain dynamics in normal and pathological

brain dynamics [15].

Our present work is motivated by the following question:

What role do the symmetries and network coupling

strengths play when reconstructing or controlling network

dynamics? The intuition here is straightforward: consider

three linear systems with identical dynamics [diagonal

terms of the system matrix A in _xðtÞ ¼ AxðtÞ]. If the

coupling terms are identical (off-diagonal terms of A), it is
easy to show that the resulting observability of individual

states becomes degenerate as the rows and columns of the

systemmatrix become linearly dependent under elementary

matrix operations. For example, consider the trivial case of

a 3 × 3 system matrix of ones:

_x ¼ Ax ¼

2

6
4

1 1 1

1 1 1

1 1 1

3

7
5

2

6
4

x1

x2

x3

3

7
5: ð1Þ

The system is degenerate in the sense that there is only one

dynamic, as the rows and columns of A are not indepen-

dent. This lack of independent rows and columns of the

system matrix has direct implications for the controllability

and observability of the system. For example, in this trivial

system, the difference between any two of the states is

constrained to a constant x1 − x2 ¼ c; thus, there is no

input coupled to the third state x3 that could control both x1
and x2 independently from each other. Taking a single

measurement in Eq. (1), y ¼ ½1; 0; 0%x, the system is not

observable; however, taking an additional measurement,

y ¼

!

1; 0; 0

0; 1; 0

"

x;

the system is fully observable. The details of this compu-

tation will be explained in detail in the following section.

In fact, for the more general case of linear time-varying

networks, group representation theory [16] has been

utilized to show that linear time-varying networks can be

noncontrollable or nonobservable due to the presence of

symmetry in the network [17]. Brought into context, in

networks with symmetry, Rubin and Meadows [17] defined

a coordinate transform that decomposes the network into

decoupled observable (controllable) and unobservable

(uncontrollable) subspaces, which can then be determined

by inspection like our previous trivial example. Recently,

Pecora et al. [18] utilized this same method to show

how separate subsets of complex networks could

synchronize and desynchronize according to these same

symmetry-defined subspaces. Interestingly, while Ref. [17]

has been a rather obscure work, it is based on Wigner’s

work in the 1930s applying group representation theory to

the mechanics of atomic spectra [19]. Thus, just as the

structural symmetry of the Hamiltonian can be used to

simplify the solution to the Schrödinger equation [20], the

topology of the coupling in a network can have a profound

impact on its observation and control.

In this article, we extend the exploration of observability

and controllability to network motifs with explicit non-

linearities and symmetries. We further explore the effect of

coupling strength within such networks, as well as spatial

and temporal effects on observability and controllability.

Lastly, we demonstrate the utility of the linear analysis of

group representation theory as a tool with which to gain

insights into the effects of symmetry in nonlinear networks.

Our findings apply to any complex network, including

power grids, the internet, genomic and metabolic networks,

food webs, electronic circuits, social organization, and

brains [8,11,18,21].

II. BACKGROUND

From the theories of differential embeddings [22] and

nonlinear reconstruction [23,24] we can create a nonlinear

measure of observability composed of a measurement

function and its higher Lie derivatives employing the

differential embedding map [25]. The differential embed-

ding map of an observer provides the information contained

in a given measurement function and model, which can be

quantified by an index [26–28]. Computed from the

Jacobian of the differential embedding map, the observ-

ability index is a matrix condition number that quantifies

the perturbation sensitivity (closeness to singularity) of the

mapping created by the measurement function used to

observe the system. There is a dual theory for control-

lability, where the differential embedding map is con-

structed from the control input function and its higher

Lie brackets with respect to the nonlinear model function

[29,30]. Singularities in the map cause information about

the system to be lost and observability to decrease.

Additionally, the presence of symmetries in the system’s

differential equations makes observation difficult from

variables around which the invariance of the symmetry

is manifested [31,32]. We extend this analysis to networks

of ordinary differential equations and investigate the effects

of symmetries on observability and controllability of such

networks as a function of connection topology, measure-

ment function, and connection strength.

A. Linear observability and controllability

In the early 1960s, Kalman introduced the notions of

state space decomposition, controllability, and observabil-

ity into the theory of linear systems [5]. From this work

comes the classic concept of observability for a linear
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time-invariant dynamic system, which defines a “yes” or

“no” answer to the question of whether a state can be

reconstructed from a measurement using a rank condi-

tion check.

A dynamic model for a linear (time-invariant) system can

be represented by

_xðtÞ ¼ AxðtÞ þ BuðtÞ;

yðtÞ ¼ CxðtÞ; ð2Þ

where x ∈ Rn represents the state variable, u ∈ Rm is the

external input to the system, and y ∈ Rp is the output

(measurement) function of the state variable. Typically,

there are less measurements than states, so p < n. The
intuition for observability comes from asking whether an

initial condition can be determined from a finite period of

measuring the system dynamics from one or more sensors.

That is, given the system in Eq. (2), with xðtÞ ¼ eAtx0 and

Bu ¼ 0, determine the initial condition x0 from measure-

ment yðtÞ; 0 ≤ t ≤ T. To evaluate this locally, we take the

higher derivatives of yðtÞ:

yðtÞ ¼ CxðtÞ

_y ¼ C _xðtÞ ¼ CAxðtÞ

ÿ ¼ CA _xðtÞ ¼ CA2xðtÞ

.

.

.

yðn−1Þ ¼ CAn−1xðtÞ: ð3Þ

Factoring the x terms and putting y and its higher

derivatives in matrix form, we have a mapping from outputs

to states

2

6
6
6
6
6
6
6
6
4

y

_y

ÿ

.

.

.

yðn−1Þ

3

7
7
7
7
7
7
7
7
5

¼

2

6
6
6
6
6
6
6
6
4

C

CA

CA2

.

.

.

CAn−1

3

7
7
7
7
7
7
7
7
5

x; ð4Þ

where the linear observability matrix [33] is defined as

O≡

2

6
6
6
6
6
6
6
4

C

CA

CA2

.

.

.

CAn−1

3

7
7
7
7
7
7
7
5

: ð5Þ

The finite limit of taking derivatives in Eq. (3) comes from the

Cayley-Hamilton theorem, which specifies that any square

matrixA satisfies its own characteristic equation, which is the

polynomial pðλÞ ¼ 0, where pðλÞ ¼ detðλIn − AÞ. In other

words, An is spanned by the lower powers of A, from A0 to

An−1,

yðtÞ ¼ CeAtx0; with eAt ≡
Xn−1

k¼0

αkðtÞA
k;

yðtÞ ¼ ½α0ðtÞCþ α1ðtÞCAþ α2ðtÞCA
2

þ ' ' ' þ αn−1ðtÞCA
n−1%x0: ð6Þ

Thus, if the observability matrix spans n space

[rankðOÞ ¼ n], the initial condition x0 can be determined,

as the mapping x0 ¼ ðOTOÞ−1OTyðtÞ from output to states

exists and is unique. More formally, the system Eq. (2)

is locally observable (distinguishable at a point x0) if

there exists a neighborhood of x0 such that x0 ≠ x1⇒
yðx0Þ ≠ yðx1Þ.
In a similar fashion, the linear controllability matrix is

derived from asking whether an input uðtÞ can be found to

take any initial condition xð0Þ ¼ x0 to arbitrary position

xðTÞ ¼ xf in a finite period of time T. For the sake of

simplicity, we assume a single input uðtÞ and take the

higher derivatives of _xðtÞ ¼ AxðtÞ þ BuðtÞ up to the

ðn − 1Þth derivative of uðtÞ (again using the Cayley-

Hamilton theorem):

_xðtÞ ¼ AxðtÞ þ BuðtÞ

ẍðtÞ ¼ A2xðtÞ þ ABuðtÞ þ B _uðtÞ

x⃛ðtÞ ¼ A3xðtÞ þ A2BuðtÞ þ AB _uðtÞ þ BüðtÞ

.

.

.

xðnÞðtÞ ¼ AnxðtÞ þ An−1BuðtÞ þ An−2B _uðtÞ þ ' ' '

þ Buðn−1ÞðtÞ; ð7Þ

which gives us a mapping from input to states

2

6
6
6
6
6
6
6
6
4

_xðtÞ

ẍðtÞ

.

