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Abstract In this paper, we investigate the consistency of
extended Kalman filter (EKF)-based cooperative localiza-
tion (CL) from the perspective of observability. We analyt-
ically show that the error-state system model employed in
the standard EKF-based CL always has an observable sub-
space of higher dimension than that of the actual nonlinear
CL system. This results in unjustified reduction of the EKF
covariance estimates in directions of the state space where
no information is available, and thus leads to inconsistency.
To address this problem, we adopt an observability-based
methodology for designing consistent estimators in which
the linearization points are selected to ensure a linearized
system model with observable subspace of correct dimen-
sion. In particular, we propose two novel observability-
constrained (OC)-EKF estimators that are instances of this
paradigm. In the first, termed OC-EKF 1.0, the filter Jaco-
bians are calculated using the prior state estimates as the
linearization points. In the second, termed OC-EKF 2.0, the
linearization points are selected so as to minimize their ex-
pected errors (i.e., the difference between the linearization
point and the true state) under the observability constraints.
The proposed OC-EKFs have been tested in simulation and
experimentally, and have been shown to significantly out-
perform the standard EKF in terms of both accuracy and
consistency.
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1 Introduction

In order for multi-robot teams to navigate autonomously and
successfully perform tasks such as exploration [1], surveil-
lance [2], and search and rescue [3], they must be able to
determine their positions and orientations (poses) precisely.
In GPS-denied areas and in the absence of robust landmarks,
teams of robots can still localize by sharing relative robot-to-
robot measurements and jointly estimating their poses [4–6].
Current approaches to solving the cooperative localization
(CL) problem, in either centralized or distributed fashion,
are based on the extended Kalman filter (EKF) [6], max-
imum likelihood estimation (MLE) [7], maximum a pos-
teriori (MAP) estimation [8], or particle filtering (PF) [9].
Among these algorithms, the EKF arguably remains a pop-
ular choice primarily due to its relatively low computational
cost and easy implementation.

While recent research efforts have primarily focused
on reducing the computational complexity of EKF-based
CL [10–13], the fundamental issue of consistency has re-
ceived little attention. As defined in [14], a state estimator is
consistent if the estimation errors are zero-mean, and have
covariance smaller than or equal to the one calculated by the
filter. Consistency is one of the primary criteria for evaluat-
ing the performance of any estimator: if an estimator is in-
consistent, then the accuracy of the produced state estimates
is unknown, which renders the estimator unreliable.

In our previous work [15], we have studied the consis-
tency of EKF-CL for the case of a two-robot team. Specifi-
cally, based on the system observability analysis, we identi-
fied a major cause of the inconsistency of the standard EKF-
CL and introduced a new EKF estimator that significantly
improves consistency as well as accuracy. In this paper, we
generalize the analysis of [15] to the case where an arbitrary
number of robots comprise the team, and moreover, pro-
pose an alternative approach within the same observability-
constrained framework to further improve consistency and
accuracy. In particular, the major contributions of this work
are the following:

– We investigate the observability properties of the error-
state system model employed by the EKF, and show
that its observable subspace has higher dimension than
that of the underlying nonlinear CL system. As a re-
sult, the covariance estimates of the EKF undergo reduc-
tion in directions of the state space where no informa-
tion is available, hence leading to inconsistency. To the
best of our knowledge, this work, along with our prior
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work [15], is the first to identify and report this inconsis-
tency of the standard EKF-CL.

– Based on the observability analysis, we introduce two
new observability-constrained (OC)-EKF estimators,
termed OC-EKF 1.0 and OC-EKF 2.0. These two esti-
mators judiciously select the linearization points to en-
sure that the linearized CL system has an observable
subspace of the same dimension as that of the nonlinear
CL system, and thus improve consistency. Specifically,
in the OC-EKF 1.0 algorithm, the state-propagation Ja-
cobians are evaluated at the prior state estimates (i.e.,
before instead of after each update), while the measure-
ment Jacobians are computed in the same way as for the
standard EKF. In OC-EKF 2.0, the linearization points
are selected so as not only to guarantee the desired ob-
servability properties, but also to minimize the expected
errors of the linearization points (i.e., the difference be-
tween the linearization point and the true state). This can
be formulated as a constrained minimization problem,
whose solution provides the linearization points used for
computing the filter Jacobians.

– Through extensive Monte-Carlo simulations and real-
world experiments with both homogeneous and hetero-
geneous robot teams, we verify that the OC-EKFs out-
perform the standard EKF in terms of consistency and
accuracy, even though they use less accurate state es-
timates to compute the filter Jacobians (since the lin-
earization points used in the OC-EKFs are, in general,
different from the latest, and thus best, state estimates).
This result in turn indicates that the observability prop-
erties of the system model play a key role in determining
the filter’s consistency.

The remainder of the paper is organized as follows: After
an overview of related work, we present the standard EKF-
CL formulation in Section 3. In Section 4, the observabil-
ity analysis of CL is employed to prove that the standard
EKF-CL always has incorrect observability properties and
hence is inconsistent. Section 5 describes the proposed OC-
EKF estimators and in Sections 6 and 7 the performance
of the estimators is compared against that of the standard
EKF through Monte-Carlo simulations and real-world ex-
periments. Finally, Section 8 outlines the main conclusions,
as well as possible directions of future work.

2 Related Work

To date, theoretical studies on the properties of CL have fo-
cused on issues such as initialization [16–19], system ob-
servability [20,16,18], accuracy bounds [21,22], and the
complexity of deterministic (static) robot network localiza-
tion [23]. However, to the best of our knowledge, prior
to [15], no work has analytically examined the consistency

of CL. In contrast, recent research has focused on the con-
sistency of EKF-based simultaneous localization and map-
ping (SLAM) (see [24–31]), showing that the computed
state estimates tend to be inconsistent. Specifically, Julier
and Uhlmann [24] first observed that when a stationary robot
measures the relative position of a new landmark multiple
times, the estimated variance of the robot’s orientation be-
comes smaller. Since the observation of a previously unseen
feature does not provide any information about the robot’s
state, this reduction is “artificial” and thus leads to incon-
sistency. Bailey et al. [26] examined several symptoms of
the inconsistency of the standard EKF-SLAM algorithm,
and argued, based on simulation results, that the uncertainty
in the robot orientation is the main cause of inconsistency.
Huang and Dissanayake [28] extended the analysis of [24]
to the case of a robot observing a landmark from two posi-
tions (i.e., the robot observes a landmark, moves and then
re-observes the landmark), and proposed a constraint that
the filter Jacobians must satisfy to allow for consistent es-
timation. They also showed that this condition is generally
violated, due to the fact that the filter Jacobians at different
time instants are computed using different estimates for the
same state variables.

In our previous work [29–31], we conducted a theoreti-
cal analysis of the EKF-SLAM inconsistency, and identified
as a fundamental cause the mismatch between the dimen-
sions of the observable subspaces of the linearized system,
employed by the EKF, and the underlying nonlinear sys-
tem. Furthermore, we introduced the first estimates Jacobian
(FEJ)-EKF and observability-constrained (OC)-EKF, which
significantly outperform the standard EKF and the robocen-
tric mapping algorithm [25], in terms of both accuracy and
consistency. The two proposed estimators were derived by
imposing constraints inferred from the system observabil-
ity analysis. In this work, we extend this new methodology
for designing consistent estimators for nonlinear systems to
address the inconsistency of EKF-CL.

We should note that a recent publication by Bahr
et al. [32] addresses a related but different problem, namely
the consistency of a distributed CL algorithm due to re-
use of information. In the decentralized estimation scheme
of [32], the cross-correlations between the state estimates of
different robots are not estimated. However, it is well-known
that if cross-correlations between robots are not properly
taken into account during filter updates, inconsistency can
arise [9,6,33]. The algorithm in [32] avoids inconsistency
by maintaining a careful record of past robot-to-robot mea-
surement updates. In contrast to the above fully decentral-
ized scenario, in our work the cross-correlation terms are
maintained in the filter, and the EKF employed for estima-
tion is optimal, except for the inaccuracies introduced by
linearization. Our work focuses on identifying and address-
ing the cause of inconsistency of this EKF-CL estimator.
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3 Standard EKF-based CL

In this section, we present the equations of the 2D EKF-CL
formulation with general system and measurement models.1

In the standard formulation of CL, the state vector comprises
the N robot poses expressed in the global frame of reference.
Thus, at time-step k the state vector is given by

xk =
[
xT

1k
. . . xT

Nk

]T
(1)

where xik , [pT
ik ϕik ]

T , [xik yik ϕik ]
T denotes the ith robot

pose (position and orientation). In general, EKF-CL recur-
sively evolves in two steps: propagation and update, based
on the discrete-time process and measurement models, re-
spectively.

3.1 EKF Propagation

During propagation, each robot integrates its odometry mea-
surements to obtain an estimate of its pose change between
two consecutive time steps, which is then employed in the
EKF to propagate the robot state estimate. The EKF propa-
gation equations are given by2

p̂ik+1|k = p̂ik|k +C(ϕ̂ik|k)
kp̂ik+1 (2)

ϕ̂ik+1|k = ϕ̂ik|k +
kϕ̂ik+1 (3)

for all i = 1, . . . ,N. In the above expressions, C(·) denotes
the 2 × 2 rotation matrix, and kx̂ik+1 , [kp̂T

ik+1
kϕ̂ik+1 ]

T is
the odometry-based estimate of the robot’s motion between
time-steps k and k+ 1, expressed with respect to the robot
frame of reference at time instant k. This estimate is cor-
rupted by zero-mean, white Gaussian noise wik =

kxik+1 −
kx̂ik+1 , with covariance matrix Qk. Clearly the process model
is nonlinear, and can be described by the following generic
nonlinear function:

xik+1 = f(xik ,
kx̂ik+1 +wik) (4)

Linearization of (4) yields the error-state propagation
equation:

x̃ik+1|k ≃ ΦΦΦ ik x̃ik|k +Gik wik (5)

1 For the purpose of the consistency study and in order to simplify
the derivations, in this paper we focus on the centralized EKF-CL. Note
that a distributed implementation [6] does not alter the system proper-
ties.

