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Abstract— In this paper we detail an observability based
path planning algorithm for Small and Miniature Air Vehicles
(MAVs) navigating among multiple static obstacles. Bearing-
only measurements are utilized to estimate the time-to-collision
(TTC) and bearing to obstacles using the extended Kalman filter
(EKF). For the error covariance matrix computed by the EKF
to be bounded, the system should be observable. We perform
a nonlinear observability analysis to obtain the necessary
conditions for complete observability. We use these conditions
to design a path planning algorithm which simultaneously
minimizes the uncertainties in state estimation while avoiding
collisions with obstacles. Simulation results show that the
planning algorithm successfully solves the single and multiple
obstacle avoidance problems for MAVs while improving the
estimation accuracy.

I. INTRODUCTION

Small and Miniature Air Vehicles (MAVs) have the po-

tential to perform tasks that are too difficult or dangerous

for human pilots. For example, they can monitor critical

infrastructure and real-time disasters, perform search and

rescue, and measure weather in-storms [1]. For many of

these applications, MAVs are required to navigate in urban or

unknown terrain where obstacles of various types and sizes

may hinder the success of the mission. MAVs must have

the capability to autonomously plan paths that do not collide

with buildings, trees or other obstacles. Therefore, the path

planning and obstacle avoidance problems for MAVs have

received significant attention [1]–[5].

The path planning problem can be grouped into global

path planning and local path planning. Global path planning

requires complete knowledge about the environment and a

static terrain. In that setting a feasible path from the start to

the destination configuration is generated before the vehicle

starts its motion [6]. The global path planning problem has

been addressed by many researchers with the three most

common solutions being potential fields methods, roadmap

methods and cell decomposition methods [7]. On the other

hand, local path planning is executed in real-time during

flight. The basic idea is to first sense the obstacles in the

environment and then determine a collision-free path [1].
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Local path planning algorithms require sensors to detect

obstacles. Among the suite of possible sensors, a video

camera is cheap and lightweight and fits the physical re-

quirements of small UAVs [1]. However, a single camera

only provides bearings to obstacles, but it is necessary to

estimate TTC to avoid collisions from obstacles. We use

the extended Kalman Filter (EKF) to estimate the state of

an obstacle, which includes TTC and bearing to obstacle,

given the bearing measurement from the camera. The key

idea presented in this paper is to maneuver the MAV to min-

imize the state estimation uncertainty while simultaneously

avoiding obstacles. We will show that these two tasks are

complementary, if the reachability conditions are satisfied.

Planning trajectories that account for the information content

in the environment is called as coastal navigation [8]. Our

work is similar to coastal navigation, however, we focus

on making a accurate local map of the environment in the

body frame of the vehicle instead of vehicle localization. We

use the local mapping technique in our previous work [9]–

[11], which builds a polar map in the local-level frame of

the MAV using the camera measurements directly without

transforming to the inertial frame. However, instead of using

both TTC and bearing measurements as in [9]–[11], in

this work we only use bearing measurements to estimate

both the TTC and bearing to obstacles. For this purpose

we will use nonlinear observability theory developed by

Hermann and Krener [12]. Observability is a measure of

information available for state estimation. Song et al. [13]

show that the EKF is a quasi-local asymptotic observer for

discrete-time nonlinear systems, and that the convergence

and boundedness of the filter are achieved when the system

satisfies the nonlinear observability rank condition and the

states stay within a convex compact domain. Observability

analysis has been studied extensively for the purpose of esti-

mation [14]–[16]. While Bryson and Sukkarieh [17] perform

the observability analysis of SLAM and develop an active

control algorithm, the observability analysis is not used to

develop active control. The contribution of this paper is that

we use the observability analysis to explicitly design the path

planning algorithm. The main contributions of this paper are

as follows.

• We build polar maps using the TTC, which are inde-

pendent of the ground or air speed of the MAV.

• We perform the observability analysis of the state es-

timation process from bearing-only measurements and
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Fig. 1. This figure shows the motion of the ith obstacle relative to the
MAV. The TTC and bearing to the obstacle are represented by τ i and ηi.
The ground speed is represented by V . The heading angle is represented by
ψ. The angle between the line of sight of the obstacle and North direction
is represented by θi. The location of the obstacle is represented by B.

find the necessary conditions for the observability of the

system.

• We design a path planning algorithm based only on the

local map around the MAV in the local-level frame.

• The algorithm minimizes the uncertainties in the TTC

and bearing estimates while simultaneously avoiding

obstacles.