.

.

xðn−1ÞðtÞ

xðnÞðtÞ

3

7
7
7
7
7
7
7
7
5

−

2

6
6
6
6
6
6
6
6
4

A

A2

.

.

.

Aðn−1Þ

AðnÞ

3

7
7
7
7
7
7
7
7
5

xðtÞ ¼ Q

2

6
6
6
6
6
6
6
6
4

uðtÞ

_uðtÞ

.

.

.

uðn−2ÞðtÞ

uðn−1ÞðtÞ

3

7
7
7
7
7
7
7
7
5

; ð8Þ

where the linear controllability matrix is defined [33] as

Q≡ ½B;AB; A2B ' ' ' ; An−1B %: ð9Þ

B. Differential embeddings and nonlinear observability

From early work on the nonlinear extensions of observ-

ability in the 1970s [29,30], it was shown that the

observability matrix for nonlinear systems could be

expressed using the measurement function and its
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higher-order Lie derivatives with respect to the nonlinear

system equations. The core idea is to evaluate a mapping ϕ

from the measurements to the states ϕ: Rp
→ R

n. In

particular, Hermann and Krener [30] showed that the space

of the measurement function is embedded in Rn when the

mapping from measurement to states is everywhere differ-

entiable and injective by the Whitney embedding theorem

[22,23]. An embedding is a map involving differential

structure that does not collapse points or tangent directions

[24]; thus, a map ϕ is an embedding when the determinant

of the map Jacobian detð∂ϕ=∂xj∀x∈RnÞ is nonvanishing and
one to one (injective). In a recent series of papers

[25,28,31], Letellier et al. computed the nonlinear observ-

ability matrices for the well-known Lorenz and Rössler

systems [34,35] and demonstrated that the order of the

singularities present in the observability matrix (and thus

the amount of intersection between the singularities and the

phase space trajectories) was related to the decrease in

observability. It is worth noting that the calculation of the

observability matrix and locally evaluating the conditioning

of the matrix over a state trajectory is a straightforward

process and much more tractable than analytically deter-

mining the singularities (and thus their order) of the

observability matrix of a system of arbitrary order. The

former is limited only by computational capacity and the

differentiability of the system equations to order n − 1,

where n is the order of the system.

For a nonlinear system, we replace AxðtÞ in Eq. (2) by a

nonlinear vector field ANLðxðtÞÞ and assume that the smooth

scalar measurement function is taken as yðtÞ ¼ CxðtÞ and
the system equations comprise the nonlinear vector field

fðxðtÞÞ ¼ ANLðxðtÞÞ (note that if there is no external input,

then BuðtÞ ¼ 0, which we assume here to simplify the

display of equations). (If Bu ≠ 0, then as long as the input is

known the mapping from output to states can be solved, and

the determination of observability still relies on the con-

ditioning of the matrixO.) As in the linear case, we evaluate

locally by taking the higher Lie derivatives of yðtÞ, and for

compactness of notation, dependence on t is implied:

L0
fðyðxÞÞ ¼ yðxÞ

L1
fðyðxÞÞ ¼ ∇yðxÞ · fðxÞ ¼

∂yðxÞ

∂x
· fðxÞ

L2
fðyðxÞÞ ¼

∂

∂x
½L1

fðyðxÞÞ% · fðxÞ

.

.

.

Lk
fðyðxÞÞ ¼

∂

∂x
½Lk−1

f ðyðxÞÞ% · fðxÞ; ð10Þ

where LfðyðxÞÞ is the Lie derivative of yðxÞ along the vector
field fðxÞ. More explicitly, we have x ∈ Rn, so as a vector

example, the first Lie derivative will take the form

L1
fðyðxÞÞ ¼

h
∂yðxÞ
∂x1

' ' ' ∂yðxÞ
∂xn

i

·

2

6
6
6
4

f1ðxÞ

.

.

.

fnðxÞ

3

7
7
7
5
: ð11Þ

With formal definitions of the measurement (output) func-

tion Eq. (2) and its higher Lie derivatives Eq. (10), the

differential embedding map ϕ is defined as the Lie deriv-

atives L0
fðyðxÞÞ…Ln−1

f ðyðxÞÞ, where the superscripts re-

present the order of the Lie derivative from 0 to n − 1, where

n is the order of the system ANLðxÞ:

ϕ ¼

2

6
6
6
6
6
6
4

L0
fðyðxÞÞ

L1
fðyðxÞÞ

.

.

.

Ln−1
f ðyðxÞÞ

3

7
7
7
7
7
7
5

: ð12Þ

Taking the Jacobian of the map ϕ, we arrive at the

observability matrix

O≡
∂ϕ

∂x
¼

2

6
6
6
6
4

∂L0

f
ðyðxÞÞ

∂x1
' ' '

∂L0

f
ðyðxÞÞ

∂xn

.

.

.
.
.

.
.
.
.

∂Ln−1
f

ðyðxÞÞ

∂x1
' ' '

∂Ln−1
f

ðyðxÞÞ

∂xn

3

7
7
7
7
5

; ð13Þ

which reduces to Eq. (5) for linear system representations.

The key intuition here is that in the nonlinear case the

observability matrix becomes a function of the states, where

a linear system is always a constant matrix of parameters.

C. Lie brackets and Nonlinear controllability

The nonlinear controllability matrix is developed in

Ref. [29] from intuitive control problem examples and

given rigorous treatment in Ref. [30]; in a dual fashion to

observability, the controllability matrix is a mapping

constructed from the input function and its higher-order

Lie brackets. The Lie bracket is an algebraic operation on

two vector fields fðxÞ;gðxÞ ∈ Rn that creates a third vector

field FðxÞ, which when taken with g as the input control

vector u ∈ Rm defines an embedding in Rn that maps the

input to states [30].

For a nonlinear system, we replace AxðtÞ in Eq. (2) by a

nonlinear vector field ANLðxðtÞÞ, take the input function as

g ¼ BuðtÞ in system Eq. (2), and create Lie brackets with

respect to the nonlinear vector field fðxðtÞÞ ¼ ANLðxðtÞÞ.
The Lie bracket is defined as
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ðad1f ; gÞ ¼ ½f;g% ¼
∂g

∂x
f −

∂f

∂x
g

ðad2f ; gÞ ¼ ½f; ½f;g%% ¼
∂ðad1f ; gÞ

∂x
f −

∂f

∂x
ðad1f ; gÞ

.

.

.

ðadkf ; gÞ ¼ ½f; ðadk−1f ;gÞ%; ð14Þ

where ðadkf ; gÞ is the adjoint operator and the superscripts

represent the order of the Lie bracket. With formal

definitions of the input function Eq. (2) and its higher

Lie brackets Eq. (14) from 1 to n, where n is the order of the
system matrix ANLðxðtÞÞ, the nonlinear controllability

matrix is defined as

Q≡
#

g; ðad1f ; gÞ;…; ðadnf ; gÞ
$

¼
#

g; ½f;g%; ½f½f;g%%;…; ½f; ðadn−1f ;gÞ%
$

: ð15Þ

D. Observability and controllability indices

In systems with real numbers, calculation of the Kalman

rank condition may not yield an accurate measure of the

relative closeness to singularity (conditioning) of the

observability matrix. It was demonstrated in Ref. [26] that

the calculation of a matrix condition number [36] would

provide a more robust determination of the ill conditioning

inherent in a given observability matrix, since condition

number is independent of scaling and is a continuous

function of system parameters (and states in the generic

nonlinear case). We use the inverted form of the observ-

ability index δðxÞ given in Ref. [26] so that 0 ≤ δðxÞ ≤ 1,

δðxÞ ¼
jσmin½O

TO%j
jσmax½O

TO%j ; ð16Þ

where σmin and σmax are the minimum and maximum

singular values of OTO, respectively, and δðxÞ ¼ 1 indi-

cates full observability while δðxÞ ¼ 0 indicates no observ-

ability [37]. Similarly, the controllability index is just

Eq. (16) with the substitution of Q for O.

III. OBSERVABILITY AND CONTROLLABILTY

OF 3-NODE FITZHUGH-NAGUMO NETWORK

MOTIFS

A. Fitzhugh-Nagumo system dynamics

The Fitzhugh-Nagumo (FN) equations [38,39] comprise

a general representation of excitable neuronal membrane.