2 Throughout this paper the subscript ℓ|k refers to the estimate of a
quantity at time step ℓ, after all measurements up to time step k have
been processed, while the superscript (i j) refers to the relative mea-
surement from robot i to robot j. x̂ is used to denote the estimate of a
random variable x, while x̃ = x− x̂ is the error in this estimate. 0m×n
and 1m×n denote m×n matrices of zeros and ones, respectively, while
In is the n× n identity matrix. Finally, we use the concatenated forms
sϕ and cϕ to denote the sinϕ and cosϕ functions, respectively.

where ΦΦΦ ik and Gik are the system state and noise Jacobians,
respectively, given by

ΦΦΦ ik =

[
I2 JC(ϕ̂ik|k)

kp̂ik+1

01×2 1

]
(6)

=

[
I2 J

(
p̂ik+1|k − p̂ik|k

)
01×2 1

]
(7)

Gik =

[
C(ϕ̂ik|k) 02×1

01×2 1

]
(8)

with J ,
[

0 −1
1 0

]
.

By stacking all N robots’ error states to create the error
state vector for the entire system, we have

x̃k+1|k ≃

ΦΦΦ1k · · · 0
...

. . .
...

0 · · · ΦΦΦNk


x̃1k|k

...
x̃Nk|k

+

G1k · · · 0
...

. . .
...

0 · · · GNk

w1k
...

wNk


, ΦΦΦkx̃k|k +Gkwk (9)

Note that the form of the propagation equations pre-
sented above is general, and holds for any robot kinematic
model (e.g., unicycle, bicycle, or Ackerman model). The
specialization to the common case of a unicycle model can
be found in Appendix C.

3.2 EKF Update

The measurements used for updates in CL are always a func-
tion of the relative pose (i.e., relative position and orienta-
tion) of the observed robot j with respect to the observing
robot i,

z(i j)
k = h(xik ,x jk)+v(i j)

k = h
(ix jk

)
+v(i j)

k (10)

where

ix jk =

[ip jk
iϕ jk

]
=

[
CT (ϕik)(p jk −pik)

ϕ jk −ϕik

]
(11)

is the relative pose of the observed robot j with respect
to the observing robot i at time-step k, and v(i j)

k is zero-

mean Gaussian noise with covariance R(i j)
k . In this work,

we allow h to be any measurement function. For instance,
z(i j)

k can be a direct measurement of relative pose, a pair of
distance and bearing measurements, bearing-only measure-
ments from monocular cameras, etc. In general, the mea-
surement function is nonlinear, and hence it is linearized for
use in the EKF. The linearized measurement-error equation
is given by

z̃(i j)
k ≃

[
0 · · · H(i j)

ik
· · · H(i j)

jk
· · · 0

]
x̃k|k−1 +v(i j)

k

, H(i j)
k x̃k|k−1 +v(i j)

k (12)
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where H(i j)
ik

and H(i j)
jk

are the Jacobians of h with respect
to the ith and jth robot poses, respectively, evaluated at the
state estimate x̂k|k−1. Using the chain rule of differentiation,
these are computed as

H(i j)
ik

= − (∇h(i j)
k )A(ϕ̂ik|k−1)

[
I2 J(p̂ jk|k−1 − p̂ik|k−1)

01×2 1

]
(13)

H(i j)
jk

= (∇h(i j)
k )A(ϕ̂ik|k−1) (14)

where A(ϕ̂ik|k−1) ,
[

CT (ϕ̂ik|k−1) 02×1

01×2 1

]
, and ∇h(i j)

k denotes

the Jacobian of h with respect to the relative pose between
the ith and jth robots (i.e., with respect to the vector ix jk ),
evaluated at the state estimate x̂k|k−1. Appendix C illustrates
the specific form of the above expressions in the case of dis-
tance and bearing measurements.

4 CL Observability Analysis

In this section, we perform an observability analysis for the
EKF-CL system derived in the previous section, and com-
pare its observability properties with those of the underlying
nonlinear system. Based on this analysis, we draw conclu-
sions about the consistency of the filter.

By applying the observability rank condition for nonlin-
ear systems [34], Martinelli and Siegwart [20] have shown
that the nonlinear system of CL in general has three un-
observable degrees of freedom, corresponding to the global
position and orientation. However, as we show in this sec-
tion, the unobservable subspace of the linearized error-state
model of the standard EKF is generally only of dimension
two, which leads to inconsistency.3

Recall that the Jacobian matrices ΦΦΦk, Gk, and Hk used in
the EKF-CL linearized error-state model (see (9) and (12)),
in general, are defined as

ΦΦΦk = ∇xk f
∣∣∣
{x⋆k|k,x

⋆
k+1|k,0}

(15)

Gk = ∇wk f
∣∣∣
{x⋆k|k,0}

(16)

Hk = ∇xk h
∣∣∣
{x⋆k|k−1}

(17)

3 For simplicity, in our analysis we assume that the relative measure-
ments guarantee observability of the relative poses between all robots.
For instance, we exclude special cases where the robots’ trajectories
give rise to additional unobservable modes (e.g., robots moving exactly
in parallel or in a straight line [16]). Another case not considered here
is that of the robots measuring relative orientation, (ϕ j − ϕi), only. In
this case the nonlinear system has 2N+1 unobservable degrees of free-
dom [20]. Moreover, since the relative-orientation measurement model
is linear in the system state, the problems caused by linearization, de-
scribed in Section 4.2, do not appear in this case.

In these expressions, x⋆k|k−1 and x⋆k|k denote the linearization
points for the state xk, used for evaluating the Jacobians be-
fore and after the EKF update at time-step k, respectively.
A linearization point equal to the zero vector is chosen for
the noise. The EKF employs the linearized system model
defined by (9), (12), and (15)-(17) for propagating and up-
dating the state and covariance estimates, and thus the ob-
servability properties of this model affect the performance
of the estimator.

Since the linearized error-state model of EKF-CL is
time-varying, we employ the local observability matrix [35]
to perform the observability analysis. Specifically, the local
observability matrix for the time interval between time-steps
ko and ko +m is defined by

M ,


Hko

Hko+1ΦΦΦko
...

Hko+mΦΦΦko+m−1 · · ·ΦΦΦko

 (18)

= M(x⋆ko|ko−1,x
⋆
ko|ko

, . . . ,x⋆ko+m|ko+m−1) (19)

The last expression (19), makes explicit the fact that the ob-
servability matrix is a function of the linearization points
used in computing all the Jacobians within the time inter-
val [ko,ko +m]. In turn, this implies that the choice of lin-
earization points affects the observability properties of the
linearized error-state system of the EKF. This key fact is
the basis of our analysis. In what follows, we discuss differ-
ent possible choices for linearization, and the observability
properties of the corresponding linearized systems.

4.1 Ideal EKF-CL

Before considering the rank of the matrix M, which is con-
structed using the estimated values of the state in the filter
Jacobians, it is interesting to study the observability prop-
erties of the “oracle”, or “ideal” EKF (i.e., the filter whose
Jacobians are evaluated using the true values of the state
variables, so that x⋆k|k−1 = x⋆k|k = xk, for all k). In the fol-
lowing, all matrices evaluated using the true state values are
denoted by the symbol “ ˘ ”.

To make the notation more compact, we define

δδδpi j(k, ℓ), pik −p jℓ (20)

which is the difference between two robots’ positions at
time-steps k and ℓ. Using the above definition, we note that
(see (7))

Φ̆ΦΦ iko+1 Φ̆ΦΦ iko
=

[
I2 Jδδδpii(ko +2,ko)

01×2 1

]
(21)

Based on this identity, it is easy to show by induction that

Φ̆ΦΦ iko+ℓ−1Φ̆ΦΦ iko+ℓ−2 · · ·Φ̆ΦΦ iko
=

[
I2 Jδδδpii(ko + ℓ,ko)

01×2 1

]
(22)
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which holds for all ℓ > 0.
In the ensuing derivations, it is assumed that every robot

continuously observes all other robots in the team during
the time interval [ko, ko +m], i.e., the relative-measurement
graph (RMG) is complete. Note that this assumption is made
only to simplify the notation, and is not necessary in the
analysis. We hereafter first study the case where two robots
comprise the team, and then extend the analysis to the gen-
eral case in which the group consists of N > 2 robots.

4.1.1 Two-robot case

Based on the assumption of a complete RMG, two mea-
surements, z(12)

ko+ℓ and z(21)
ko+ℓ, are available at time-step ko + ℓ.

Thus, the measurement Jacobian H̆ko+ℓ in this case can be
written as (see (12)-(14))

H̆ko+ℓ =

[
H̆(12)

ko+ℓ

H̆(21)
ko+ℓ

]
=

[
H̆(12)

1ko+ℓ
H̆(12)

2ko+ℓ

H̆(21)
1ko+ℓ

H̆(21)
2ko+ℓ

]
= (23)

−Diag
(
(∇h̆(12)

ko+ℓ)A(ϕ1ko+ℓ
), (∇h̆(21)

ko+ℓ)A(ϕ2ko+ℓ
)
)
×

I2 Jδδδp21(ko+ℓ,ko+ℓ) −I2 02×1
01×2 1 01×2 −1
−I2 02×1 I2 Jδδδp12(ko+ℓ,ko+ℓ)
01×2 −1 01×2 1



where Diag(·) denotes a block diagonal matrix. On the other
hand, the following identity is immediate (see (9) and (22)):

Φ̆ΦΦko+ℓ−1Φ̆ΦΦko+ℓ−2 · · ·Φ̆ΦΦko =

Diag
(

Φ̆ΦΦ1ko+ℓ−1 · · ·Φ̆ΦΦ1ko
, Φ̆ΦΦ2ko+ℓ−1 · · ·Φ̆ΦΦ2ko

)
=

I2 Jδδδp11(ko+ℓ,ko) 02×2 02×1
01×2 1 01×2 0
02×2 02×1 I2 Jδδδp22(ko+ℓ,ko)
01×2 0 01×2 1

 (24)

From (23) and (24) we obtain

H̆ko+ℓΦ̆ΦΦko+ℓ−1Φ̆ΦΦko+ℓ−2 · · ·Φ̆ΦΦko = (25)

−Diag
(
(∇h̆(12)

ko+ℓ)A(ϕ1ko+ℓ
), (∇h̆(21)

ko+ℓ)A(ϕ2ko+ℓ
)
)

×
I2 Jδδδp21(ko+ℓ,ko) −I2 −Jδδδp22(ko+ℓ,ko)

01×2 1 01×2 −1
−I2 −Jδδδp11(ko+ℓ,ko) I2 Jδδδp12(ko+ℓ,ko)
01×2 −1 01×2 1



Thus, the observability matrix, M̆, can be written as
(see (18))

M̆ = −Diag
(
(∇h̆(12)

ko
)A(ϕ1ko

), · · · , (∇h̆(21)
ko+m)A(ϕ2ko+m )

)
︸ ︷︷ ︸

D̆

× (26)



I2 Jδδδp21(ko,ko) −I2 02×1
01×2 1 01×2 −1
−I2 02×1 I2 Jδδδp12(ko,ko)

01×2 −1 01×2 1

I2 Jδδδp21(ko+1,ko) −I2 −Jδδδp22(ko+1,ko)
01×2 1 01×2 −1
−I2 −Jδδδp11(ko+1,ko) I2 Jδδδp12(ko+1,ko)

01×2 −1 01×2 1
...

