
1

Observability-based Rules for Designing
Consistent EKF SLAM Estimators
Guoquan P. Huang∗, Anastasios I. Mourikis†, and Stergios I. Roumeliotis∗

∗Dept. of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
Email: {ghuang|stergios}@cs.umn.edu

†Dept. of Electrical Engineering, University of California, Riverside, CA 92521
Email: mourikis@ee.ucr.edu

Abstract—In this work, we study the inconsistency problem
of EKF-based SLAM from the perspective of observability. We
analytically prove that when the Jacobians of the process and
measurement models are evaluated at the latest state estimates
during every time step, the linearized error-state system employed
in the EKF has observable subspace of dimension higher than
that of the actual, nonlinear, SLAM system. As a result, the
covariance estimates of the EKF undergo reduction in directions
of the state space where no information is available, which is a
primary cause of the inconsistency. Based on these theoretical
results, we propose a general framework for improving the
consistency of EKF-based SLAM. In this framework, the EKF
linearization points are selected in a way that ensures that the
resulting linearized system model has an observable subspace
of appropriate dimension. We describe two algorithms that are
instances of this paradigm. In the first, termed Observability Con-
strained EKF (OC-EKF), the linearization points are selected so
as to minimize their expected errors (i.e., the difference between
the linearization point and the true state) under the observability
constraints. In the second, the filter Jacobians are calculated
using the first-ever available estimates for all state variables. This
latter approach is termed First-Estimates Jacobian (FEJ)-EKF.
The proposed algorithms have been tested both in simulation
and experimentally, and are shown to significantly outperform
the standard EKF both in terms of accuracy and consistency.

I. I NTRODUCTION

Simultaneous localization and mapping (SLAM) is the
process of building a map of an environment and concur-
rently generating an estimate of the robot pose (position
and orientation) from the sensor readings. For autonomous
vehicles exploring unknown environments, the ability to per-
form SLAM is essential. Since [Smith and Cheeseman, 1987]
first introduced a stochastic-mapping solution to the SLAM
problem, rapid and exciting progress has been made, resulting
in several competing solutions. Recent interest in SLAM has
focused on the design of estimation algorithms [Montemerlo,
2003], [Paskin, 2002], data association techniques [Neira and
Tardos, 2001], and sensor data processing [Se et al., 2002].
Among the numerous algorithms developed thus far for the
SLAM problem, the extended Kalman filter (EKF) remains
one of the most popular ones, and has been used in several ap-
plications (e.g., [Newman, 1999], [Williams et al., 2000], [Kim
and Sukkarieh, 2003]). However, in spite of its widespread
adoption, the fundamental issue of theconsistencyof the EKF-
SLAM algorithm has not yet been sufficiently investigated.

As defined in [Bar-Shalom et al., 2001], a state estimator
is consistentif the estimation errors are zero-mean and have
covariance matrix smaller or equal to the one calculated
by the filter. Consistency is one of the primary criteria for
evaluating the performance of any estimator; if an estimator is
inconsistent, then the accuracy of the produced state estimates
is unknown, which in turn makes the estimator unreliable.
Since SLAM is a nonlinear estimation problem, no provably
consistent estimator can be constructed for it. The consistency
of every estimator has to be evaluated experimentally. In
particular for thestandardEKF-SLAM algorithm, there exists
significant empirical evidence showing that the computed state
estimates tend to beinconsistent(cf. Section II).

In this paper, we investigate in depth one fundamental cause
of the inconsistency of the standard EKF-SLAM algorithm.
In particular, we revisit this problem from a new perspective,
i.e., by analyzing the observability properties of the filter’s
system model. Our key conjecture in this paper is that the
observability properties of the EKF linearized system model
profoundly affect the performance of the filter, and are a
significant factor in determining its consistency. Specifically,
the major contributions of this work are the following:

• Through an observability analysis, we prove that the stan-
dard EKF-SLAM employs an error-state system model
that has an unobservable subspace of dimension two, even
though the underlying nonlinear system model has three
unobservable degrees of freedom (corresponding to the
position and orientation of the global reference frame).
As a result, the filter gains spurious information along
directions of the state space where no information is
actually available. This leads to an unjustified reduction
of the covariance estimates, and is a primary cause of
filter inconsistency.