The model is a two-dimensional analog of the well-known

Hodgkin-Huxley model [40] of an axonal excitable mem-

brane. The nonlinear FN model can exhibit a variety of

dynamical modes, which include active transients, limit

cycles, relaxation oscillations with multiple time scales,

and chaos [38,41]. A nonlinear connection function will be

used to emulate properties of neuronal synapses.

The system dynamics at a node are given by the (local

second-order) state space

_vi ¼ c

%

vi −
v3i
3
− wi þ

X

fNLðvj; dijÞ þ I

&

;

_wi ¼ vi − bwi þ a; ð17Þ

where i ¼ 1; 2; 3 for the 3-node system, vi represents

membrane voltage of node i, wi is recovery, dij is the

internodal distance from node j to i, vj is the voltage of

neighbor nodes with j ¼ 1; 2; 3 and j ≠ i, input current I,
and the system parameters a ¼ 0.7; b ¼ 0.8; c ¼ 10. As

defined above in Eqs. (13) and (15), the observability and

controllability matrices are a function of the states, which

means a dependence on the particular trajectory taken in

phase space. In the following analysis, we are interested

in directed information flow between nodes as a function

of various topological connection motifs, connection

strengths, and input forcing functions (which provide

different trajectories through phase space). Each motif is

representative of a unique combination of directed con-

nections between the three nodes with and without latent

symmetries. The nonlinear connection function commonly

used in neuronal modeling [42] takes the form of the

sigmoidal activation function of neighboring activity

(a hyperbolic tangent) and an exponential decay with

internodal distance. We utilize various coupling strengths

to determine the effects on the observability (controllabil-

ity) of the network. Our coupling function takes the form

fNLðv; dÞ ¼
k

2

!

tanh

%

v − h

2m

&

þ 1

"

e−d: ð18Þ

The sigmoid parameters k ¼ 1; h ¼ 0; m ¼ 1=4 are set

such that fNLðv; dÞ has an output range [0,1] for the input

interval ½−2; 2%, which is the range of the typical FN

voltage variable. To introduce heterogeneity for symmetry

breaking a 10% variance noise term is added to each of the

dij terms (there are six total possible coupling terms

d12; d13;…, etc.).

In this configuration, inputs from neighboring nodes act

in an excitatory-only manner, while the driving input

current was a square wave I¼0.25½
P

∞
n¼−∞⊓ðωt−nTÞþ1%

(where ⊓ is the rectangular function, ω ¼ 2π=5, and

T ¼ 16 2

3
) applied to all three nodes to provide a limit-

cycle regime to the network; for the limit-cycle regime

generated in the original paper by Fitzhugh [38], the driving

current input was constant I ¼ −0.45 (with the system

parameters mentioned above), which we also explore.

Chaotic dynamics were generated with a slightly different

square wave input [41] I¼0.1225½
P

∞
n¼−∞⊓ðωt−nTÞþ1%

(with ω ¼ 2π=1.23 and T ¼ 2.7891) also applied to all
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three nodes. These various driving input regimes allow a

wider exploration of the phase space of the system as

each driving input commands a different trajectory, which

will in turn influence the observability and controllability

matrices.

B. Network motifs and simulated data

As we are interested in the effect of connection topology

on observability and controllability, we study the simplest

nontrivial network: a 3-node network. Such small network

motifs are highly overrepresented in neuronal networks

[43,44]. For each network motif shown in Fig. 1, we

compute the observability (controllability) indices for

various measurement nodes, connection strengths, and driving inputs (dynamic regimes). Measurements of vi
for each motif are from each one of the nodes i ¼ 1, 2, or 3.

Simulated network data are used to compute the observ-

ability (controllability) index for two cases: (1) where the

system parameters for all three nodes and connections are

FIG. 1. The eight different 3-node network connection motifs

studied.

(a) (b)

(c) (d)

FIG. 2. Calculation of (a),(c) observability and (b),(d) control-

lability indices for motif 1 for a chaotic dynamical regime, as

measured from each node (green triangles, 1; blue crosses, 2; red

dots, 3). The thick lines and symbols mark the mean values of

each distribution of indices for each coupling strength, while the

smaller symbols and dotted lines represent the (1 standard

deviation confidence intervals. Plots in the top row represent the

results computed with symmetry-breaking heterogeneous cou-

plings while plots in the bottom row are those with identical

coupling strengths.

(a) (b)

(d)(c)

FIG. 3. Same as Fig. 2, except calculations are for motif 3. The

calculations show that the reflection symmetry in the network

topology causes zero observability and controllability for the

symmetric case of observing or controlling from node 2 with

identical coupling strengths (c),(d).

(a) (b)

(c) (d)

FIG. 4. Same as Fig. 2, except calculations are for motif 7. The

calculations show that the particular rotational symmetry in the

network topology has no ill effect on observability and control-

lability for the symmetric case of identical coupling strengths (c),

(d) as compared to the broken symmetry in panels (a) and (b).
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identical, and (2) where the nodes have a heterogeneous

(10% variance) symmetry-breaking set of coupling param-

eters. To create simulated data, the full six-dimensional FN

network equations are integrated from the same initial

conditions with the same driving inputs for each node via a

Runge-Kutta fourth-order method with time stepΔt ¼ 0.04

for 12 000 time steps (with the initial transient discarded) in

MATLAB for each test case: (1) limit-cycle and (2) chaotic

dynamical regimes, with (a) identical and (b) heterogeneous

coupling (the nodal parameters remain identical through-

out). Convergence of solutions is achieved when Δt is

decreased to 0.04. Data are then imported into

Mathematica and inserted into symbolic observability

and controllability matrices (computed for each node),

which are then numerically computed to obtain the observ-

ability (controllability) indices for each coupling strength.

The indices are then averaged over the integration paths

starting from random initial conditions. These calculations

are summarized in Figs. 2–6 for observability and control-

lability, in the chaotic, pulsed limit-cycle, and constant

input limit-cycle dynamical regimes. To facilitate others

replicating our work, we have archived extensive code

in MATLAB and Mathematica in the Supplemental

Material [45].

IV. RESULTS

A. Motifs with symmetry

For motif 1, the data show that a system with full S3

symmetry (due to the connection topology and identical
nodal and coupling parameters) generates zero observabil-
ity (controllability) over the entire range of coupling
strengths [Figs. 2(c) and 2(d)]. Similarly, no observability
(controllability) is seen from node 2 in motif 3, which has a
reflection S2 symmetry across the plane through node 2
[Figs. 3(c) and 3(d)]. Interestingly, the cyclic symmetry of
motif 7 does not cause loss of observability (controllability)
as shown in Fig. 4; motif 7 has rotational C3 symmetry and
valance 1 connectivity (1 input, 1 output). In motifs 1 and 3
the effect of the symmetry is partially broken by introduc-
ing a variation in the coupling terms, and the results show
nonzero observability (controllability) indices in the plots
for such heterogeneous coupling [plots (a) and (b) in Figs. 2
and 3] with a dependence on the coupling strength.

Of particular interest is the substantial loss of observ-

ability (controllability) as the coupling strengths increase to

critical levels for systems containing latent structural

symmetries in the presence of heterogeneity [motifs 1

and 3, plots (a) and (b) in Figs. 2 and 3]. That is, increasing

the coupling strengths when recording (stimulating) from

FIG. 5. Calculation of observability indices for each of the FN network motifs with no underlying group symmetries for a pulsed input

limit-cycle dynamical regime, as measured from each node (green squares, 1; blue crosses, 2; red dots, 3). The thick lines and symbols

mark the mean values while the smaller symbols and dotted lines represent the (1 standard deviation confidence intervals. Plots in the

top row are computed with heterogeneous couplings while identical coupling strengths are in the bottom row. The calculations show

the effect of network coupling strength on observability; motifs 5, 6, and 8 show no observability from node 3 in motif 5, and from

nodes 2 and 3 in motifs 6 and 8 due to structural isolation.
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any node in motif 1 or node 2 in motif 3 degrades

observability (controllability) as coupling strength

increases. A study of the 3D phase plots of the FN voltage

variable in motif 1 (as a function of coupling strength for

chaotic dynamics) reveals a blowout bifurcation [46] at

lower values of coupling strengths (Fig. 7), and at higher

levels, generalized synchrony [47] and increased observ-

ability (controllability), and finally the subsequent decrease

in observability (controllability) at the highest levels of

coupling strength [motif 1 as observed (controlled) from

any node in Fig. 2]. This is demonstrated in motif 1 (Fig. 7),

where a bifurcation in the dynamics causes the wandering

trajectories at weak coupling strengths to collapse onto the

limit-cycle attractor at stronger coupling strengths, and at

the strongest coupling the dynamics reveal a reverse Hopf

bifurcation from the limit cycle back into a stable

equilibrium.