...
...

...
I2 Jδδδp21(ko+m,ko) −I2 −Jδδδp22(ko+m,ko)

01×2 1 01×2 −1
−I2 −Jδδδp11(ko+m,ko) I2 Jδδδp12(ko+m,ko)

01×2 −1 01×2 1


︸ ︷︷ ︸

Ŭ

Lemma 41 The rank of the observability matrix, M̆, of the
ideal EKF-CL in the two-robot case, is equal to 3.

Proof The rank of the product of the matrices D̆ and Ŭ is
given by (see (4.5.1) in [36])

rank(D̆Ŭ) = rank(Ŭ)−dim(null(D̆)
∩

rng(Ŭ)) (27)

where null(·) denotes the right null space of a matrix, rng(·)
represents the matrix range, and dim(·) the dimension of
a subspace. Denoting Ŭ ,

[
ŭ1 · · · ŭ6

]
, it is evident that

ŭ1 = −ŭ4, ŭ2 = −ŭ5, while ŭ3 + ŭ6 = α1ŭ4 +α2ŭ5, where

Jδδδp21(ko,ko) , −
[

α1
α2

]
. We also note that {ŭi}6

i=4 are lin-

early independent. Therefore, the range of the matrix Ŭ is
spanned by the vectors ŭ4, ŭ5, and ŭ6, i.e.,

rng(Ŭ) = span
col.

[
ŭ4 ŭ5 ŭ6

]
(28)

Thus, rank(Ŭ) = 3. We now observe that in general D̆ŭi ̸= 0,
for i = 4,5,6. Moreover, note that any vector x ∈ rng(Ŭ)\0
can be written as x = β1ŭ4 +β2ŭ5 +β3ŭ6 for some βi ∈ R,
where βi, i = 1,2,3, are not simultaneously equal to zero.
Thus, in general, D̆x = β1D̆ŭ4+β2D̆ŭ5+β3D̆ŭ6 ̸= 0, which
implies that x does not belong to the null space, null(D̆),
of D̆. Therefore, dim(null(D̆)

∩
rng(Ŭ)) = 0, and, finally,

rank(M̆) = rank(Ŭ)− dim(null(D̆)
∩

rng(Ŭ)) = rank(Ŭ) =

3.

The above lemma shows that three directions of the state
space are unobservable. To identify these directions, we ex-
amine the null space of the matrix M̆. It can be easily veri-
fied that a basis for the right null space of Ŭ (and thus of M̆)
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is given by

null(M̆) = span
col.


I2 Jp1ko

01×2 1
I2 Jp2ko

01×2 1

, span
col.

[
n1 n2 n3

]
(29)

From the structure of the vectors n1 and n2 we see that a
change in the state by ∆x = αn1 + βn2, α,β ∈ R corre-
sponds to a “shifting” of the x− y plane by α units along x,
and by β units along y. Thus, if the two robots are shifted
equally, the states x and x′ = x+∆x will be indistinguish-
able given the odometry and relative measurements. To un-
derstand the physical meaning of n3, we consider the case
where the x− y plane is rotated by a small angle δϕ . Rotat-
ing the coordinate system transforms any point p = [x y]T

to a point p′ = [x′ y′]T , given by

[
x′

y′

]
= C(δϕ)

[
x
y

]
≃
[

1 −δϕ
δϕ 1

][
x
y

]
=

[
x
y

]
+δϕ

[
−y
x

]

where we have employed the small-angle approximations
cδϕ ≃ 1 and sδϕ ≃ δϕ . Using this result, we see that if the
plane containing the two robots is rotated by δϕ , the CL
state vector will change to

x′ =



x′1
y′1
ϕ ′

1
x′2
y′2
ϕ ′

2

≃



x1
y1
ϕ1
x2
y2
ϕ2

+δϕ



−y1
x1
1

−y2
x2
1

= x+δϕn3 (30)

which indicates that the vector n3 corresponds to a rotation
of the x−y plane. This result implies that any such global ro-
tation is unobservable, and will cause no change to the mea-
surements. The preceding analysis for the meaning of the
basis vectors of the unobservable subspace agrees with [20]
as well as with intuition, which dictates that the global co-
ordinates of the state vector (rotation and translation) are
unobservable, since the relative measurements only depend
on the relative robot configurations.

4.1.2 N-robot case

We now examine the general case where N > 2 robots are in-
cluded in the group. For a complete RMG, the measurement

Jacobian matrix at time-step ko + ℓ can be written as

H̆ko+ℓ = (31)

H̆(12)
ko+ℓ
...

H̆(1N)
ko+ℓ

...

H̆(N1)
ko+ℓ
...

H̆(NN−1)
ko+ℓ


=



H̆(12)
1ko+ℓ

H̆(12)
2ko+ℓ

· · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

H̆(1N)
1ko+ℓ

0 · · · 0 · · · 0 H̆(1N)
Nko+ℓ

...
...

. . .
...

. . .
...

...

H̆(N1)
1ko+ℓ

0 · · · 0 · · · 0 H̆(N1)
Nko+ℓ

...
...

. . .
...

. . .
...

...
0 0 · · · 0 · · · H̆(NN−1)

N−1ko+ℓ
H̆(NN−1)

Nko+ℓ


Similarly to (24), the following identity holds:

Φ̆ΦΦko+ℓ−1Φ̆ΦΦko+ℓ−2 · · ·Φ̆ΦΦko = (32)

Diag
(

Φ̆ΦΦ1ko+ℓ−1 · · ·Φ̆ΦΦ1ko
, · · · , Φ̆ΦΦNko+ℓ−1 · · ·Φ̆ΦΦNko

)
Therefore, by using the results of (31) and (32), for ℓ =
1, · · · ,m, and proceeding similarly as in the two-robot case
(see (25)), we obtain the observability matrix, M̆, shown
in (33).

Lemma 42 The rank of the observability matrix, M̆, of the
ideal EKF-CL in the general N-robot case, is 3N −3.

Proof Proceeding similarly to the proof of Lemma 41, by
denoting Ŭ ,

[
ŭ1 · · · ŭ3N

]
, we first note that

ŭ1 =−
N

∑
i=2

ŭ3i−2 , ŭ2 =−
N

∑
i=2

ŭ3i−1

Our next goal is to show that ŭ3 can also be expressed as a
linear combination of other columns of Ŭ. We observe that
the summation of every third column of the block row of Ŭ
corresponding to robot j measuring robot i at time ko + ℓ is
given by[

Jδδδpi j(ko + ℓ,ko)−Jδδδpii(ko + ℓ,ko)
0

]
=

[
Jδδδpi j(ko,ko)

0

]
We can further decompose the term Jδδδpi j(ko,ko) as

Jδδδpi j(ko,ko) = Jδδδpi1(ko,ko)−Jδδδp j1(ko,ko)

Using these results, we have

N

∑
i=1

ŭ3i =
N

∑
i=2

α2i−1ŭ3i−2 +
N

∑
i=2

α2iŭ3i−1

=
N

∑
i=2

[
ŭ3i−2 ŭ3i−1

][α2i−1
α2i

]
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M̆ = −Diag
(
(∇h̆(12)

ko
)A(ϕ1ko

) , · · · ,(∇h̆(NN−1)
ko+m )A(ϕNko+m )

)
︸ ︷︷ ︸

D̆

× (33)



I2 Jδδδp21(ko,ko) −I2 02×1 02×2 02×1 · · · 02×2 02×1
01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδδδp31(ko,ko) 02×2 02×1 −I2 02×1 · · · 02×2 02×1
01×2 1 01×2 0 01×2 −1 · · · 01×2 0

...
...

...
...

...
...

. . .
...

...
I2 JδδδpN1(ko,ko) 02×2 02×1 02×2 02×1 · · · −I2 02×1

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδδδp1N(ko,ko)
01×2 −1 01×2 0 01×2 0 · · · 01×2 1
02×2 02×1 −I2 02×1 02×2 02×1 · · · I2 Jδδδp2N(ko,ko)
01×2 0 01×2 −1 01×2 0 · · · 01×2 1

...
...

...
...

...
...

. . .
...

...
02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 JδδδpN−1N(ko,ko)
01×2 0 01×2 0 01×2 0 · · · 01×2 1

I2 Jδδδp21(ko+1,ko) −I2 −Jδδδp22(ko+1,ko) 02×2 02×1 · · · 02×2 02×1
01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδδδp31(ko+1,ko) 02×2 02×1 −I2 −Jδδδp33(ko+1,ko) · · · 02×2 02×1
01×2 1 01×2 0 01×2 −1 · · · 01×2 0

...
...

...
...

...
...

. . .
...

...
I2 JδδδpN1(ko+1,ko) 02×2 02×1 02×2 02×1 · · · −I2 −JδδδpNN(ko+1,ko)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −Jδδδp11(ko+1,ko) 02×2 02×1 02×2 02×1 · · · I2 Jδδδp1N(ko+1,ko)
01×2 −1 01×2 0 01×2 0 · · · 01×2 1
02×2 02×1 −I2 −Jδδδp22(ko+1,ko) 02×2 02×1 · · · I2 Jδδδp2N(ko+1,ko)
01×2 0 01×2 −1 01×2 0 · · · 01×2 1

...
...

...
...

...
...

. . .
...

...
02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 JδδδpN−1N(ko+1,ko)
01×2 0 01×2 0 01×2 0 · · · 01×2 1

...
...

...
...

...
...

...
...

...

I2 Jδδδp21(ko+m,ko) −I2 −Jδδδp22(ko+m,ko) 02×2 02×1 · · · 02×2 02×1
01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδδδp31(ko+m,ko) 02×2 02×1 −I2 −Jδδδp33(ko+m,ko) · · · 02×2 02×1
01×2 1 01×2 0 01×2 −1 · · · 01×2 0

...
...