• Motivated by this analysis, we propose a new methodol-
ogy for improving the consistency of EKF-based SLAM.
Specifically, we propose selecting the linearization points
of the EKF in a way that ensures that the unobservable
subspace of the EKF system model is of appropriate
dimension. In our previous work [Huang et al., 2008a],
[Huang et al., 2008b], we proved that this can be achieved
by computing the EKF Jacobians using the first-ever
available estimates for each of the state variables. The
resulting algorithm is termedFirst Estimates Jacobian
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(FEJ)-EKF. In this work, we propose an alternative
approach, namedObservability Constrained(OC)-EKF,
which falls under the same general framework. In this
novel filter, the EKF linearization points are selected so as
not only to guarantee the desired observability properties
but also to minimize the expected errors of the lineariza-
tion points (i.e., the difference between the linearization
point and the true state). This can be formulated as a
constrained minimization problem, whose solution ren-
ders the linearization points used for computing the filter
Jacobians.

• Through extensive simulations and real-world experi-
ments, we verify that both the FEJ-EKF and the OC-
EKF outperform the standard EKF, even though they
use less accurate linearization points in computing the
filter Jacobians (since the linearization points used in the
FEJ-EKF and OC-EKF are, in general, different from
the latest, and thus best, state estimates). This result
supports our conjecture that the observability properties
of the EKF system model play a fundamental role in
determining consistency.

The remainder of the paper is organized as follows. After
an overview of related work in the next section, the standard
EKF-SLAM formulation with generalized system and mea-
surement models is described in Section III. In Section IV, the
observability analysis of SLAM is presented and is employed
to prove that the standard EKF-SLAM always has incorrect
observability properties. Section V describes the proposed
approaches for improving the consistency of EKF-SLAM, and
in Sections VI and VII the performance of the FEJ-EKF and
OC-EKF is demonstrated through Monte-Carlo simulations
and experiments. Finally, Section VIII outlines the main con-
clusions of this work.

II. RELATED WORK

The inconsistency problem of the standard EKF-SLAM
algorithm has recently attracted considerable interest [Castel-
lanos et al., 2004], [Castellanos et al., 2007], [Julier and
Uhlmann, 2001], [Bailey et al., 2006], [Huang and Dis-
sanayake, 2006], [Huang and Dissanayake, 2007], [Huang
et al., 2008a], [Huang et al., 2008b]. The first work to draw
attention to this issue was that of [Julier and Uhlmann,
2001], who observed that when a stationary robot measures
the relative position of a new landmark multiple times, the
estimated variance of the robot’s orientation becomes smaller.
Since the observation of a previously unseen feature does
not provide any information about the robot’s state, this
reduction is artificial, and leads to inconsistency. Additionally,
a condition that the filter Jacobians need to satisfy in order
to permit consistent estimation, was described. We show that
this condition, derived in [Julier and Uhlmann, 2001] for the
case of a stationary robot, is a special case of an observability-
based condition derived in our work for the general case of a
moving robot (cf. Lemma 5.1).

More recently, the work of [Huang and Dissanayake, 2007]
extended the analysis of [Julier and Uhlmann, 2001] to the case
of a robot that observes a landmark fromtwo positions (i.e.,

the robot observes a landmark, moves and then re-observes
the landmark). A constraint that the filter Jacobians need to
fulfill in this case so as to allow for consistent estimation, was
proposed. In [Huang and Dissanayake, 2007], it was shown
that this condition is generally violated, due to the fact that the
filter Jacobians at different time instants are evaluated using
different estimates for the same state variables. Interestingly,
in Section V-C it is shown that this condition can also be
derived as a special case of our generalized analysis.

[Bailey et al., 2006] examined several symptoms of the
inconsistency of the standard EKF-SLAM algorithm, and
argued, based on Monte Carlo simulation results, that the
uncertainty in the robot orientation is the main cause of the
inconsistency of EKF-SLAM. However, no theoretical results
were provided. The work of [Huang and Dissanayake, 2006]
further confirmed the empirical findings in [Bailey et al.,
2006], and argued by example that in EKF-SLAM the incon-
sistency is always in the form of overconfident estimates (i.e.,
the computed covariances are smaller than the actual ones).