Although motif 7 contains symmetry, the observability

and controllability measures appear unaffected by the

presence of this symmetry; further insight into why this

happens in such networks requires group representation

theory and is presented in Sec. V.

B. Motifs without symmetry

Local output symmetries occur in motifs 2 and 6 when

controlling from the first and second node, respectively

(green and blue traces in Fig. 6), which is remedied by the

disambiguating effect of parameter variation. Additionally,

as in the motifs with symmetry, the broken local sym-

metries lose controllability as coupling strength further

increases, evident in motifs 2 and 6 in Fig. 6. In the cases

where the indices are zero without symmetries (motifs 5, 6,

and 8 in Figs. 5 and 6), the motif must contain one or more

structurally isolated nodes and, hence, are not structurally

controllable or observable. From the viewpoint of observ-

ability, this means that information from the isolated node

(s) cannot reach the measured node as the two are not

connected in that direction [10,12]; for controllability, this

means that the isolated node(s) is not reached by the

controlled node due to the two not being connected in that

direction [7]. This structural nodal isolation is exemplified

in motif 8 (in Figs. 5 and 6), where the network is only

observable from node 1, and only controllable from node 3.

Additionally, the plots in Figs. 5 and 6 show counter-

intuitively that as coupling strength increases, the observ-

ability (controllability) indices can increase to an optimal

value, and then begin to decrease as coupling strength

increases past this critical coupling value.

V. SYMMETRIC NETWORK OBSERVABILITY

AND CONTROLLABILITY VIA GROUP

REPRESENTATION THEORY

For linear time-varying systems, Rubin and Meadows

[17] used the theory of group representations [16,19,20,48]

FIG. 6. Calculation of controllability indices for each of the FN network motifs with no underlying group symmetries for a limit-cycle

dynamical regime with constant input current I ¼ −0.45; all other details are the same as in Fig. 5. In particular, notice that local input-

output symmetries cause zero controllability when controlling motif 2 from node 1 or motif 6 from node 2.
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to show how a (circuit) network containing group sym-

metries would be noncontrollable or nonobservable due to

symmetries (termed NCS or NOS, respectively). The

analysis involves first determining the irreducible repre-

sentations of the symmetry group of the system equations,

then constructing an orthogonal basis (called a symmetry

basis) from the irreducible representations which trans-

forms the systemmatrix AðtÞ into block diagonal form (also

called modal form). Inspection of the fully transformed

system from Eq. (2) reveals if the NCS or NOS property is

present via zeros in a critical location of decoupled block-

diagonal decomposition ðÂ; B̂; ĈÞ, i.e., the form

d

dt

!

Z1

Z2

"

¼

!

A1 0

0 A2

"

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Â

!

Z1

Z2

"

þ

!

B1

0

"

|fflffl{zfflffl}

B̂

uðtÞ;

yðtÞ ¼

!

C1 0

"

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Ĉ

!

Z1

Z2

"

; ð19Þ

where the transformed system Eq. (19) in partitioned form

above is noncontrollable and nonobservable (not com-

pletely controllable or observable). This can be seen by

inspection, as the zeros present in the partitioned meas-

urement and control functions Ĉ and B̂ leave the

transformed system unable to measure or control the mode

associated with Z2 as neither uðtÞ or Z1 is present in the

equation for Z2, and Z2 does not appear in the output. In the

next section, we summarize the minimum background

components of groups and representations (without proofs)

in order to further gain insight into how symmetry effects

the controllability and observability of our networks.

A. Symmetric groups and representations

A symmetry operation on a network is a permutation

(in this case nodes) that results in exactly the same

configuration as before the transformation was applied.

The symmetric group Sn consists of all permutations on n
symbols, called the order of the group g ¼ n!. The short-

hand method of denoting a permutation operation R of

nodes in a network is written (123), where node 1 is

replaced by node 2 and node 2 by node 3. This is called a

cycle of the permutation [16], and with it we can define all

of the permutations of Sn. Three of the network motifs we

study here contain topological symmetries (Figs. 2–4);

motif 1 has S3 symmetry, motif 3 has S2 symmetry, and

motif 7 contains C3 symmetry (see Ref. [20] for a rigorous

classification of various forms of symmetry), and each of

these groups comprise the following sets of permutation

operations R:

FIG. 7. The three-dimensional phase space for v andw, showing trajectories inmotif 1 asmeasured fromnode 1 for a range of connection

strengths (weak to strong heterogeneous couplingK, from left to right, respectively). In the first row, blue triangles mark locations in phase

space where observability is higher than the mean for the trajectory, while the second row contains a phase space trajectory for w and red

triangles mark the higher than average controllability. The broken symmetry of the heterogeneous network has trajectories that visit

locations in the phase space that vary widely in observability and controllability with a log-normal distribution (see the Appendix).
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R∶ S3 ¼ fE; σ1; σ2; σ3; C3; C
2
3
g

¼ fE ¼ ð1Þð2Þð3Þ

σ1 ¼ ð23Þ; σ2 ¼ ð13Þ; σ3 ¼ ð12Þ

C3 ¼ ð132Þ; C2
3
¼ ð123Þg; ð20Þ

where E is the identity operation, σn is a reflection across

the nth axis in Fig. 8, andC3 andC
2
3
are two cyclic rotations

where Cn denotes a rotation of the system by 2π=n rad

where the system remains invariant after rotation [20]. S2

and C3 symmetry in motifs 3 and 7, respectively, are

subgroups of S3:

S2 ¼ fE; σ2g;
C3 ¼ fE;C3; C

2
3
g: ð21Þ

The permutation operations R in these symmetric groups

can also be represented by monomial matrices [49] DðRÞ:

2

6
4

1 0 0

0 1 0

0 0 1

3

7
5

E

2

6
4

1 0 0

0 0 1

0 1 0

3

7
5

σ1

2

6
4

0 0 1

0 1 0

1 0 0

3

7
5

σ2

2

6
4

0 1 0

1 0 0

0 0 1

3

7
5

σ3

2

6
4

0 1 0

0 0 1

1 0 0

3

7
5

C3

2

6
4

0 0 1

1 0 0

0 1 0

3

7
5

C2

3

; ð22Þ

where DðRÞ in Eq. (22) is a three-dimensional representa-

tion of S3 group symmetry (for our three node motifs); a

representationDðRÞ for S2 andC3 group symmetry are just

the matrices above in Eq. (22) corresponding to the sets of

group elements given in Eq. (21).

A group of matrices Dð·Þ is said to form a representation

of a group Sn if a correspondence (denoted ∼) exists

between the matrices and the group elements such that

products correspond to products; i.e., if R1 ∼DðR1Þ
and R2 ∼DðR2Þ, then the composition ðR1R2Þ ∼
DðR1ÞDðR2Þ ¼ DðR1R2Þ (Definition 12 in Ref. [17]); this

is known as a homomorphism of the group to be repre-

sented, and if the correspondence is one to one, the

representation is isomorphic and called a “faithful” repre-

sentation of the group.

Theorem 2 from Ref. [17] establishes the connection

between group theory and the linear network system

equations (2), by demonstrating that the monomial repre-

sentation DðRÞ of symmetry operations R is conjugate

(commutes) with the network system matrix A in Eq. (2):

D−1ðRÞAðtÞDðRÞ ¼ AðtÞ; ∀ R ∈ Sn; ð23Þ

where DðRÞ shows how the states of the system equations

transform under the symmetry operation R and form a

reducible representation [16,50] of the symmetric group

Sn. A representation is said to be reducible if it can be

transformed into a block-diagonal form via a similarity

transformation α, and irreducible if it is already in diagonal

form; a reducible representation DðRÞ that has been

reduced to block-diagonal form D̂ðRÞ will have k nonzero

submatrices along the diagonal that define the irreducible

representations DðpÞðRÞ; p ¼ 1;…; k of the group

Sn [17],

α†DðRÞα ¼ D̂ðRÞ; ∀ R ∈ Sn;

D̂ðRÞ ¼

2

6
6
6
4

D
ð1Þ
l1

0

.
.