...
...

...
...

. . .
...

...
I2 JδδδpN1(ko+m,ko) 02×2 02×1 02×2 02×1 · · · −I2 −JδδδpNN(ko+m,ko)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −Jδδδp11(ko+m,ko) 02×2 02×1 02×2 02×1 · · · I2 Jδδδp1N(ko+m,ko)
01×2 −1 01×2 0 01×2 0 · · · 01×2 1
02×2 02×1 −I2 −Jδδδp22(ko+m,ko) 02×2 02×1 · · · I2 Jδδδp2N(ko+m,ko)
01×2 0 01×2 −1 01×2 0 · · · 01×2 1

...
...

...
...

...
...

. . .
...

...
02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 JδδδpN−1N(ko+m,ko)
01×2 0 01×2 0 01×2 0 · · · 01×2 1


︸ ︷︷ ︸

Ŭ
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where
[

α2i−1
α2i

]
,−Jδδδpi1(ko,ko), ∀i= 2, . . . ,N. Now we ob-

tain the desired result

ŭ3 =−
N

∑
i=2

ŭ3i +
N

∑
i=2

α2i−1ŭ3i−2 +
N

∑
i=2

α2iŭ3i−1

Moreover, we notice that {ŭi}3N
i=4 are linearly independent.

Therefore, the range of the matrix Ŭ is spanned by its col-
umn vectors ŭi, i = 4, . . . ,3N, i.e.,

rng(Ŭ) = span
col.

[
ŭ4 · · · ŭ3N

]
(34)

Thus, rank(Ŭ) = 3N − 3. Analogously, we observe that in
general D̆ŭi ̸= 0, for i = 4, . . . ,3N. Moreover, we note that
any vector x∈ rng(Ŭ)\0 can be written as x=∑3N−3

i=1 βiŭi+3
for some βi ∈R, where the βi’s are not simultaneously equal
to zero. Thus, in general, D̆x = ∑3N−3

i=1 βiD̆ŭi+3 ̸= 0, which
implies that x does not belong to the null space, null(D̆), of
D̆. Therefore, dim(null(D̆)

∩
rng(Ŭ))= 0, and, finally, based

on the matrix-product rank theorem (see (4.5.1) in [36]),
rank(M̆) = rank(Ŭ)− dim(null(D̆)

∩
rng(Ŭ)) = rank(Ŭ) =

3N −3.

Furthermore, by inspection, a basis for the right null
space of M̆ is given by

null(M̆) = span
col.



I2 Jp1ko
01×2 1

I2 Jp2ko
01×2 1

...
...

I2 JpNko
01×2 1


(35)

Note the similarity of this result with that of (29). Clearly,
the physical interpretation of this result is analogous to that
of the two-robot case: the global translation and orientation
of the state vector are unobservable.

4.2 Standard EKF-CL

We now study the observability properties of the standard
EKF-CL, in which the Jacobians are evaluated at the esti-
mated state (i.e., x⋆k|k−1 = x̂k|k−1 and x⋆k|k = x̂k|k, for all k).
Similarly, we begin with the case of a two-robot team, and
then generalize to the case where an arbitrary number of
robots comprise the group.

We first introduce the following definitions, which will
be useful for the ensuing derivations:

dp̂i(k), p̂ik|k − p̂ik|k−1 (36)

∆∆∆ p̂i j(k, ℓ), p̂ik|k−1 − p̂ jko|ko−1 −
ℓ

∑
τ=ko

dp̂ j(τ) (37)

δδδ p̂i j(k, ℓ), p̂ik|k−1 − p̂ jℓ|ℓ−1 (38)

where ko is the first time instant of interest, and k, ℓ≥ ko. In
the above expressions, dp̂i is the correction in the ith robot
position estimate due to the EKF update, while δδδ p̂i j is the
estimated difference between two robot positions (see (20))
evaluated using the estimates after the respective propaga-
tion steps.

4.2.1 Two-robot case

We start by deriving an expression analogous to that of (21),
using (7) and the definition of ∆∆∆ p̂i j in (37):

ΦΦΦ iko+1 ΦΦΦ iko
=

[
I2 J∆∆∆ p̂ii(ko +2,ko +1)

01×2 1

]
(39)

Using induction, we can show that

ΦΦΦ iko+ℓ−1ΦΦΦ iko+ℓ−2 · · ·ΦΦΦ iko
=

[
I2 J∆∆∆ p̂ii(ko+ℓ,ko+ℓ−1)

01×2 1

]

for ℓ > 0. As a result, the following identity is immediate:

ΦΦΦko+ℓ−1ΦΦΦko+ℓ−2 · · ·ΦΦΦko = (40)
I2 J∆∆∆ p̂11(ko+ℓ,ko+ℓ−1) 02×2 02×1

01×2 1 01×2 0
02×2 02×1 I2 J∆∆∆ p̂22(ko+ℓ,ko+ℓ−1)

01×2 0 01×2 1


The measurement Jacobian now is given by (see (23))

Hko+ℓ = (41)

−Diag
(
(∇h(12)

ko+ℓ)A(ϕ̂1ko+ℓ|ko+ℓ−1
), (∇h(21)

ko+ℓ)A(ϕ̂2ko+ℓ|ko+ℓ−1
)
)
×

I2 Jδδδ p̂21(ko+ℓ,ko+ℓ) −I2 02×1
01×2 1 01×2 −1
−I2 02×1 I2 Jδδδ p̂12(ko+ℓ,ko+ℓ)

01×2 −1 01×2 1


Multiplication of (41) and (40) yields

Hko+ℓΦΦΦko+ℓ−1 · · ·ΦΦΦko = (42)

−Diag
(
(∇h(12)

ko+ℓ)A(ϕ̂1ko+ℓ|ko+ℓ−1
), (∇h(21)

ko+ℓ)A(ϕ̂2ko+ℓ|ko+ℓ−1
)
)
×

I2 J∆∆∆ p̂21(ko+ℓ,ko+ℓ−1) −I2 −J∆∆∆ p̂22(ko+ℓ,ko+ℓ−1)

01×2 1 01×2 −1
−I2 −J∆∆∆ p̂11(ko+ℓ,ko+ℓ−1) I2 J∆∆∆ p̂12(ko+ℓ,ko+ℓ−1)

01×2 −1 01×2 1
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Thus, the observability matrix M (see (18)) can be written
as

M = (43)

−Diag
(
(∇h(12)

ko
)A(ϕ̂1ko |ko−1 ), · · · , (∇h(21)

ko+m)A(ϕ̂2ko+m|ko+m−1 )
)

︸ ︷︷ ︸
D

×



I2 Jδδδ p̂21(ko,ko) −I2 02×1
01×2 1 01×2 −1
−I2 02×1 I2 Jδδδ p̂12(ko,ko)

01×2 −1 01×2 1

I2 J∆∆∆ p̂21(ko+1,ko) −I2 −J∆∆∆ p̂22(ko+1,ko)

01×2 1 01×2 −1
−I2 −J∆∆∆ p̂11(ko+1,ko) I2 J∆∆∆ p̂12(ko+1,ko)

01×2 −1 01×2 1
...

...
...

...
I2 J∆∆∆ p̂21(ko+m,ko+m−1) −I2 −J∆∆∆ p̂22(ko+m,ko+m−1)

01×2 1 01×2 −1
−I2 −J∆∆∆ p̂11(ko+m,ko+m−1) I2 J∆∆∆ p̂12(ko+m,ko+m−1)

01×2 −1 01×2 1


︸ ︷︷ ︸

U

Lemma 43 The rank of the observability matrix, M, of the
standard EKF-CL in the two-robot case, is equal to 4.

Proof We first observe that the EKF update corrections in
the robot position estimates, dp̂i (see (36)), are in gen-
eral different at different time steps. As a consequence,
∆∆∆ p̂i j (see (37)) are also different at different time steps,
which means that columns 3 and 6 of matrix U are gen-
eral column vectors and thus not linearly dependent on
any other columns. Denoting U ,

[
u1 · · · u6

]
, it is evi-

dent that u1 = −u4, u2 = −u5, and moreover u4 and u5
are linearly independent. Therefore, one possible basis of
the range of the matrix U is its columns vectors {ui}6

i=3,
i.e., rng(U) = span

col.

[
u3 · · · u6

]
. Therefore, rank(U) = 4. By

proceeding similarly to the proof of Lemma 41, we ob-
serve that in general Dui ̸= 0, for i = 3, . . . ,6, and more-
over any vector x ∈ rng(U) \ 0 can be written as x =

∑4
i=1 βiui+2 for some βi ∈ R, where the βi’s are not si-

multaneously equal to zero. As a result, in general, Dx =

∑4
i=1 βiDui+2 ̸= 0. Therefore, dim(null(D)

∩
rng(U)) = 0,

and finally, based on theorem (4.5.1) in [36], rank(M) =
rank(U)−dim(null(D)

∩
rng(U)) = rank(U) = 4.

We thus see that the linearized error-state model em-
ployed in the standard EKF-CL has different observability
properties than that of the ideal EKF-CL. In particular, by
processing the measurements collected in the time interval
[ko,ko +m], the EKF acquires information along the 4 di-
rections of the state space corresponding to the observable

subspace of the linearized system. However, the measure-
ments actually provide information in only 3 directions of
the state space (i.e., the robot-to-robot relative pose), and
as a result, the EKF gains “spurious information” along the
unobservable directions of the underlying nonlinear CL sys-
tem, which leads to inconsistency.

To probe further, we note that the basis of the right null
space of M is given by

null(M) = span
col.


I2

01×2
I2

01×2

= span
col.

[
n1 n2

]
(44)

Note that these two vectors correspond to a shifting of the
x− y plane, which implies that such a shifting is unobserv-
able. On the other hand, the direction corresponding to the
rotation is “missing” from the unobservable subspace of the
EKF system model (see (29) and (30)). Therefore, the fil-
ter gains “nonexistent” information about the robots’ global
orientation. This leads to an unjustified reduction in the ori-
entation uncertainty, which, in turn, further reduces the un-
certainty in all state variables.

4.2.2 N-robot case

Similar results can be derived in the general case, where N
robots comprise the team. Specifically:

Lemma 44 The rank of the observability matrix, M, of the
standard EKF-CL in the general N-robot case, is 3N −2.

Proof See Appendix A.