The aforementioned works have described several symp-
toms of inconsistency that appear in the standard EKF-SLAM,
and have analytically studied only a few special cases, such as
that of a stationary robot [Julier and Uhlmann, 2001], and that
of one-step motion [Huang and Dissanayake, 2007]. However,
no theoretical analysis into the cause of inconsistency for the
general case of a moving robot was conducted. To the best of
our knowledge, the first such analysis appeared in our previous
publications [Huang et al., 2008a], [Huang et al., 2008b].
Therein, the mismatch in the dimensions of the observable
subspaces between the standard EKF and the underlying
nonlinear SLAM system was identified as a fundamental cause
of inconsistency, and the FEJ-EKF was proposed as a means
of improving the consistency of the estimates.

In this paper, we present the theoretical analysis of [Huang
et al., 2008a], [Huang et al., 2008b] in more detail, and propose
a general framework for improving the consistency of EKF-
SLAM. It is shown that the FEJ-EKF is one of several possible
estimators, which rely on the observability analysis for the
selection of EKF linearization points. Moreover, we propose
an alternative EKF estimator, the OC-EKF, whose performance
is an improvement over the FEJ-EKF. The OC-EKF selects
the optimal linearization points in a way that minimizes the
the linearization errors, while ensuring that the observable
subspace of the EKF linearized system model has correct
dimensions. The following sections describe the theoretical
development of the algorithms in detail.

III. STANDARD EKF-SLAM FORMULATION

In this section, we present the equations of the standard
EKF-SLAM formulation with generalizedsystem and mea-
surement models. To preserve the clarity of the presentation,
we first focus on the case where asingle landmark is included
in the state vector, while the case of multiple landmarks is
addressed later on. In the standard formulation of SLAM,
the state vector comprises the robot pose and the landmark
position in the global frame of reference. Thus, at time-stepk
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the state vector is given by:

xk =
[
pT

Rk
φRk

pT
L

]T
=

[
xT

Rk
pT

L

]T
(1)

wherexRk
= [pT

Rk
φRk

]T denotes the robot pose, andpL

is the landmark position. EKF-SLAM recursively evolves in
two steps: propagation and update, based on the discrete-time
process and measurement models, respectively.

A. EKF Propagation

In the propagation step, the robot’s odometry measurements
are processed to obtain an estimate of the pose change between
two consecutive time steps, and then employed in the EKF to
propagate the robot state estimate. On the other hand, since
the landmark is static, its state estimate does not change with
the incorporation of a new odometry measurement. The EKF
propagation equations are given by:1

p̂Rk+1|k = p̂Rk|k + C(φ̂Rk|k)Rk p̂Rk+1 (2)

φ̂Rk+1|k = φ̂Rk|k + Rk φ̂Rk+1 (3)

p̂Lk+1|k = p̂Lk|k (4)

whereC(·) denotes the2×2 rotation matrix, andRk x̂Rk+1 =
[Rk p̂T

Rk+1
Rk φ̂Rk+1 ]

T is the odometry-based estimate of
the robot’s motion between time-stepsk and k + 1. This
estimate is corrupted by zero-mean, white Gaussian noise
wk = RkxRk+1 − Rk x̂Rk+1 , with covariance matrixQk.
This process model is nonlinear, and can be described by the
following generic nonlinear function:

xk+1 = f(xk, Rk x̂Rk+1 + wk) (5)

In addition to the state propagation equations, the linearized
error-state propagation equation is necessary for the EKF. This
is given by:

x̃k+1|k =
[
ΦRk

03×2

02×3 I2

] [
x̃Rk|k
p̃Lk|k

]
+

[
GRk

02×2

]
wk

,Φkx̃k|k + Gkwk (6)

whereΦRk
andGRk

are obtained from the state propagation
equations (2)-(3):

ΦRk
=

[
I2 JC(φ̂Rk|k)Rk p̂Rk+1

01×2 1

]
(7)

≡
[

I2 J
(
p̂Rk+1|k − p̂Rk|k

)
01×2 1

]
(8)

GRk
=

[
C(φ̂Rk|k) 02×1

01×2 1

]
(9)

with J ,
[
0 −1
1 0

]
.