The rest of the paper is organized as follows. Section

II describes the model of the vehicle in the local-level

frame and details nonlinear observability analysis. In Section

III we describe the observability-based local path planning

algorithm. Simulation results are provided in Section IV, and

our conclusions are in Section V.

II. OBSERVABILITY ANALYSIS OF STATE ESTIMATION

In this section we will build a local map using the TTC

to obstacles in the local-level frame of the MAV. The map is

constructed in polar coordinates by estimating the TTC and

bearing to obstacles. We perform a nonlinear observability

analysis of the state estimation problem using bearing-only

measurements, and find necessary conditions for complete

observability of the system and establish a link between

estimation accuracy and the minimum singular value of the

observability matrix.

We assume the MAV is flying at a constant height above

ground level. Since the obstacle map is in the local-level

frame of the MAV, which is located at the origin, the equation

of motion of each obstacle relative to the MAV needs to be

derived. Let V represent the ground speed of the MAV and let

φ and ψ represent the roll and heading angles, respectively.

Figure 1 shows the motion of the ith obstacle relative to the

MAV in the local-level frame, where τ i and ηi are the TTC

and bearing, θi is the angle between the line of sight of the

obstacle and North direction, and B is the location of the

ith obstacle in the local-level frame. Based on Fig. 1, the

equations of motion of the obstacle relative to the MAV in

terms of TTC and bearing are given by

τ̇ i = − cos ηi, (1)

η̇i =
sin ηi

τ i
− ψ̇, (2)

Fig. 2. This figure shows the local TTC map in the local-level frame of the
MAV using polar coordinates. The origin of the map is the current location
of the MAV. The circles represent the obstacles and the ellipses around them
represent the TTC and bearing uncertainties. The radial direction is TTC in
units of seconds.

where, assuming coordinated turn conditions, ψ̇ = g
V
tanφ

and where φ is the roll angle of the MAV, which we assume

to be a control signal. Since we use the camera to measure

the bearing only, the measurement at time t is given by

zit = ηit + vit, (3)

where vit is the measurement noise that is assumed to

be a zero-mean Gaussian random variable. Based on the

state transition model expressed by Eqs. (1) and (2) and

observation model expressed by Eq. (3), we use the EKF to

estimate the TTC and bearing and build the local TTC map

in the local-level frame using polar coordinates, as shown

in Fig. 2. The origin of the map is the current location of

the MAV. The circles represent the obstacles and the ellipses

around them represent the TTC and bearing uncertainties.

In order to decrease the uncertainties in the TTC and

bearing estimates, we analyze the observability of the system

given by Eqs. (1), (2) and (3). Let xi = [τ i, ηi]⊤ represent

the state vector associated with the ith obstacle. Let ẋ
i =

f(xi) and zit = h(xi
t) represent the state transition and

observation models. The observability matrix is computed

using Lie derivatives described by Hermann and Kerner [12].

The 0th order Lie derivative is L0
f
(h) = ηi and the 1st

order Lie derivative is L1
f
(h) =

∂L0
f
(h)

∂xi = ψ̇ + sin ηi

τ i . We

define the vector of Lie derivatives Ω = [L0
f
(h), L1

f
(h)]⊤.

The observability matrix is computed as

Oi =
∂Ω

∂xi
=

[

0 1

− sin ηi

(τ i)2
cos ηi

τ i

]

. (4)

The observability matrix has rank two if and only if τ i 6= ∞,

ηi 6= 2πp where p ∈ Z. The EKF is a quasi-local asymp-

totic observer for nonlinear systems and its convergence

and boundedness are achieved when the system is fully

observable [13]. Bounds on the EKF error covariance P i
t are

related to the observability of the system given by Lemma 1

proved in [13].
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Lemma 1 ( [13]): Suppose that there exist positive real

scalars α1, α2, β1, β2 such that β1I ≤ Oi⊤R−1Oi ≤ β2I

and α1I ≥ Ci⊤Q−1Ci ≥ α2I then,

(

1

β2 +
1
α2

)

≤ P i
t ≤

(

α1 +
1

β1

)

, (5)

where Ci is the controllability matrix, and Q and R are

process and measurement noise covariance matrices.

From Lemma 1, we can see that both the maximum and

minimum singular values β1 and β2 of the observability

matrix should be maximized in order to minimize both the

upper and lower bounds of the error covariance matrix.