.

0 D
ðkÞ
lk

3

7
7
7
5
; ð24Þ

where † represents the complex conjugate transpose of α, lp
is the dimension of DðpÞðRÞ, and the number of irreducible

representations k equals the number of classes the group

elements R are partitioned into. This can be found by

computing the trace of each representation in DðRÞ, ∀R—
called the character of the representation—and collecting

those that have the same trace into separate classes Cp,

p ¼ 1;… ; k, which define sets of conjugate elements [20].

The character of DðRÞ is defined as

χðRÞ ¼ Tr½DðRÞ%; ∀ R ∈ Sn: ð25Þ

The key to forming irreducible representations in Eq. (24)

is that the transform α needs to reduce each representation

matrix DðRÞ to diagonal form for every group element R
in Sn.

In Eq. (24), the dimension of each irreducible repre-

sentation lp can be found from the fact that the irreducible

representations of the group form an orthogonal basis in the

g-dimensional space of the group, and since there can be no

FIG. 8. Graphic illustration of symmetry axes σn with n ¼
1; 2; 3 and the cyclic rotation symmetry C3 about an axis

perpendicular to the plane of the page.
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more than g independent vectors in the orthogonal basis, it

can be shown [48] that

Xk

p¼1

l2p ¼ g; ð26Þ

where the sum is over the number of irreducible repre-

sentations (or classes of conjugate group elements) k. Some

of the irreducible representations DðpÞðRÞ will appear in

D̂ðRÞ more than once while others may not appear at all;

the character of the representation completely determines

this, and the number of times ap that DðpÞðRÞ appears in

D̂ðRÞ is defined in Ref. [20] as

ap ¼
1

g

X

R

χðpÞðRÞ)χðRÞ; ð27Þ

where χðpÞðRÞ is the trace of DðpÞðRÞ, the asterisk denotes

complex conjugate, and χðRÞ is the trace of DðRÞ.

B. Construction of the similarity transform α

We examine motif 3 in Fig. 3, which has S2 symmetry

[51]. Determined from Eq. (25), there are two classes of

group elements C1 ¼ fEg and C2 ¼ fσ2g, and reduction of
DðRÞ yields the two, one-dimensional [l1 ¼ l2 ¼ 1 com-

puted from Eq. (26)] irreducible representations Dð1ÞðRÞ
and Dð2ÞðRÞ of S2:

R E σ2

Dð1ÞðRÞ 1 1

Dð2ÞðRÞ 1 −1

; ð28Þ

where each entry in DðpÞ corresponds to the elements of

DðRÞ above in Eq. (22), where R ¼ fE; σ2g as in Eq. (21),

and from Eq. (27), Dð1ÞðRÞ appears two times while

Dð2ÞðRÞ appears once in DðRÞ.
A procedure for transforming the reducible representa-

tion DðRÞ of a symmetry group Sn to block-diagonal form

is presented in Refs. [17,50]. A unitary transformation α is

constructed from the normalized linearly independent

columns of the n × n generating matrix G
ðpÞ
i ,

G
ðpÞ
i ¼

X

R

DðpÞðRÞ)iiDðRÞ; ð29Þ

where DðpÞðRÞii is the ði; iÞth diagonal entry of an lp-

dimensional irreducible representation p (hence,

i ¼ 1;…; lp) of the symmetry group Sn and the asterisk

denotes complex conjugate. Each matrix G
ðpÞ
i will con-

tribute ap linearly independent columns from Eq. (27) to

form the coordinate transformation matrix α. Using

Eqs. (28) and (29) and iterating through all lp rows of

each of the k irreducible representations in Eq. (24), we

construct α for motif 3:

G
ð1Þ
1

¼
X

R∈S2

Dð1ÞðRÞ)
11
DðRÞ

¼ 1

2

6
4

1 0 0

0 1 0

0 0 1

3

7
5þ 1

2

6
4

0 0 1

0 1 0

1 0 0

3

7
5 ¼

2

6
4

1 0 1

0 2 0

1 0 1

3

7
5;

ð30Þ

where each linearly independent column of G is a column

of α. After normalizing, we have

2

6
4

1

0

1

3

7
5;

2

6
4

0

2

0

3

7
5!

normalize

2

6
6
4

1
ffiffi

2
p

0

1
ffiffi

2
p

3

7
7
5
;

2

6
4

0

1

0

3

7
5 ¼

2

6
4

α11 α21

α12 α22

α13 α23

3

7
5;

ð31Þ

which defines the first and second columns of α.

Continuing, we have

G
ð2Þ
1

¼
X

R∈S2

Dð2ÞðRÞ)
11
DðRÞ

¼ 1

2

6
4

1 0 0

0 1 0

0 0 1

3

7
5 − 1

2

6
4

0 0 1

0 1 0

1 0 0

3

7
5 ¼

2

6
4

1 0 −1

0 0 0

−1 0 1

3

7
5;

ð32Þ

which yields the final column of α (after normalization):

2

6
4

1

0

−1

3

7
5!

normalize

2

6
4

1
ffiffi

2
p

0

− 1
ffiffi

2
p

3

7
5 ¼

2

6
4

α31

α32

α33

3

7
5: ð33Þ

Now, the coordinate transformation matrix α is

α ¼

2

6
6
4

1
ffiffi

2
p 0 1

ffiffi

2
p

0 1 0

1
ffiffi

2
p 0 − 1

ffiffi

2
p

3

7
7
5
: ð34Þ

Motif 3 in Fig. 3 has connection matrix A3:

A3 ¼

2

6
4

0 1 0

1 0 1

0 1 0

3

7
5: ð35Þ

To control from nodes 1, 2, and 3, respectively, the Bmatrix

takes the form
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B1;2;3 ¼

2

6
4

1

0

0

3

7
5;

2

6
4

0

1

0

3

7
5;

2

6
4

0

0

1

3

7
5; ð36Þ

and to observe from nodes 1, 2, and 3, respectively, the

C matrix takes the form

C1;2;3 ¼ ½ 1 0 0 %; ½ 0 1 0 %; ½ 0 0 1 %: ð37Þ

The block-diagonalized system ðÂ3; B̂; ĈÞ is formed with

the substitution Z ¼ α†x, and (A3; B; C) in Eqs. (35)–(37)

becomes

Â3∶ α†A3α ¼

2

6
4

0
ffiffiffi

2
p

0
ffiffiffi

2
p

0 0

0 0 0

3

7
5;

B̂∶ α†B1;2;3 ¼

2

6
6
4

1
ffiffi

2
p

0

1
ffiffi

2
p

3

7
7
5
;

2

6
4

0

1

0

3

7
5;

2

6
6
4

1
ffiffi

2
p

0

−1
ffiffi

2
p

3

7
7
5
;

Ĉ∶ C1;2;3α ¼
h

1
ffiffi

2
p 0 1

ffiffi

2
p

i

; ½ 0 1 0 %;
h

1
ffiffi

2
p 0 −1

ffiffi

2
p

i

.

ð38Þ

By inspection of the transformed system Eq. (38), it

becomes clear that motif 3 is noncontrollable and non-

observable from node 2 due to symmetry alone (NCS and

NOS); i.e. the transformed system in modal coordinates,

d

dt

2

6
4

Z1

Z2

Z3

3

7
5 ¼

2

6
4

0
ffiffiffi

2
p

0
ffiffiffi

2
p

0 0

0 0 0

3

7
5

2

6
4

Z1

Z2

Z3

3

7
5þ

2

6
4

0

1

0

3

7
5uðtÞ;

yðtÞ ¼ ½ 0 1 0 %

2

6
4

Z1

Z2

Z3

3

7
5; ð39Þ

is NCS and NOS as the mode associated with Z3 cannot be

reached by the input B̂2 nor can its measurement be inferred

from the output Ĉ2 as in Eq. (19).