We can draw identical conclusions as in the two-robot
case. In particular, the dimension of the null space of the ob-
servability matrix, M, erroneously becomes 2. Furthermore,
one possible basis for the null space can be shown to be

null(M) = span
col.


I2

01×2
...

I2
01×2

 (45)

Thus, the global orientation is erroneously observable in this
case as well, which leads to inconsistent estimates.

5 Observability Constrained (OC)-EKF CL

In the preceding section, it was shown that when the filter
Jacobians are evaluated using the latest state estimates, the
error-state system model employed by the EKF has an ob-
servable subspace of dimension higher than that of the ac-
tual CL system. This will always lead to unjustified reduc-
tion of the covariance estimates, and thus to inconsistency.
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To address this problem, we propose selecting the EKF lin-
earization points in a way that guarantees an unobservable
subspace of dimension three for the linearized error-state
model. In particular, this corresponds to satisfying condi-
tions (46)-(47) of the following lemma:

Lemma 51 If the linearization points, x⋆k|k and x⋆k+1|k, at
which the EKF Jacobians ΦΦΦk =ΦΦΦk(x⋆k+1|k,x

⋆
k|k) and Hk+1 =

Hk+1(x⋆k+1|k) are evaluated, are selected so as to fulfill the
conditions:

HkoN = 0 , for ℓ= 0 (46)

Hko+ℓΦΦΦko+ℓ−1 · · ·ΦΦΦko N = 0 , ∀ ℓ > 0 (47)

where N is a 3N×3 full-rank matrix, then the corresponding
observability matrix is of rank 3N −3.

Proof When (46)-(47) hold, then all the block rows of the
observability matrix (see (18)) will have the same null space,
spanned by the columns of N.

Essentially, the selection of N is a design choice, which
allows us to control the unobservable subspace of the EKF-
CL system model. Ideally, we would like the column vectors
of N to be identical to those in (35), which define the unob-
servable directions of the ideal EKF-CL system. However,
this cannot be achieved in practice, since these directions
depend on the true values of the state, which are unavailable
during any real-world implementation. A natural selection,
which is realizable in practice, is to define the unobservable
subspace of the observability matrix based on the first avail-
able state estimates, i.e., for the two-robot case to choose4

N = span
col.


I2 Jp̂1ko|ko−1

01×2 1
I2 Jp̂2ko|ko−1

01×2 1

 (48)

Once N has been selected, the next design decision to be
made is the choice of the linearization points at each time
step. For the particular selection of N in (48), this amounts
to choosing the linearization points for all k > ko to ensure
that (47) holds (note that (46) is satisfied by construction
in this case). Clearly, several options exist, each of which
leads to a different algorithm within the general frame-
work described here. In what follows, we extend our prior
work [15] and present two algorithms, termed observability-
constrained (OC)-EKFs 1.0 and 2.0, to achieve this goal.

4 When more than two robots (i.e., N > 2) are included in the
state vector, N can be chosen analogously, augmented by a submatrix[

I2 Jp̂iko |ko−1

01×2 1

]
corresponding to each robot (i = 1,2, . . . ,N) [37].

5.1 OC-EKF 1.0

We start by describing the first version of the OC-EKF (i.e.,
OC-EKF 1.0) that was originally proposed in our previous
work [15]. The key idea of this approach is to choose the
prior state estimates as the linearization points, so as to guar-
antee the appropriate observability properties of the EKF
linearized system model. This procedure is explained in de-
tail by the following lemma:

Lemma 52 If the linearization points, at which the fil-
ter Jacobian matrices ΦΦΦ ik = ΦΦΦ ik(x

⋆
ik+1|k

,x⋆ik|k) and H(i j)
k =

Hk(x⋆ik|k−1
,x⋆jk|k−1

) are evaluated, are selected as

x⋆ik+1|k
= x̂ik+1|k , x⋆ik|k = x̂ik|k−1

x⋆ik|k−1
= x̂ik|k−1 , x⋆jk|k−1

= x̂ jk|k−1 (49)

then it is guaranteed that the unobservable subspace of
the resulting EKF linearized error-state model is of dimen-
sion 3.

Proof Using the linearization points (49), the state-
propagation Jacobian ΦΦΦ ik (see (7)) is now computed as

ΦΦΦ ′
ik =

[
I2 J

(
p̂ik+1|k − p̂ik|k−1

)
01×2 1

]
(50)

The difference compared to (7), which is the Jacobian used
in the standard EKF, is that the prior estimate of robot posi-
tion, p̂ik|k−1 , is used in place of the posterior estimate, p̂ik|k .

In contrast, the measurement Jacobian, H(i j)
k , is computed in

the same way as for the standard EKF (see (12)). As a result,
using the definition of δδδ p̂i j (38), the observability matrix M′

in the OC-EKF 1.0 algorithm for the two-robot case assumes
the following form:

M′ = (51)

−Diag
(
(∇h(12)

ko
)A(ϕ̂1ko |ko−1 ), · · · , (∇h(21)

ko+m)A(ϕ̂2ko+m|ko+m−1 )
)

︸ ︷︷ ︸
D′

×



I2 Jδδδ p̂21(ko,ko) −I2 02×1
01×2 1 01×2 −1
−I2 02×1 I2 Jδδδ p̂12(ko,ko)

01×2 −1 01×2 1

I2 Jδδδ p̂21(ko+1,ko) −I2 −Jδδδ p̂22(ko+1,ko)

01×2 1 01×2 −1
−I2 −Jδδδ p̂11(ko+1,ko) I2 Jδδδ p̂12(ko+1,ko)

01×2 −1 01×2 1
...

...
...

...
I2 Jδδδ p̂21(ko+m,ko) −I2 −Jδδδ p̂22(ko+m,ko)

01×2 1 01×2 −1
−I2 −Jδδδ p̂11(ko+m,ko) I2 Jδδδ p̂12(ko+m,ko)

01×2 −1 01×2 1


︸ ︷︷ ︸

U′
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It becomes evident that compared to the observability matrix
of the ideal EKF-CL (see (26)), the only difference arising in
U′ is that δδδpi j is replaced by its estimate, δδδ p̂i j, for i, j = 1,2.
Moreover, by inspection, the right null space of M′ is

null(M′) = span
col.


I2 Jp̂1ko |ko−1

01×2 1
I2 Jp̂2ko |ko−1

01×2 1

 (52)

Thus, matrix M′ has rank 3, which shows that the OC-EKF
1.0 is based on an error-state system model whose unobserv-
able subspace is of dimension 3. Similarly, in the case where
N > 2 robots comprise the team, it can be easily shown that
the corresponding observability matrix M′ follows the same
structure as that of the ideal EKF-CL (see (33)), but where
δδδpi j is replaced by its estimate, δδδ p̂i j, for all i, j = 1, . . . ,N.
Thus, rank(M′) = 3N −3 and the unobservable subspace is
of dimension 3 (see [37]).

5.2 OC-EKF 2.0

In the design of consistent estimators for CL, there are two
competing goals that should be reconciled: (i) reduced lin-
earization errors at each time step, and (ii) correct observ-
ability properties of the linearized system model. In OC-
EKF 1.0, the state propagation Jacobian is computed using
the predicted estimate p̂ik|k−1 for the robot position instead
of the updated, and thus more accurate, estimate p̂ik|k . These
two estimates can differ substantially after a large filter cor-
rection, which may introduce significant linearization errors.
To formally address this limitation, we propose an alterna-
tive OC-EKF, termed OC-EKF 2.0, which selects the lin-
earization points of the EKF so as to minimize the expected
squared error of the linearization points while satisfying the
observability conditions (see (46) and (47)). This can be for-
mulated as a constrained minimization problem where the
constraints express the observability requirements.

Specifically, at time-step k+1, we aim at minimizing the
linearization error of the points x⋆k|k and x⋆k+1|k, which appear
in the filter Jacobians ΦΦΦk and Hk+1 (see (9) and (12), respec-
tively), subject to the observability constraint (47). Mathe-
matically, this is expressed as

min
x⋆k|k, x⋆k+1|k

(∫ ∣∣∣∣xk−x⋆k|k
∣∣∣∣2 p(xk|z0:k)dxk +∫ ∣∣∣∣xk+1−x⋆k+1|k
∣∣∣∣2 p(xk+1|z0:k)dxk+1

)
(53)

subject to Hk+1ΦΦΦk · · ·ΦΦΦko N = 0 , ∀k ≥ ko (54)

where z0:k denotes all the measurements available during the
time interval [0,k].

In general, the constrained minimization problem (53)-
(54) is intractable. However, when the two pdfs, p(xk|z0:k)

and p(xk+1|z0:k), are Gaussian distributions (which is the as-
sumption employed in the EKF), we can solve the problem
analytically and find a closed-form solution. In the follow-
ing, we show how the closed-form solution can be computed
for the simple case where only two robots are included in the
state vector. The case of N > 2 robots is presented in [37].

We note that the following lemma will be helpful for the
ensuing derivations:

Lemma 53 When p(xk|z0:k) and p(xk+1|z0:k) are Gaussian,
the constrained optimization problem (53)-(54) is equivalent
to:

min
x⋆k|k, x⋆k+1|k

∣∣∣∣x̂k|k−x⋆k|k
∣∣∣∣2 + ∣∣∣∣x̂k+1|k−x⋆k+1|k

∣∣∣∣2 (55)

subject to p⋆
2k|k

−p⋆
1k|k

= ak (56)

where

ak = p⋆
2k|k−1

−p⋆
1k|k−1

−
k−1

∑
τ=ko

(p⋆
2τ|τ

−p⋆
2τ|τ−1

)+
k−1

∑
τ=ko

(p⋆
1τ|τ

−p⋆
1τ|τ−1

)

Proof See Appendix B.

Using the technique of Lagrangian multipliers [38], the
optimal solution to the problem (55)-(56) can be obtained as

p⋆
1k|k

= p̂1k|k +
λλλ k

2
, ϕ ⋆

1k|k
= ϕ̂1k|k ,

p⋆
2k|k

= p̂2k|k −
λλλ k

2
, ϕ ⋆

2k|k
= ϕ̂2k|k ,

x⋆k+1|k = x̂k+1|k (57)

with
λλλ k = p̂2k|k − p̂1k|k −ak

We see that λλλ k and thus the linearization point for the posi-
tion of each robot, p⋆

ik|k
, depends on all robots’ estimates.