For the problem in this paper the order of system is two,

and therefore minimizing the inverse of the determinant of

Oi⊤Oi will maximize the two eigenvalues of Oi⊤Oi. The

determinant of the observability Grammian related to the ith

obstacle is given by

det(Oi⊤Oi) =
sin2 ηi

(τ i)4
. (6)

From Eq. (6), the inverse of determinant is given by
(τ i)4

sin2 ηi .

It can be seen that for large τ , the inverse is high, which

means observability is less, because change in the bearing

measurement is very small with the TTC (low parallex). It

can also be seen that the inverse is minimum at ηi = π/2
and is maximum when ηi = 0, meaning that the vehicle is

moving directly towards the obstacle. Minimizing the inverse

will ensure that ηi 6= pπ and will regulate ηi → π/2.

This implies that the minimization of the inverse of the

determinant will minimize the lower and upper bounds of

the error covariance matrix as well as steer the MAV away

from the obstacle. Therefore the minimization of uncertainty

and obstacle avoidance are complementary.

III. OBSERVABILITY-BASED PATH PLANNING

Based on the observability analysis in the previous section,

we design the path planning algorithm such that (a) the

MAV is maneuvered to the goal configuration and (b) the

uncertainties in the TTC and bearing estimates are mini-

mized, causing the MAV to avoid collisions. Let τgt and

ηgt represent the TTC and bearing to the goal configuration

at time t. Suppose that there exist n obstacles in the local

map with bearing |ηi| ≤ π/2, i = 1, · · · , n. Let τ it and ηit
represent the estimated TTC and bearing of the ith obstacle.

The determinant of the observability Grammian associated

with the ith obstacle is given by det(Oi
t

⊤
Oi

t) =
sin2 ηi

t

(τ i
t )

4 .

Let ξt = [τgt , η
g
t , τ

1
t , η

1
t , · · · , τ

n
t , η

n
t ]

⊤. Define the utility

S : R2n+2 → R as

S(ξt) = U1(τ
g
t )

2 + U2(η
g
t )

2 +
n
∑

i=1

Wi

(τ it )
4

sin2 ηit
, (7)

where U1, U2 and Wi, i = 1, · · · , n are positive weights.

By minimizing the first two terms of S, the algorithm drives

the MAV towards the goal configuration. The third term of S
penalizes the weighted sum of the inverse of the determinant

of the observability matrices of all the n obstacles. By

minimizing this term, the algorithm achieves two objectives

simultaneously. First, it minimizes the uncertainties in the

TTC and bearing estimates. Second, the MAV is steered

around the obstacles. It is important to note that these two

objectives are complementary to each other. We use the look-

ahead policy over the horizon T to design the path planner.

The cost function to be minimized is given by

J =

∫ t+T

t

S(ξσ)dσ. (8)

Before we show that the algorithm avoids obstacles suc-

cessfully, we introduce the notion of reachability. Given the

state xt = [τ1t , η
1
t , τ

2
t , η

2
t , · · · , τ

n
t , η

n
t ]

⊤ at time t, a pair

(xt+T , t + T ) is said to be reachable from (xt, t) over

the horizon T , if it is possible to find a control function

φ̂ : [t, t + T ] → U , where U represents the set of control

commands, such that along the resulting trajectory, ηiσ 6=
0, i = 1, · · · , n, ∀ σ ∈ [t, t+T ]. The reachable set RT (xt, t)
from (xt, t) over the horizon T , is defined as the set of points

that are reachable from (xt, t). The following theorem shows

the MAV avoids collisions using this algorithm.

Theorem 1: If the reachable set RT (xt, t) 6= ∅, for all xt

and t, then minimizing the cost function (8) ensures that the

τ it > 0 for all obstacles and for all time. In other words,

collision avoidance is guaranteed.

Proof: If the reachability condition is satisfied, then at

each (xt, t) at least one path over the look-ahead horizon

T can be found such that along that path ηiσ 6= 0, i =
1, · · · , n, ∀ σ ∈ [t, t+T ]. This implies that at least one path

can be found at each time such that the cost function J in

Eq. (8) is finite along that path. Minimizing (8) ensures that

ηiσ remains bounded away from zero by a finite angle over the

time horizon. Based on the collision triangle condition [18],

collision will occur iff θ̇iσ = 0 and τ̇ iσ < 0, where θiσ is

the angle between the line of sight to the ith obstacle in the

inertial frame as shown in Fig. 1. Based on Fig. 1 and Eq. (2),

we have that θiσ = ηiσ+ψσ and θ̇iσ = η̇iσ+ψ̇σ =
sin ηi

σ

τ i
σ

. Since

minimizing (8) ensures that |θ̇iσ| remains bounded away from

zero, we are guaranteed that the minimum TTC over all

obstacles remains bounded away from zero.