The procedure to reduce motif 1 is accomplished in a

similar fashion (full computation of α is detailed in the

Appendix) and the connection matrix A1 and its reduced

form Â1 is

A1 ¼

2

6
4

0 1 1

1 0 1

1 1 0

3

7
5; Â1 ¼

2

6
4

2 0 0

0 −1 0

0 0 −1

3

7
5; ð40Þ

while the transformed B and C matrices in Eqs. (36) and

(37) are

B̂1;2;3 ¼

2

6
6
4

1
ffiffi

3
p
ffiffi

2

3

q

0

3

7
7
5
;

2

6
6
4

1
ffiffi

3
p

−1
ffiffi

6
p

1
ffiffi

2
p

3

7
7
5
;

2

6
6
4

1
ffiffi

3
p

−1
ffiffi

6
p

−1
ffiffi

2
p

3

7
7
5
; Ĉ123 ¼ B̂T

1;2;3: ð41Þ

At first glance, it appears that motif 1 is NCS and NOS for

measurement and control from node 1 only, and fully

controllable and observable from node 2 and 3; however,

there is a subtle nuance to the controllability and observ-

ability of the diagonal form used in Ref. [17] and

consolidated in Eq. (19) to show noncontrollability and

nonobservability by inspection.

It is well known that every nonsingular n × n matrix has

n eigenvalues λn, and that a matrix with repeated eigen-

values of algebraic multiplicity mi will have a degeneracy

1 ≤ qi ≤ mi associated with the number of linearly inde-

pendent eigenvectors for repeated eigenvalue λi. This

degeneracy qi is also called the geometric multiplicity of

λi, and is equal to the dimension of the null space of A − Iλi
[52]. When utilizing similarity transforms to reduce a

matrix to diagonal (modal) form, this degeneracy in the

eigenvectors (brought about by repeated eigenvalues)

results in a transformed matrix that is almost diagonal,

called the Jordan form matrix. The Jordan form is com-

posed of submatrices of dimension mi—called Jordan

blocks—that have ones on the superdiagonal of each

Jordan block Ji associated with the generalized eigenvec-

tors of a repeated eigenvalue λi. The diagonal form in

Eq. (19) is a special case of a Jordan form where the

matrices on the diagonal are Jordan blocks of dimension

one. This is known as the fully degenerate case with

qi ¼ mi, and the Jordan form will have mi separate 1×1

Jordan blocks associated with each eigenvalue λi.

The observability and controllability of systems in

Jordan form hinges on where the zeros appear in the

partitioned Ci and Bi matrices, where subscript i indicates a
partition associated with a particular Jordan block Ji. Given
in Refs. [52,53], the conditions for controllability and

observability of a system in Jordan form are: 1. The first

columns of Ci or the last rows of Bi must form a linearly

independent set of vectors fc11…c1qig or fb1e…bqieg
(subscript e indicates the last row) corresponding to the

qi Jordan blocks J
λi
1
' ' ' Jλiqi for repeated eigenvalue λi.

2. c1p ≠ 0 or bpe ≠ 0 when there is only one Jordan block

J
λi
p associated with eigenvalue λi. 3. For single output and

single input systems, the partitions of Ci and Bi are

scalars—which are never linearly independent—thus, each

repeated eigenvalue must have only one Jordan block J
λi
i

associated with it for observability or controllability,

respectively. From these criteria, we can now see that

the transformed system for motif 1 in Eq. (40) contains

three 1 × 1 Jordan blocks, two of which are associated with

the repeated eigenvalue λ2 ¼ −1, which violates condition

(3); thus, we conclude it is NCS and NOS.
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C. Motif 7 and networks containing

only rotation groups

In Ref. [17], it was shown how the rth component of α

vanishes according to the matrices DðpÞðRr
rÞ, where Rr

r

represents a subgroup of the group operations (R) that

transform the rth state variable into itself. Subsequently,

two theorems were proven that make use of this fact to

simplify the analysis of networks that have a single input or

output coupled only to the rth state variable, which is

precisely parallel to our analysis in Sec. IV. A paraphrasing

of Theorems 6 and 12 from Ref. [17] for controllability and

observability states that such a single input or output

network is NCS or NOS if and only if there is an irreducible

representation DðpÞðRÞ that appears in DðRÞ and

X

Rr
r

srrD
ðpÞðRr

rÞ
)
ii ¼ 0 ð42Þ

for some value of i, where srr is þ1 or −1 as Rr
r transforms

state variable xr into itself with a plus or minus sign [in our

motifs, DðRÞ is a permutation representation; thus,

srr ¼ þ1]. For this theorem to hold, the equality in

Eq. (42) must be checked for all possible p for DðpÞðRÞ
that appear in DðRÞ via Eq. (27).

Applying Eq. (42) to motif 7, the irreducible represen-

tations for C3 symmetry are

R E C3 C2
3

Dð1ÞðRÞ 1 1 1

Dð2ÞðRÞ 1 ω ω2

Dð3ÞðRÞ 1 ω2 ω

; ð43Þ

where ω ¼ e2πi=3. From the subset Eq. (21) of Eq. (22), we

find that the only operation Rr
r that leaves either node 1, 2,

or 3 (state variables x1, x2, or x3) invariant is just the

identity operation E, and it is straightforward to see that

Eq. (42) is not equal to 0 for all choices of p, i, and r since
there is only one group operation that leaves the rth state

variable invariant, Rr
r ¼ E, for r ¼ 1; 2; 3. Thus, motif 7

cannot be NCS or NOS and must be controllable and

observable from any node. Corollary 1 to Theorem 6 from

Ref. [17] contains and expands this result directly to any

network with only rotational symmetry (i.e., Cn groups),

with the caveat that a network with a state variable that is

invariant under all the group operations (motif 7 does not

have such a state variable) will be NCS and NOS if the

input and output are coupled to that variable.

These representation group theoretic results explain our

nonlinear results in Sec. IV, and clearly demonstrate that

different types of symmetry have different effects on the

controllability and observability of the networks containing

them. While we explicitly assume system matrices with

zeros on the diagonal (for simplicity of the calculations),

these results hold with generic entries on the diagonal as

long as those entries are chosen to preserve the symmetry

(e.g., the system matrix A for motif 1 and 7 has a11 ¼
a22 ¼ a33 and motif 3 has a11 ¼ a33, not shown).

Linearization of the system equations in Eq. (17) would

result in a system matrix A with a nonzero diagonal [9], and

is typically done in the analysis of nonlinear networks [18]

when utilizing such linear analysis techniques. Our com-

putational results demonstrate the utility of this approach in

providing insight into the controllability and observability

of complex nonlinear networks that have not been

linearized.

D. Application to structural controllability

and observability

It is interesting to note that the demonstration of our

results above and those in Ref. [17] complement and

expand Lin’s seminal theorems on structural controllability

[7]. Essentially, a network with system matrix A and input

function B [the pair ðA; BÞ] are assumed to have two types

of entries, nonzero generic entries and fixed entries which

are zero. The position of the zero entries leads to the notion

of the structure of the system, where different systems with

zeros in the same locations are considered structurally

equivalent. With this definition of structure, we arrive at the

definition for structural controllability, which states that a

pair ðA0; B0Þ is structurally controllable if and only if there

exists a controllable pair ðA00; B00Þwith the same structure as

ðA0; B0Þ. The major assumption of this work is that a system

deemed to be structurally controllable could indeed be

uncontrollable due to the specific entries in A and B, which
for a practical application are assumed to be uncertain

estimates of the system parameters and thus subject to

modification. While Lin’s theorems did not explicitly cover

symmetry, any network pair ðA;BÞ containing symmetry

FIG. 9. Histogram of the log-scaled controllability indices for

motif 1 with heterogeneous coupling and chaotic dynamics.

OBSERVABILITY AND CONTROLLABILITY OF … PHYS. REV. X 5, 011005 (2015)

011005-13



implies constraints on the nonzero entries in ðA; BÞ, which
is necessary to guarantee that symmetry is present. Thus,

considering only Ref. [7], a network with symmetry could

be structurally controllable (observable [10]) as long as

the graph of the system contains no dilations (defined in the

Appendix) or isolated nodes, but NCS (NOS) due to the

symmetry. These two theorems together paint a more

complete picture of controllability (observability) than

either alone, as shown in Secs. IV and V, where both are

used in concert to explain and understand why certain

network motifs are not controllable or observable from

particular nodes. Structural controllability (observability) is

a more general result, as it does not depend on the explicit

nonzero entries of the system pair ðA; BÞ (necessary, but not
sufficient), while a network that has the NCS (NOS)

property is due to specific sets of the nonzero entries in

ðA;BÞ that define the symmetry contained by the system.