It is important to point out that the form of the propagation
equations presented above is general, and holds for any robot

1Throughout this paper the subscript`|j refers to the estimate of a quantity
at time-step̀ , after all measurements up to time-stepj have been processed.
x̂ is used to denote the estimate of a random variablex, while x̃ = x− x̂ is
the error in this estimate.0m×n and1m×n denotem×n matrices of zeros
and ones, respectively, whileIn is then×n identity matrix. Finally, we use
the concatenated formssφ and cφ to denote thesin φ and cos φ functions,
respectively.

kinematic model (e.g., unicycle, bicycle, or Ackerman model).
In Appendix A, we derive the expressions for (2)-(4), as well
as the state and noise Jacobians, for the common case where
the unicycle model is used.

B. EKF Update

During SLAM, the measurement used for updates in the
EKF is a function of the relative position of the landmark
with respect to the robot:

zk = h(xk) + vk = h
(
RkpL

)
+ vk (10)

where RkpL = CT (φRk
)(pL − pRk

) is the position of the
landmark with respect to the robot at time-stepk, andvk is
zero-mean Gaussian measurement noise with covarianceRk.
In this work, we allowh to be any measurement function.
For instance,zk can be a direct measurement of relative posi-
tion, a pair of range and bearing measurements, bearing-only
measurements from monocular cameras, etc. Generally, the
measurement function is nonlinear, and hence it is linearized
for use in the EKF. The linearized measurement error equation
is given by:

z̃k '
[
HRk

HLk

] [
x̃Rk|k−1

p̃Lk|k−1

]
+ vk

, Hkx̃k|k−1 + vk (11)

where HRk
and HLk

are the Jacobians ofh with respect
to the robot pose and the landmark position, respectively,
evaluated at the state estimatex̂k|k−1. Using the chain rule
of differentiation, these are computed as:

HRk
= (∇hk)CT (φ̂Rk|k−1)

[−I2 −J(p̂Lk|k−1 − p̂Rk|k−1)
]

(12)

HLk
= (∇hk)CT (φ̂Rk|k−1) (13)

where∇hk denotes the Jacobian ofh with respect to the
robot-relative landmark position (i.e., with respect to the vector
RkpL), evaluated at the state estimatex̂k|k−1.

IV. SLAM O BSERVABILITY ANALYSIS

In this section, we perform an observability analysis for
the generalized EKF-SLAM formulation derived in the pre-
vious section, and compare its properties with those of the
underlying nonlinear system. Based on this analysis, we draw
conclusions about the consistency of the filter. We note that,
to keep the presentation clear, some intermediate steps of the
derivations have been omitted. The interested reader is referred
to [Huang et al., 2008c] for details.

It should be pointed out that the observability properties of
SLAM have been studied in only a few cases in the literature.
In particular, [Andrade-Cetto and Sanfeliu, 2004], [Andrade-
Cetto and Sanfeliu, 2005] investigated the observability of a
simple linear time-invariant(LTI) SLAM system, and showed
that it is unobservable. The work of [Vidal-Calleja et al.,
2007] approximated the SLAM system by apiecewise constant
linear (PWCL) one, and applied the technique of [Goshen-
Meskin and Bar-Itzhack, 1992] to study the observability
properties of bearing-only SLAM. On the other hand, in [Lee
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et al., 2006], [Huang et al., 2008a] the observability properties
of the nonlinear SLAM system were studied using the nonlin-
ear observability rank condition introduced by [Hermann and
Krener, 1977]. These works proved that the nonlinear SLAM
system is unobservable, with three unobservable degrees of
freedom.

All the aforementioned approaches examine the observabil-
ity properties of the nonlinear SLAM system, or of linear ap-
proximations to it. However, to the best of our knowledge, an
analysis of the observability properties of the EKFlinearized
error-statesystem model had not been carried out prior to our
work [Huang et al., 2008a], [Huang et al., 2008b]. Since this
model is the one used in any actual EKF implementation, a
lack of understanding of its observability properties appears
to be a significant limitation. In fact, as shown in this paper,
these properties play a significant role in determining the
consistency of the filter, and form the basis of our approach
for improving the performance of the estimator.