We use dynamic programming to solve the optimization

problem, however, other optimization tools could be used

to solve the optimization problem. The focus of the paper

is on the resultant path after optimization, and dynamic

programming is just an optimization tool.

We discretize the time horizon T as the m-step look-ahead

horizon {t, t + ∆t, · · · , t + m∆t}, where ∆t = T/m. Let

k+ i, i = 1, · · · ,m represent time instants t+ i∆t. We also

discretize U as a finite set of roll commands Ud. Eq. (8) then
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becomes

Jd =

m
∑

j=1

S(ξk+j). (9)

We minimize Jd by recursively searching an m-step look-

ahead planning horizon tree. The path planning algorithm

can be described as follows. While the MAV executes the

roll command at time step k − 1 over the time interval

∆t, the algorithm determines the optimal m-step look-ahead

path γk = {φk, φk+1, · · · , φk+m−1}, where φk+l ∈ Ud,

l = 0, · · · ,m− 1, and the first roll command φk is applied.

This process is repeated until the MAV reaches the goal

configuration. Given an m-step look-ahead planning horizon

tree, searching the tree and finding a path can be solved effi-

ciently using dynamic programming [19]. The state transition

models for the TTC and bearing expressed by Eq. (1) and

(2) are the functions of the roll angle, which are denoted by

gτ (φ) and gη(φ). The TTC and bearing after the roll angle

φk has been executed for a time interval ∆t is given by

τk+1 = fτ (τk, φk) =

∫ k+∆t

k

gτ (φk)dt+ τk, (10)

ηk+1 = fη(ηk, φk) =

∫ k+∆t

k

gη(φk)dt+ ηk. (11)

The state transition model for ξk is given by

ξk+1 = ℓ(ξk, φk) =























fτ (τ
g
k , φk)

fη(η
g
k, φk)

fτ (τ
1
k , φk)

fη(η
1
k, φk)
...

fτ (τ
n
k , φk)

fη(η
n
k , φk)























. (12)

For each node at a certain step look-ahead horizon q,

define

J∗(ξk+q, q) , min
φj∈Ud

k+m−1
∑

j=k+q

S(ℓ(ξj , φj)). (13)

Using the standard dynamic programming, J∗ satisfies the

recursion

J∗(ξk+q, q) =

min
φk+q∈Ud

(S(ℓ(ξk+q, φk+q)) + J∗(ℓ(ξk+q, φk+q))) (14)

with boundary constraint

J∗(ξk+m−1, k +m− 1) =

min
φk+m−1∈Ud

S(ℓ(ξk+m−1, φk+m−1)). (15)

Figure 3 shows an example of how the MAV path planning

algorithm works using a two-step look-ahead planning tree,

where each node has three children at the next step corre-

sponding to three different roll commands. At time step k,

the path γk = {φk, φk+1} has already been found, as shown

in Fig. 3(a). The roll command φk is applied. During the

(a) k (b) k+1

Fig. 3. This figure shows the two-step look-ahead path planning tree. Each
node has three children. Subfigure (a) shows the optimal path {φk, φk+1}
is at time step k and subfigure (b) shows the optimal path {φk+1, φk+2}
at time step k + 1.

period, the algorithm begins to build a new tree and to plan

the new path γk+1 = {φk+1, φk+2} starting at time step

k + 1. Once the roll command has been executed, the new

path γk+1 has been generated, as shown in Fig. 3(b). The

computation complexity of searching an optimal path using

DP given the cost at each configuration is O(
∑i=L

i=1 |U |i),
where |U | is the size of the discrete control input and L is

the number of horizon steps. This saves computation cost

compared to exhaustive search, which gives L|U |L.

IV. SIMULATION RESULTS

The algorithm was tested using a simulation environment

developed in MATLAB/SIMULINK. The simulator uses a

six degree of freedom model of the aircraft. The coordinate

system is represented by NED (North-East-Down) system.

The covariance matrices of the process and measurement

noises are Q =

(

0.001 0
0 0.0076

)

and R = 0.0012. The

weighting scalars U1 and U2 are 10 and 1. All the weighting

scalars Wi = 2, i = 1, · · · , n. Three-step look-ahead horizon

path was planned with the sample interval ∆t = 1.2s. We

tested the algorithm for both single and multiple obstacle

avoidance scenarios.