Additionally, Ref. [7] defined two structures called a

“stem” (our motif 8 controlled from node 3) and a “bud”

(our motif 7 controlled from any node), which are always

structurally controllable. While both are easily shown to be

structurally controllable [7], including Theorem 6 and its

Corollary 1 from Ref. [17], we can take this a step further

and declare that any “bud” network (of arbitrary size)

containing only rotations is not only structurally control-

lable, but also fully controllable (or never NCS). The dual

of these structures for observability is also defined

in Ref. [10], and Theorem 12 and its Corollary 1 from

Ref. [17] completes the statement in a similar fashion for

observability. Since networks containing only rotation

groups or “buds” in Lin’s terminology are always control-

lable, we see that in some cases symmetries alone will not

destroy the controllability of structurally controllable

networks.

VI. DISCUSSION

Despite the growing importance of exploring observ-

ability and controllability in complex graph-directed net-

works, there has been little exploration of nonlinear

networks with explicit symmetries. We here report, to

our knowledge, the first exploration of symmetries in

nonlinear networks, and show that observability and

controllability are a function of the specific type of

symmetry, the spatial location of nodes sampled or con-

trolled, the strength of the coupling, and the time evolution

of the system.

In networks with structural symmetries, group represen-

tation theory provides deep insights into how the specific

set of symmetry operations possessed by a network will

influence its observability and controllability and can aid in

controller or observer design by obtaining a modal decom-

position of the network equations into decoupled control-

lable and uncontrollable (observable and unobservable)

subspaces. This knowledge will permit the intelligent

placement of the minimum number of sensors and actuators

that render a system containing symmetry fully controllable

and observable. Additionally, breaking symmetry through

randomly altering the coupling strengths establishes sub-

stantial observability or controllability that was absent in

the fully symmetric case. In cases where increasing the

overall level of coupling strength decreases the observ-

ability (controllability), such strong coupling eventually

pushes the system towards or through a reverse Hopf

bifurcation from limit cycle to a stable equilibrium point,

where the lack of dynamic movement of the system then

severely decreases the observability (controllability).

Intuitively, this results from the Lie derivatives (brackets)

becoming small as the rate of change of the system

trajectories goes to zero. The sensitivity of observability

and controllability to the trajectories taken through phase

space implies that the choice of control input to a system

has to be selected carefully, as a poor choice could drive the

system into a region that has little to no controllability or

observability, thereby thwarting further control effort and/

or causing observation of the full system to be lost or

limited. Furthermore, when using an observer model for

observation or control, the regions of local high observ-

ability could be utilized to optimize the coupling of the

model to a real system by only estimating the full system

state when the system transverses observable regions of

phase space.

Observation (control) in motifs 2, 3, 4, 5, and 6 suggests

a relationship between the degree of connections into and

out of a node and its effective observability (controllabil-

ity). In general, the more direct connections into an

observed node, the higher the observability from that node,

and the duality suggests that the more direct number of

outgoing connections from a controlled node leads to

higher controllability than from other less connected nodes.

The high degree “hub” nodes were not the most effective

driver nodes in complex networks using linear theory [8],

and extending nonlinear results to more complex networks

with symmetries is a challenge for future work, which may

benefit from linear analysis of the connection topology

utilizing group representation theory.

When observing kinematics and dynamics of rigid body

mechanics obeying Newton’s laws with SEð3Þ group

symmetry, such symmetries must be preserved in con-

structing an observer (controller) [54]. In the observation of

graph-directed networks containing transitive networks,

one can observe from any point equivalently within such

transitive components [11]. In the control of graph-directed

networks, the minimum number of control points is related

to the maximal matching nodes [8]. In Ref. [55], contrac-

tion theory was used to determine symmetric synchronous

subspaces—these spaces actually correspond to our regions

without observability or controllability. In fact, the proof of

observability is that initial conditions and trajectories do

not contract [12]. Furthermore, it is clear that the groupoid

input equivalence classes (such as our motifs 6 and 7, see
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Fig. 21 in Ref. [56]) are not equivalently observable or

controllable—note that only one node can serve as an

observer node in motif 6 regardless of coupling strength

(see Fig. 5). Indeed, whether virtual networks [55] with

particular groupoid equivalent symmetries serve as detec-

tors of observability and controllability remains unresolved

at this time.

Our deep knowledge of symmetries and observers in

classical mechanics [54] does not readily translate to

graph-directed networks. No real-world network has exact

symmetries. Our topologically symmetric systems with

identical components are extreme cases, yet their study

reveals important differences in which types of sym-

metries are or are not observable and controllable.

Furthermore, in nonlinear systems, the quality of the

mappings from system to observer is the key to estimating

the degree of observability or controllability, and our

methods can give us insight for any network. Further

development of a theory of observability and control-

lability for nonlinear networks with symmetries is a vital

open problem for future work.
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APPENDIX

1. Construction of differential embedding map

and Lie brackets

As an example case, we begin constructing the observ-

ability matrix for motif 1 (shown in Fig. 2), where the

Fitzhugh-Nagmuo (FN) network equations form the non-

linear vector field f:

f

8

>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

f1 ¼ c

!

v1 −
v3
1

3
− w1 þ

P

j¼2;3

fNLðvj; d1jÞ

"

f2 ¼ v1 − bw1 þ a

f3 ¼ c

!

v2 −
v3
2

3
− w2 þ

P

j¼1;3

fNLðvj; d2jÞ

"

f4 ¼ v2 − bw2 þ a

f5 ¼ c

!

v3 −
v3
3

3
− w3 þ

P

j¼1;2

fNLðvj; d3jÞ

"

f6 ¼ v3 − bw3 þ a;

ðA1Þ

and the measurement function for node 1 in motif 1 is

y ¼ CxðtÞ ¼ ½1; 0; 0; 0; 0; 0%xðtÞ ¼ v1. We construct the

differential embedding map by taking the Lie derivatives

Eq. (10) from L0
fðyÞ to L5

fðyÞ as

ϕ

8

>>>>>>>>>>>><

>>>>>>>>>>>>:

ϕ1 ¼ y ¼ v1

ϕ2 ¼
∂y
∂v1

· f1 ¼ f1

ϕ3 ¼
∂ϕ2

∂v1
f1 þ

∂ϕ2

∂w1

f2 þ
∂ϕ2

∂v2
f3 þ ' ' ' þ ∂ϕ2

∂w3

f6

ϕ4 ¼
∂ϕ3

∂v1
f1 þ

∂ϕ3

∂w1

f2 þ
∂ϕ3

∂v2
f3 þ ' ' ' þ ∂ϕ3

∂w3

f6

ϕ5 ¼
∂ϕ4

∂v1
f1 þ

∂ϕ4

∂w1

f2 þ
∂ϕ4

∂v2
f3 þ ' ' ' þ ∂ϕ4

∂w3

f6

ϕ6 ¼
∂ϕ5

∂v1
f1 þ

∂ϕ5

∂w1

f2 þ
∂ϕ5

∂v2
f3 þ ' ' ' þ ∂ϕ5

∂w3

f6;

ðA2Þ

where ∂ϕi=∂xj is the partial derivative of the ith row of the

embedding map ϕ, with respect to the jth state variable.

We obtain the observability matrix by taking the Jacobian

of Eq. (A2). In this FN network, the observability matrix

is dependent on the state variables and is thus a function of

the location in phase space as the system evolves in time.

Letellier et al. [28] used averages of the observability

index over the state trajectories in phase space as a

qualitative measure of observability. We adopt this con-

vention when computing observability of various network

motifs. The indices are computed for each time point in

the trajectory, and then the average is taken over all of the

trajectories.