This increases the complexity of implementing the algo-
rithm, but yields the optimal linearization errors under the
desired observability constraints. Note also that in the case
where more than two robots are included in the state vector,
each connected robot in the RMG imposes a constraint anal-
ogous to (56), and thus the analytical solution of the optimal
linearization points can be obtained similarly [37].

Using the linearization points in (57), the state-
propagation Jacobians in the OC-EKF 2.0 are now com-
puted as

ΦΦΦ ′′
1k
=

[
I2 J

(
p̂1k+1|k − p̂1k|k −

λλλ k
2

)
01×2 1

]
(58)

ΦΦΦ ′′
2k
=

[
I2 J

(
p̂2k+1|k − p̂2k|k +

λλλ k
2

)
01×2 1

]
(59)
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while the measurement Jacobians are calculated in the same
way as in the standard EKF (see (12)).

It is important to point out that, compared to the stan-
dard EKF, the only change in the OC-EKFs (1.0 and 2.0) is
the way in which the state-propagation Jacobians are com-
puted (see (50), (58), (59) and (7)), while the state estimates
and covariance matrices are propagated and updated in the
same way as in the standard EKF. For clarity, the steps of the
OC-EKF CL algorithm are outlined in Algorithms 1, and a
simple CL example with two robots using the unicycle mo-
tion model and relative distance and bearing measurements
is provided in Appendix C. We also stress that even though a
complete RMG (i.e., each robot can observe all others) is as-
sumed at every time step in the preceding analysis, this is not
a necessary assumption for the OC-EKF, as the analysis can
easily be extended to the case of limited sensor range, where
multiple propagation steps occur between updates (see Sec-
tion 7).

Algorithm 1 Observability Constrained (OC)-EKF CL
Require: Initial state estimates and covariance
1: loop
2: Propagation: If odometry information is available,
3: propagate the state estimates via (2)-(3)
4: if OC-EKF 1.0 then
5: compute the propagation Jacobian (see (50))
6: propagate the state covariance:

Pk+1|k = ΦΦΦ ′
kPk|kΦΦΦ ′T

k +GkQkGT
k (60)

7: else if OC-EKF 2.0 then
8: compute the propagation Jacobian (see (58)-(59))
9: propagate the state covariance:

Pk+1|k = ΦΦΦ ′′
k Pk|kΦΦΦ ′′T

k +GkQkGT
k (61)

10: end if

11: Update: If robot-to-robot measurements are available,
12: compute the measurement residual:

rk+1 = zk+1 −h(x̂k+1|k) (62)

13: compute the measurement Jacobian (see (13)-(14))
14: compute the Kalman gain:

Sk+1 = Hk+1Pk+1|kHT
k+1 +Rk+1 (63)

Kk+1 = Pk+1|kHT
k+1S−1

k+1 (64)

15: update the state estimate and covariance:

x̂k+1|k+1 = x̂k+1|k +Kk+1rk+1 (65)

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1KT
k+1 (66)

16: end loop

As a final remark, we stress that the new OC-EKF esti-
mators are causal and realizable in practice, since they do
not utilize any knowledge of the true state. Interestingly,
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Fig. 1 Orientation estimation errors vs. 3σ bounds for one robot of
the 4-robot team, obtained from one typical realization of the Monte
Carlo simulations. The results for the other robots are similar to the
ones presented here. The σ values are computed as the square-root of
the corresponding element of the estimated covariance matrix. Note
that the estimation errors as well as the 3σ bounds of the ideal and the
OC-EKFs are almost identical, which makes the corresponding lines
difficult to distinguish.

even though the proposed filters do not use the latest avail-
able state estimates (and thus utilize Jacobians that are less
accurate than those of the standard EKF), they exhibit better
consistency properties than the standard EKF. This is shown
through extensive simulations and real-world experiments in
the next two sections.

6 Simulation Results

A series of Monte-Carlo comparison studies were conducted
under various conditions, in order to validate the preced-
ing theoretical analysis and to demonstrate the capability of
the OC-EKF (1.0 and 2.0) estimators to improve the con-
sistency of EKF-CL. The metrics used to evaluate filter per-
formance are: (i) the average root mean squared (RMS) er-
ror, and (ii) the average normalized (state) estimation error
squared (NEES) [14]. It is known that the NEES of an M-
dimensional Gaussian random variable follows a χ2 distri-
bution with M degrees of freedom. Therefore, if a certain fil-
ter is consistent, we expect that the average NEES for each
robot pose will be close to 3 for all k. The larger the devi-
ation of the NEES from these values, the larger the incon-
sistency of the filter. By studying both the RMS errors and
NEES of all the filters considered here, we obtain a compre-
hensive picture of the estimators’ performance.

In the simulation tests, we consider a CL scenario
in which four robots move randomly in an area of size
20 m × 20 m. 50 Monte Carlo simulations were performed,
and during each run, all filters process the same data, to en-
sure a fair comparison. The four estimators compared are:
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Fig. 2 Monte Carlo simulation results for the average NEES of the robot-pose errors: (a) Robot 1, (b) Robot 2, (c) Robot 3, (d) Robot 4. In these
plots, the solid lines correspond to the ideal EKF, the solid lines with circles to the standard EKF, the dash-dotted lines to the OC-EKF 1.0, and
the dotted lines to the OC-EKF 2.0. Note that the NEES of the ideal EKF and the OC-EKFs are almost identical, which makes the corresponding
lines difficult to distinguish.

(i) the ideal EKF, (ii) the standard EKF, (iii) the OC-EKF
1.0, and (iv) the OC-EKF 2.0.

For the results presented in this section, four identical
robots with a simple differential drive model move on a pla-
nar surface, at a constant linear velocity of v = 0.25 m/sec,
while the rotational velocity is drawn from the uniform dis-
tribution over [−0.5,0.5] rad/sec. The two drive wheels are
equipped with encoders, which measure their revolutions
and provide noisy measurements of velocity (i.e., right and
left wheel velocities, vr and vl , respectively), with standard
deviation equal to σ = 5%v for each wheel. These measure-
ments are used to obtain linear and rotational velocity mea-
surements for each robot, which are given by v = vr+vl

2 and
ω = vr−vl

a , where a= 0.5 m is the distance between the drive
wheels. Thus, the standard deviations of the linear and rota-

tional velocity measurements are σv =
√

2
2 σ and σω =

√
2

a σ ,
respectively.

Each robot records distance and bearing measurements
to all other robots. Note that for simplicity we assume that
all measurements occur at every time step in our simulations
(but this is not the case in our real-world experiments in Sec-
tion 7). The standard deviation of the distance measurement
noise is equal to 10% of the robot-to-robot distance, while
the standard deviation of the bearing measurement noise is
set to σθ = 10 deg. It should be pointed out that the sensor-
noise levels selected for the simulations are larger than what
is typically encountered in practice. This was done purpose-
fully, since larger noise levels lead to higher estimation er-
rors, which make the effects of inconsistency more apparent.
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Fig. 3 Monte Carlo simulation results for the average RMS of the robot pose errors: (a) Robot 1, (b) Robot 2, (c) Robot 3, (d) Robot 4. In these
plots, the solid lines correspond to the ideal EKF, the solid lines with circles to the standard EKF, the dash-dotted lines to the OC-EKF 1.0, and the
dotted lines to the OC-EKF 2.0. Note that the RMS errors of the ideal EKF and the OC-EKFs are almost identical, which makes the corresponding
lines difficult to distinguish.

Fig. 1 shows the orientation estimation errors for one of
the robots, obtained from a typical simulation (the results
for the other three robots are very similar and thus omitted
for clarity). Clearly, the standard-EKF errors grow signifi-
cantly faster than those of the ideal EKF and the OC-EKFs,
which indicates that the standard EKF tends to diverge. Note
also that although the orientation errors of the ideal EKF
and the OC-EKFs remain well within their corresponding
3σ bounds, those of the standard EKF exceed them. Most
importantly, in contrast to those of the OC-EKFs, the 3σ
bounds of the standard EKF (computed from the square-root
of the corresponding element of the estimated covariance
matrix) remain almost constant as if the orientation of the
robot was observable. However, as discussed in Section 4,
the robots have no access to absolute orientation informa-
tion and thus the orientation covariance should continuously

grow (as is the case for the ideal EKF and the OC-EKFs).
The results of Fig. 1 clearly demonstrate that the incorrect
observability properties of the standard EKF cause an un-
justified reduction of the orientation uncertainty.

Figs. 2 and 3 show the average NEES and RMS errors,
respectively, for all four robots. These plots show the av-
erage errors over all Monte Carlo runs, plotted over time,
while Table 1 presents the average error values over all time
steps. As evident, the performance of both the OC-EKFs is
almost identical to that of the ideal EKF, and substantially
better than the standard EKF, both in terms of RMS errors
and NEES. This occurs even though the Jacobians used in
the OC-EKFs are less accurate than those used in the stan-
dard EKF, as explained in the preceding section. This fact
indicates that the errors introduced by the use of inaccurate
Jacobians have a less detrimental effect on consistency than
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Ideal-EKF Std-EKF OC-EKF 1.0 OC-EKF 2.0

Robot Position Err. RMS (m)

Robot 1: 1.2820 1.5062 1.2927 1.2912

Robot 2: 1.2747 1.5022 1.2857 1.2844

Robot 3: 1.2723 1.4966 1.2830 1.2818

Robot 4: 1.2721 1.4990 1.2808 1.2793

Robot Heading Err. RMS (rad)

Robot 1: 0.1455 0.1908 0.1497 0.1494

Robot 2: 0.1454 0.1906 0.1495 0.1492

Robot 3: 0.1455 0.1908 0.1497 0.1494

Robot 4: 0.1453 0.1906 0.1495 0.1492

Robot Pose NEES

Robot 1: 3.0690 9.4293 3.0825 3.0485

Robot 2: 3.0626 9.4087 3.0953 3.0617

Robot 3: 3.0699 9.4214 3.0855 3.0512

Robot 4: 3.0767 9.4596 3.0911 3.0561

Table 1 Robot pose estimation performance in the simulation

the use of an error-state system model with observable sub-
space of dimension larger than that of the actual CL system.
In addition, the performance of the OC-EKF 2.0 is superior
to that of the OC-EKF 1.0 by a small margin. This is at-
tributed to the fact that the OC-EKF 1.0 has larger lineariza-
tion errors than its alternative, the OC-EKF 2.0, whose lin-
earization errors are optimal by construction, under the ob-
servability constraints. We have also tested the performance
of our proposed estimators for varying team sizes, with very
similar results to the ones shown for the four-robot case. We
omit the results here, but the interested reader is referred
to [37] for details.