A. Single obstacle avoidance

In this scenario, the MAV was commanded to maneuver

around an obstacle located at (150,250) between waypoint S

(0,100,-40) and waypoint E (600,700,-40) represented by the

box and plus signs shown in Fig. 4(a). Figure 4 shows the

path followed by the MAV for avoiding the obstacle using the

planning algorithm, the determinant of observability Gram-

mian for that obstacle, the TTC and bearing, and the TTC

and bearing error. It can be seen that when the determinant

is maximum, then the bearing is η = π/2 and the TTC

reaches its minimum value τmin ≈ 4s. At the same time,

the bound on the error covariance for the TTC is minimum,

which shows that the uncertainties in state estimates can be

minimized while simultaneously avoiding collisions.

B. Multiple obstacle avoidance

In the multiple obstacle avoidance scenario, the MAV

was commanded to maneuver through twenty-five obstacles
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Fig. 4. This figure shows the simulation results of single obstacle avoidance
problem. Subfigure (a) shows the inertial path. Subfigure (b) shows the
determinant of the observability Grammian. Subfigures (c) and (d) show
the TTC and bearing to the obstacle. Subfigure (e) and (d) show the error
and ±3σ bounds of the error covariance for the TTC and bearing.

between waypoint S (0,100,-40) and waypoint E (600,700,-

40), as shown in the subfigures on the right of Fig. 5. Figure 5

shows the evolution of the local map in the local-level frame

and the update of the path in the inertial frame at different

time steps. The dashed circles in the subfigures on the left

represent the TTC at 3s, 6s and 9s for the inner, middle

and outer circles respectively. The plus sign in subfigure

(d) on the left represents the waypoint E in the local-level

frame. Red lines in the subfigures on the right represents

the paths followed by the MAV and black lines represent the

optimal three-step look-ahead paths. Figure 6 shows the TTC

and bearing to the obstacle located at (150,250), the TTC

and bearing error, and the determinant of the observability

Grammian of that obstacle. We can see that minimizing the

cost function for multiple obstacle avoidance gives the same

behavior for the obstacle avoidance, observability and further

estimation uncertainties. Figure 7 shows how the value of

the cost function changes as time progresses. Based on the

figure, the cost function decreases initially when there are no

obstacles in the local map. The cost function only consists

of the first term. Once a new obstacle pops up, the cost

function increases because the obstacle term is added to the

cost function. The planning algorithm then minimizes the

second term, causing the cost function to decrease. Once the

collision is avoided and the obstacle is passed, it does not
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Fig. 5. This figure shows the evolution of the local map and the update of
the path at different times. Subfigures on the left show the evolution of the
local map. The dashed circles represent the TTC at 3s, 6s and 9s for inner,
middle and outer circles respectively. Subfigures on the right show the path
in the inertial frame. The black lines represent the three-step look-ahead
paths and red lines represent the actual path followed by the MAV.

add any cost to the cost function. The cost function then

decreases based on the first term. Similar behavior occurs

when multiple obstacles are observed.

V. CONCLUSIONS

This paper presents an observability based path planning

algorithm for bearing only measurements. We perform the

nonlinear observability analysis for state estimation and find

that collision avoidance and uncertainty minimization prob-
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(d) Bearing error
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Fig. 6. This figure shows the TTC and bearing to the obstacle located at
(150,250), the TTC and bearing tracking error and the determinant of the
observability Grammian. Subfigures (a) and (b) show the TTC and bearing.
Subfigure (c) and (d) show the error and ±3σ bounds of the error covariance.
Subfigure (e) shows the determinant of the observability Grammian.
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Fig. 7. This picture shows the value of the cost function as time progresses.

lem are complementary. Based on this analysis, we design the

cost function that minimize the uncertainties of estimation

while simultaneously avoiding obstacles. By minimizing the

cost function, the path planning algorithm is developed

directly in the local-level frame. We use the T time look-

ahead policy to plan optimal paths. Simulation results show

that the observability based path planner is successful in

solving the single and multiple obstacle avoidance problems

while improving the estimation accuracy.

In the paper, we use uniform weights for all the obstacles,

which may not result in the best possible behavior. In the

future, we will choose the weights based on the TTC and

bearing to obstacles. We will also find the closed form solu-

tion for the minimum TTC between the MAV and obstacles

using the algorithm. We will prove the global convergence of

the planning algorithm which shows in which environments

the algorithm can maneuver the MAV to the goal without

causing any collisions.
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