Constructing the nonlinear controllability matrix for

motif 1 from node 1 begins with the control input function

g ¼ BuðtÞ ¼ ½1; 0; 0; 0; 0; 0%T and its Lie bracket with

respect to the nonlinear vector field f in Eq. (A1). We

exclude the internal driving square wave function here

since it is connected to all three nodes, would provide no

contribution in the Lie bracket mapping, and we are

interested in the mapping from the control input g to

the states in order to determine if the system can be

controlled:

½f;g% ¼
∂g

∂x
f

|{z}
0

−
∂f

∂x
g ¼

8

>>>>>>>>>>>><

>>>>>>>>>>>>:

−
∂f1
∂v1

g1 − ' ' ' − ∂f1
∂w3

g6

−
∂f2
∂v1

g1 − ' ' ' − ∂f2
∂w3

g6

−
∂f3
∂v1

g1 − ' ' ' − ∂f3
∂w3

g6

−
∂f4
∂v1

g1 − ' ' ' − ∂f4
∂w3

g6

−
∂f5
∂v1

g1 − ' ' ' − ∂f5
∂w3

g6

−
∂f6
∂v1

g1 − ' ' ' − ∂f6
∂w3

g6;

ðA3Þ

where ∂g=∂x ¼ 0 since g is the same at each node,

∂fi=∂xj is the partial derivative of the ith row of the

nonlinear vector field fðxÞ with respect to the jth state

variable, and gi is the ith component of the input vector g.

We construct the controllability matrix from the defini-

tions in Eqs. (14) and (15), as the control input function g
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and its higher Lie brackets from ðad1f ;gÞ to ðad5f ;gÞ with
respect to the nonlinear vector field system equations:

Q ¼ ½g; ½f;g%; ½f; ½f;g%%; ðad3f ;gÞ; ðad
4
f ;gÞ; ðad

5
f ;gÞ %:

ðA4Þ

2. Observability and controllability index distribution

Log-scaled histograms (Fig. 9) of the index distribu-

tions reveal that the local observability (controllability)

along the trajectories in phase space are close to a log-

normal distribution. After removing zeros from the data,

these log-normal distribution fits are computed and

verified with the χ2 test metric for all of the observability

and controllability computation cases that contain an

adequate number of data points to accurately compute

the fit (over 90% of the data). The χ2 test for goodness of

fit confirms that the data come from a log-normal

distribution with 95% confidence level. This type of

zeros-censored log-normal distribution is known as a

delta distribution [57], and the estimated mean κ and

variance ρ2 are adjusted to account for the proportion of

data points that are zero, δ, as follows:

δ ¼
#fi∶xi ¼ 0g

n
;

κ ¼ ð1 − δÞeμþ0.5σ2 ;

ρ2 ¼ ð1 − δÞe2μþσ2 ½eσ
2

− ð1 − δÞ%; ðA5Þ

where μ and σ are the mean and variance associated with

the log-normal distribution computed from the nonzero

data. We use these equations to compute the statistics in

the plots in Sec. IV (Figs. 2–7).

3. Group representation analysis of symmetries

in motif 1

We examine motif 1 in Fig. 8, which has S3 symmetry.

Determined from Eq. (25), there are three classes of group

elements C1 ¼ fEg, C2 ¼ fσ1; σ2; σ3g, and C3 ¼ fC3; C
2
3
g.

Reduction of DðRÞ yields the two, one-dimensional and

one two-dimensional (l1 ¼ l2 ¼ 1; l3 ¼ 2) irreducible rep-

resentations [computed from Eq. (26)] Dð1ÞðRÞ, Dð2ÞðRÞ,
and Dð3ÞðRÞ of S3, which are found in Table I and from

Eq. (27) appear 1, 0, and 2 times in DðRÞ, respectively.
Forming the generating matrix in Eq. (29), we construct α

for motif 1 as follows:

G
ð1Þ
1

¼
X

R∈S3

Dð1ÞðRÞ)
11
DðRÞI

¼ 1

2

6
4

1 0 0

0 1 0

0 0 1

3

7
5þ 1

2

6
4

1 0 0

0 0 1

0 1 0

3

7
5þ 1

2

6
4

0 0 1

0 1 0

1 0 0

3

7
5þ ' ' '

1

2

6
4

0 1 0

1 0 0

0 0 1

3

7
5þ 1

2

6
4

0 1 0

0 0 1

1 0 0

3

7
5þ 1

2

6
4

0 0 1

1 0 0

0 1 0

3

7
5

¼

2

6
4

2 2 2

2 2 2

2 2 2

3

7
5; ðA6Þ

where each linearly independent row of G is a column of α,

and thus,

2

6
4

2

2

2

3

7
5!

normalize

2

6
6
4

1
ffiffi

3
p

1
ffiffi

3
p

1
ffiffi

3
p

3

7
7
5
¼

2

6
4

α11

α12

α13

3

7
5 ðA7Þ

defines the first column of α. We know from Eq. (27) that

Dð2ÞðRÞ appears zero times in DðRÞ and thus yields no

contribution to α. Continuing, we have the last two

computations from the two-dimensional irreducible repre-

sentation Dð3Þ (one for each row),

G
ð3Þ
1

¼
X

R∈S3

Dð3ÞðRÞ)
11
DðRÞI

¼ 1

2

6
4

1 0 0

0 1 0

0 0 1

3

7
5− 1

2

6
4

1 0 0

0 0 1

0 1 0

3

7
5þ

1

2

2

6
4

0 0 1

0 1 0

1 0 0

3

7
5þ ' ' '

¼

2

6
4

0 0 0

0 3

2
− 3

2

0 − 3

2

3

2

3

7
5; ðA8Þ

which after normalization yields

TABLE I. Irreducible representations for S3 symmetry.

R E σ1 σ2 σ3 C3 C2
3

Dð1ÞðRÞ 1 1 1 1 1 1

Dð2ÞðRÞ 1 −1 −1 −1 1 1

Dð3ÞðRÞ
h
1 0

0 1

i h
−1 0

0 1

i
"

1

2
−

ffiffi

3
p

2

−
ffiffi

3
p

2
− 1

2

# "
1

2

ffiffi

3
p

2
ffiffi

3
p

2
− 1

2

# "

− 1

2
−

ffiffi

3
p

2
ffiffi

3
p

2
− 1

2

# "

− 1

2

ffiffi

3
p

2

−
ffiffi

3
p

2
− 1

2

#
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2

6
6
4

0

3

2

− 3

2

3

7
7
5
!
normalize

2

6
6
4

0

1
ffiffi

2
p

− 1
ffiffi

2
p

3

7
7
5
¼

2

6
4

α21

α22

α23

3

7
5; ðA9Þ

and

G
ð3Þ
2

¼
X

R∈S3

Dð3ÞðRÞ)
22
DðRÞI

¼ 1

2

6
4

1 0 0

0 1 0

0 0 1

3

7
5þ 1

2

6
4

1 0 0

0 0 1

0 1 0

3

7
5−

1

2

2

6
4

0 0 1

0 1 0

1 0 0

3

7
5þ ' ' '

¼

2

6
4

2 −1 −1

−1 1

2

1

2

−1 1

2

1

2

3

7
5 ðA10Þ

yields the last column of α (after normalization),

2

6
4

2

−1

−1

3

7
5!

normalize

2

6
6
4

2

− 1
ffiffi

6
p

− 1
ffiffi

6
p

3

7
7
5
¼

2

6
4

α31

α32

α33

3

7
5: ðA11Þ

Finally, the coordinate transformation matrix α is

α ¼

2

6
6
6
4

1
ffiffi

3
p 2

ffiffi

6
p 0

1
ffiffi

3
p − 1

ffiffi

6
p 1

ffiffi

2
p

1
ffiffi

3
p − 1

ffiffi

6
p − 1

ffiffi

2
p

3

7
7
7
5
; ðA12Þ

and the computation is concluded in Sec. V B.

4. Dilations of the graph of ðA;BÞ

In Ref. [7], the graph G of the pair ðA;BÞ is defined as a

graph of nþ 1 nodes e1; e2;… ; enþ1, where n is the

dimension of A and enþ1 is called the “origin” (the input).

The vertex set S ¼ fe1; e2;… ; eng is defined as the set of

all nodes in G excluding the origin (enþ1). A dilation is

present in G if and only if jTðSÞj < jSj, where TðSÞ is

defined as the set of all nodes that have a directed edge

pointing to a node in the set S.
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