7 Experimental Results

In what follows, we describe one of the real-world experi-
ments performed to further validate the OC-EKF algorithms.
During the test, a team of four Pioneer I robots moves in a
rectangular area of 2.5 m × 4.5 m, within which the posi-
tions of the robots are being tracked by an overhead cam-
era. For this purpose, rectangular targets are mounted on top
of the robots and the vision system is calibrated in order
to provide ground-truth measurements of the robots’ poses
in a global coordinate frame. The standard deviation of the
noise in these measurements is approximately 0.5 deg for
orientation and 0.01 m, along each axis, for position. The
robots were commanded to move at a constant velocity of
v = 0.1 m/sec while avoiding collision with the boundaries
of the arena as well as with their teammates. Fig. 4(a) shows
the experimental setup. The trajectories of the four robots
are shown in Fig. 4(b), where only partial trajectories are
plotted in order to keep the figure clear.

Std-EKF OC-EKF 1.0 OC-EKF 2.0

Robot Position Err. RMS (m)

Robot 1: 0.2132 0.1070 0.1066

Robot 2: 0.2127 0.1083 0.1080

Robot 3: 0.2104 0.1076 0.1073

Robot 4: 0.2699 0.1317 0.1313

Robot Heading Err. RMS (rad)

Robot 1: 0.1721 0.0785 0.0782

Robot 2: 0.1694 0.0760 0.0757

Robot 3: 0.1732 0.0794 0.0791

Robot 4: 0.1749 0.0810 0.0807

Robot Pose NEES

Robot 1: 24.2458 4.4080 4.4289

Robot 2: 26.4881 4.5423 4.5801

Robot 3: 25.3439 4.6060 4.6270

Robot 4: 27.6313 4.9182 4.9501

Table 2 Robot pose estimation performance in the experiment

Although four identical robots were used, calibration
of their odometric sensors showed that the accuracy of
the wheel-encoders’ measurements is not identical for
all robots. Specifically, the measurement errors are well-
modeled as Gaussian zero-mean white noise processes and
the standard deviation of the velocity measurements ranges
from σvmin = 3.8%v for the most accurate odometer to
σvmax = 6.9%v for the robot with the highest noise levels.
Similarly, the standard deviations of the rotational velocity
measurements have values between σωmin = 0.0078 rad/sec
and σωmax = 0.02 rad/sec for the four robots. We observe
that as a result of the variability of sensor characteristics, at-
tributed to manufacturing imperfections, the experiment in-
volves a heterogeneous robot team, despite all robots being
the same model, equipped with the same sensors. This gives
us the opportunity to test the performance of the OC-EKF
algorithms in a realistic scenario. We stress that the deriva-
tions of the OC-EKFs in Section 5 require neither the homo-
geneity of robot teams, nor a complete RMG at every time
step. Besides the previous simulations in which a homoge-
neous robot team was used, this experiment demonstrates
the superior performance of the OC-EKFs versus the stan-
dard EKF also for heterogeneous robot teams.

Relative distance-bearing measurements are produced
synthetically using the differences in the positions of the
robots, as these are recorded by the overhead camera, with
the addition of noise. For the experimental results shown in
this section, the distance and bearing measurements are cor-
rupted by zero-mean white Gaussian noise processes, with
standard deviation σd = 0.05 m and σθ = 2 deg, respec-
tively.
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Fig. 4 Experimental setup: (a) Calibrated image of four Pioneer I robots with targets mounted on top of them. (b) Trajectories of four Pioneer I
robots that move inside a 2.5 m × 4.5 m arena during the indoor experiment. For presentation clarity, only the parts of the trajectories corresponding
to the first 200 sec are plotted. Starting positions are marked by ∗.

Three filters were implemented: (i) the standard EKF,
(ii) the OC-EKF 1.0, and (iii) the OC-EKF 2.0. Compara-
tive results for the three filters are presented in Figs. 5 and 6,
while Table 2 shows the averaged NEES and RMS errors
of the robot pose, respectively. From the experimental re-
sults it becomes clear that the two OC-EKFs outperform the
standard EKF, in terms of both accuracy and consistency,
while both perform almost identically. This agrees with the
simulation results presented in the preceding section. Both
the real-world and simulation results thus support our con-
jecture, which states that the mismatch in the dimension of
the unobservable subspace between the linearized CL sys-
tem and the underlying nonlinear system is a fundamental
cause of filter inconsistency.

8 Conclusions and Future Work

In this paper, we have studied in depth the issue of con-
sistency in EKF-based CL, from an observability perspec-
tive. By comparing the observability properties of the lin-
earized error-state model employed in the EKF with those
of the underlying nonlinear CL system, we proved that the
observable subspace of the standard EKF system model is
always of higher dimension than that of the actual CL sys-
tem. As a result, the covariance estimates of the EKF un-
dergo reduction in directions of the state space where no
information is available, and thus the standard EKF-CL is
inconsistent. Moreover, based on the analysis, we proposed
two new observability-constrained consistent EKF estima-
tors, the OC-EKF 1.0 and its alternative, OC-EKF 2.0, both
of which significantly improve the consistency of EKF-
CL. The design methodology followed for deriving the OC-
EKFs is based on appropriate selection of the linearization
points at which the Jacobians are evaluated, to ensure that

the observable subspace of the linearized error-state system
model is of the same dimension as that of the underlying
nonlinear system. Extensive simulation tests and real-world
experiments have verified that the proposed OC-EKFs per-
form better, in terms of both accuracy and consistency, than
the standard EKF.

In this paper, we have focused on 2D CL. However,
our approach is also applicable to the case of 3D localiza-
tion. The details of the application of the proposed design
methodology to 3D CL will be the focus of our future work.

A Proof of Lemma 44

In the general case where N > 2 robots comprise the team, proceeding
similarly to the analysis of the ideal EKF-CL (see Section 4.1.2), the
observability matrix M can be obtained as shown in (67).

Analogously to the proof of Lemma 42, we denote U ,[
u1 · · · u3N

]
, and observe that

u1 =−
N

∑
i=2

u3i−2 , u2 =−
N

∑
i=2

u3i−1

while

N

∑
i=1

u3i ̸=
N

∑
i=2

α2i−1u3i−2 +
N

∑
i=2

α2iu3i−1

where
[

α2i−1
α2i

]
,−Jδδδ p̂i1(ko,ko), ∀i = 2, . . . ,N. This is due to that fact

that u3i, i = 1, . . . ,N, become general vectors and hence are no longer
linear combinations of any other columns. This is in contrast to the
case of the ideal EKF-CL (see Lemma 42). As a result, one possi-
ble basis of the range of matrix U is its column vectors {ui}3N

i=3, i.e.,
rng(U) = span

col.

[
u3 · · · u3N

]
. Thus, rank(U) = 3N − 2. Analogously,

we observe that in general Dui ̸= 0, for i = 3, . . . ,3N. Moreover, note
that any vector x ∈ rng(U) \ 0 can be written as x = ∑3N−2

i=1 βiui+2
for some βi ∈ R, where βi’s are not simultaneously equal to zero.
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M = −Diag
(
(∇h(12)

ko
)A(ϕ̂1ko |ko−1 ), · · · , (∇h(NN−1)

ko+m )A(ϕ̂Nko+m|ko+m−1 )
)

︸ ︷︷ ︸
D

× (67)



I2 Jδδδ p̂21(ko,ko) −I2 02×1 02×2 02×1 · · · 02×2 02×1
01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 Jδδδ p̂31(ko,ko) 02×2 02×1 −I2 02×1 · · · 02×2 02×1
01×2 1 01×2 0 01×2 −1 · · · 01×2 0

...
...

...
...

...
...

. . .
...

...
I2 Jδδδ p̂N1(ko,ko) 02×2 02×1 02×2 02×1 · · · −I2 02×1

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδδδ p̂1N(ko,ko)
01×2 −1 01×2 0 01×2 0 · · · 01×2 1
02×2 02×1 −I2 02×1 02×2 02×1 · · · I2 Jδδδ p̂2N(ko,ko)
01×2 0 01×2 −1 01×2 0 · · · 01×2 1

...
...

...
...

...
...

. . .
...

...
02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 Jδδδ p̂N−1N(ko,ko)
01×2 0 01×2 0 01×2 0 · · · 01×2 1

I2 J∆∆∆ p̂21(ko+1,ko) −I2 −J∆∆∆ p̂22(ko+1,ko) 02×2 02×1 · · · 02×2 02×1
01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 J∆∆∆ p̂31(ko+1,ko) 02×2 02×1 −I2 −J∆∆∆ p̂33(ko+1,ko) · · · 02×2 02×1
01×2 1 01×2 0 01×2 −1 · · · 01×2 0

...
...

...
...

...
...

. . .
...

...
I2 J∆∆∆ p̂N1(ko+1,ko) 02×2 02×1 02×2 02×1 · · · −I2 −J∆∆∆ p̂NN(ko+1,ko)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −J∆∆∆ p̂11(ko+1,ko) 02×2 02×1 02×2 02×1 · · · I2 J∆∆∆ p̂1N(ko+1,ko)
01×2 −1 01×2 0 01×2 0 · · · 01×2 1
02×2 02×1 −I2 −J∆∆∆ p̂22(ko+1,ko) 02×2 02×1 · · · I2 J∆∆∆ p̂2N(ko+1,ko)
01×2 0 01×2 −1 01×2 0 · · · 01×2 1

...
...

...
...

...
...

. . .
...

...
02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 J∆∆∆ p̂N−1N(ko+1,ko)
01×2 0 01×2 0 01×2 0 · · · 01×2 1

...
...

...
...

...
...

...
...

...

I2 J∆∆∆ p̂21(ko+m,ko+m−1) −I2 −J∆∆∆ p̂22(ko+m,ko+m−1) 02×2 02×1 · · · 02×2 02×1
01×2 1 01×2 −1 01×2 0 · · · 01×2 0

I2 J∆∆∆ p̂31(ko+m,ko+m−1) 02×2 02×1 −I2 −J∆∆∆ p̂33(ko+m,ko+m−1) · · · 02×2 02×1
01×2 1 01×2 0 01×2 −1 · · · 01×2 0

...
...

...
...

...
...

. . .
...

...
I2 J∆∆∆ p̂N1(ko+m,ko+m−1) 02×2 02×1 02×2 02×1 · · · −I2 −J∆∆∆ p̂NN(ko+m,ko+m−1)

01×2 1 01×2 0 01×2 0 · · · 01×2 −1

...
...

...
...

...
...

...
...

...

−I2 −J∆∆∆ p̂11(ko+m,ko+m−1) 02×2 02×1 02×2 02×1 · · · I2 J∆∆∆ p̂1N(ko+m,ko+m−1)
01×2 −1 01×2 0 01×2 0 · · · 01×2 1
02×2 02×1 −I2 −J∆∆∆ p̂22(ko+m,ko+m−1) 02×2 02×1 · · · I2 J∆∆∆ p̂2N(ko+m,ko+m−1)
01×2 0 01×2 −1 01×2 0 · · · 01×2 1

...
...

...
...

...
...

. . .
...

...
02×2 02×1 02×2 02×1 02×2 02×1 · · · I2 J∆∆∆ p̂N−1N(ko+m,ko+m−1)
01×2 0 01×2 0 01×2 0 · · · 01×2 1


︸ ︷︷ ︸

U
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Fig. 5 Experimental results for the NEES of the robot pose errors: (a) Robot 1, (b) Robot 2, (c) Robot 3, (d) Robot 4. In these plots, the solid lines
with circles correspond to the standard EKF, the solid lines to the OC-EKF 1.0, and the dash-dotted lines to the OC-EKF 2.0. Note that the NEES
of the two OC-EKFs are almost identical, which makes the corresponding lines difficult to distinguish.

Thus, we see that in general Dx = ∑3N−2
i=1 βiDui+2 ̸= 0, which im-

plies that x does not belong to the null space, null(D), of D. There-
fore, dim(null(D)

∩
rng(U)) = 0, and, finally, based on theorem (4.5.1)

in [36], rank(M) = rank(U)− dim(null(D)
∩

rng(U)) = rank(U) =
3N −2.

B Proof of Lemma 53

Under the Gaussianity assumption, it is p(xk|z0:k) = N (x̂k|k,Pk|k),
and p(xk+1|z0:k) = N (x̂k+1|k,Pk+1|k). The first term of the cost func-
tion (53) is computed as

∫ ∣∣∣∣xk −x⋆k|k
∣∣∣∣2 p(xk|z0:k)dxk

=
∫ (

xT
k xk −2xT

k x⋆k|k +x⋆T
k|kx⋆k|k

)
p(xk|z0:k)dxk

= E
(
xT

k xk|z0:k
)
−2E

(
xT

k |z0:k
)

x⋆k|k +x⋆T
k|kx⋆k|k

= tr
(

Pk|k + x̂k|kx̂T
k|k

)
−2x̂T

k|kx⋆k|k +x⋆T
k|kx⋆k|k

= tr
(
Pk|k

)
+ x̂T

k|kx̂k|k −2x̂T
k|kx⋆k|k +x⋆T

k|kx⋆k|k

= tr
(
Pk|k

)
+
∣∣∣∣x̂k|k−x⋆k|k

∣∣∣∣2 (68)

where E(·) denotes expectation and tr(·) is the matrix trace. Proceeding
similarly, the second term of the cost function (53) can be derived as∫ ∣∣∣∣xk+1 −x⋆k+1|k

∣∣∣∣2 p(xk+1|z0:k)dxk+1

= tr
(
Pk+1|k

)
+
∣∣∣∣x̂k+1|k −x⋆k+1|k

∣∣∣∣2 (69)

Using (68) and (69), as well as the fact that the true Pk|k and Pk+1|k
are independent of the linearization points, the following equivalence
holds:

min
x⋆k|k , x⋆k+1|k

{
tr
(
Pk|k

)
+ tr

(
Pk+1|k

)
+∣∣∣∣x̂k|k−x⋆k|k

∣∣∣∣2 + ∣∣∣∣x̂k+1|k−x⋆k+1|k
∣∣∣∣2

}
⇔ min

x⋆k|k , x⋆k+1|k

∣∣∣∣x̂k|k−x⋆k|k
∣∣∣∣2 + ∣∣∣∣x̂k+1|k−x⋆k+1|k

∣∣∣∣2 (70)
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Fig. 6 Experimental results for the robot pose absolute errors: (a) Robot 1, (b) Robot 2, (c) Robot 3, (d) Robot 4. In these plots, the solid lines with
circles correspond to the standard EKF, the solid lines to the OC-EKF 1.0, and the dash-dotted lines to the OC-EKF 2.0. Note that the absolute
errors of the two OC-EKFs are almost identical, which makes the corresponding lines difficult to distinguish.

We now derive the following identities for the observability con-
straint (54) (see (42) and (48)):

Hk+1ΦΦΦk · · ·ΦΦΦko N = 0

⇔
k

∑
τ=ko

(p⋆
2τ|τ

−p⋆
2τ|τ−1

)−
k

∑
τ=ko

(p⋆
1τ|τ

−p⋆
1τ|τ−1

) +(
p⋆

2ko |ko−1
−p⋆

1ko |ko−1

)
−
(

p̂2ko |ko−1 − p̂1ko |ko−1

)
= 0 (71)

⇔ p⋆
2k|k

−p⋆
1k|k

=
(

p⋆
2k|k−1

−p⋆
1k|k−1

)
−

k−1

∑
τ=ko

(p⋆
2τ|τ

−p⋆
2τ|τ−1

)+
k−1

∑
τ=ko

(p⋆
1τ |τ

−p⋆
1τ |τ−1

) (72)

where we have used the fact that the linearization points, during propa-
gation at time-step ko are the propagated filter estimates, i.e., p⋆

1ko |ko−1
=

p̂1ko |ko−1 and p⋆
2ko |ko−1

= p̂2ko |ko−1 . This completes the proof.

C An Example of OC-EKF CL

In the following, we provide a specific CL example to illustrate the im-
plementation of the proposed OC-EKF estimators, in which a team of
two robots using the unicycle motion model measure relative distance
and bearing to each other. Note that the same models were used in our
simulations (see Section 6).

Suppose that at the first time-step, k = 0, the robot poses are
initialized by x̂i0|0 and Pi0|0 , for i = 1,2. Following standard prac-
tice, we employ the approximation that the velocity and heading are
constant during each propagation interval and thus obtain kx̂ik+1 =

[vmi,k 0 ωmi,k ]
T δ t, where umi,k = [vmi,k ωmi,k ]

T are the linear and ro-
tational velocity measurements, for i = 1,2, respectively, and δ t is the
sampling period. Substitution into (2)-(3) yields the following common
equations for robot pose propagation:

p̂ik+1|k = p̂ik|k +

[
vmi,k cϕ̂ik|k
vmi,k sϕ̂ik|k

]
δ t (73)

ϕ̂ik+1|k = ϕ̂ik|k +ωmi,k δ t (74)
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Std-EKF ΦΦΦ ik =

[
I2 J

(
p̂ik+1|k − p̂ik|k

)
01×2 1

]
=

1 0 −vmi,k sϕ̂ik|k δ t
0 1 vmi,k cϕ̂ik|k δ t
0 0 1


OC-EKF 1.0 ΦΦΦ ′

ik =

[
I2 J

(
p̂ik+1|k − p̂ik|k−1

)
01×2 1

]

OC-EKF 2.0 ΦΦΦ ′′
ik =

[
I2 J

(
p̂ik+1|k − p̂ik|k +(−1)i λλλ k

2

)
01×2 1

]
Table 3 Different state estimates used in computing the state-
propagation Jacobian matrix of robot i (i = 1,2) at time-step k for the
three estimators (i.e., the standard EKF, the OC-EKFs 1.0 and 2.0)

Once the propagated states are computed, we now calculate the state-
propagation Jacobian matrix in order to propagate the covariance. It
is important to note that this calculation depends on the particular fil-
ter used, and is the only difference between the three filters (i.e., the
standard EKF, the OC-EKF 1.0 and the OC-EKF 2.0) under considera-
tion in this work. Table 3 summarizes how the state-propagation Jaco-
bian matrix is computed for each estimator. Specifically, in contrast to
the standard EKF, the OC-EKF 1.0 requires additional storage of the
last propagated state estimate x̂k|k−1, while the OC-EKF 2.0 requires
an additional variable λλλ k, containing a running sum of all previous
state corrections (see (57)). The noise Jacobian Gik with respect to the
odometry vector uik for both robots is computed according to (8) for
all three estimators (by noting that kxik+1 = [vik 0 ωik ]

T δ t). The mea-
surement equations and the corresponding Jacobians for the distance
and bearing measurement model are given by (see (12)-(14)):

z(i j)
k+1 =

[ √
(x jk+1 − xik+1 )

2 +(y jk+1 − yik+1 )
2

atan2
(
(y jk+1 − yik+1 ),(x jk+1 − xik+1 )

)
−ϕik+1

]
+v(i j)

k+1 (75)

H(i j)
k+1 =

[
H(i j)

1k+1
H(i j)

2k+1

]
= − (∇h(i j)

k+1)A(ϕ̂ik+1|k )

[
I2 J(p̂ jk+1|k − p̂ik+1|k ) − I2 0

01×2 1 0 −1

]

= −


(

p̂T
jk+1|k

−p̂T
ik+1|k

)
C(ϕ̂ik+1|k )

||p̂ jk+1|k−p̂ik+1|k ||
0(

p̂T
jk+1|k

−p̂T
ik+1|k

)
C(ϕ̂ik+1|k )J

T

||p̂ jk+1|k−p̂ik+1|k ||
2 0


[

CT (ϕ̂ik+1|k ) 0
0 1

]
×

[
I2 J(p̂ jk+1|k − p̂ik+1|k ) − I2 0

01×2 1 0 −1

]

=


−

p̂T
jk+1|k

−p̂T
ik+1|k

||p̂ jk+1|k−p̂ik+1|k ||
0

p̂T
jk+1|k

−p̂T
ik+1|k

||p̂ jk+1|k−p̂ik+1|k ||
0(

p̂T
jk+1|k

−p̂T
ik+1|k

)
J

||p̂ jk+1|k−p̂ik+1|k ||
2 −1 −

(
p̂T

jk+1|k
−p̂T

ik+1|k

)
J

||p̂ jk+1|k−p̂ik+1|k ||
2 0

 (76)

which hold for i, j = 1,2 and i ̸= j, and are also identical for all three
estimators. Given these expressions, we proceed to use the standard
EKF propagation and update equations.
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