A. Nonlinear Observability Analysis for SLAM

We start by carrying out the observability analysis for
the continuous-time nonlinear SLAM system. This analysis
is based on theobservability rank conditionintroduced in
[Hermann and Krener, 1977]. Specifically, Theorem 3.11
therein states that “if a nonlinear system is locally weakly
observable, the observability rank condition is satisfied gener-
ically”. We here show that the SLAM system does not satisfy
the observability rank condition, and thus it is not locally
weakly observable nor locally observable. In particular, we
conduct the analysis for a general measurement model, instead
of only relative-position or distance-bearing measurements as
in [Huang et al., 2008a], [Lee et al., 2006].

For the continuous-time analysis, we employ a unicycle
kinematic model, although similar conclusions can be drawn
if different models are used [Lee et al., 2006]. The process
model in continuous-time form is given by:




ẋR(t)
ẏR(t)
φ̇R(t)
ẋL(t)
ẏL(t)




=




cφR(t)
sφR(t)

0
0
0




v(t) +




0
0
1
0
0




ω(t)

⇒ ẋ(t) = f1v(t) + f2ω(t) (14)

whereu ,
[
v ω

]T
is the control input, consisting of linear

and rotational velocity. Since any type of measurement during
SLAM is a function of the relative position of the landmark
with respect to the robot, we can write the measurement model
in the following generic form:

z(t) = h(ρ, ψ) (15)

ρ = ||pL − pR|| (16)

ψ = atan2(yL − yR, xL − xR)− φR (17)

where ρ and ψ are the robot-to-landmark relative distance
and bearing angle, respectively. Note that parameterizing the
measurement with respect toρ and ψ is equivalent to pa-
rameterizing it with respect to the relative landmark position

expressed in the robot frame,RpL. The relation between these

quantities isRpL = ρ

[
cψ
sψ

]
. The analysis will be based on the

following lemma:
Lemma 4.1:All the Lie derivatives of the nonlinear SLAM

system (cf. (14) and (15)) are functions ofρ andψ only.
Proof: See Appendix B

We will now employ this result for the nonlinear observabil-
ity analysis. In particular, assume that a number of different
measurements are available,zi = hi(ρ, ψ), i = 1, 2, ..., n.
Then, since all the Lie derivatives for all measurements are
functions ofρ andψ only, we can prove the following:

Lemma 4.2:The space spanned by all thek-th order Lie
derivativesLk

fj
hi (∀k ∈ N, j = 1, 2, i = 1, 2, ..., n) is denoted

by G, and the spacedG spanned by the gradients of the
elements ofG is given by:

dG = span
row

[
sφR −cφR −cφRδx− sφRδy −sφR cφR

cφR sφR sφRδx− cφRδy −cφR −sφR

]

whereδx , xL − xR andδy , yL − yR.
Proof: See Appendix C

The matrix shown above is the “observability matrix” for
the nonlinear SLAM system under consideration. Clearly, this
is not a full-rank matrix, and the system is unobservable.
Intuitively, this is a consequence of the fact that we cannot
gain absolute, but rather onlyrelative state information from
the available measurements. Even though the notion of an
“unobservable subspace” cannot be strictly defined for this
system, the physical interpretation of the basis ofdG⊥ will
give us useful information for our analysis in Section IV-B.
By inspection, we see that one possible basis for the space
dG⊥ is given by:

dG⊥ = span
col.




1 0 −yR

0 1 xR

0 0 1
1 0 −yL

0 1 xL




, span
[
n1 n2 n3

]
(18)

From the structure of the vectorsn1 and n2 we see that
a change in the state by∆x = αn1 + βn2, α, β ∈ R
corresponds to a “shifting” of thex−y plane byα units along
x, and byβ units alongy. Thus, if the robot and landmark
positions are shifted equally, the statesx and x + ∆x will
be indistinguishable given the measurements. To understand
the physical meaning ofn3, we consider the case where the
x − y plane is rotated by a small angleδφ. Rotating the
coordinate system transforms any pointp = [x y]T to a
point p′ = [x′ y′]T , given by:

[
x′

y′

]
= C(δφ)

[
x
y

]
'

[
1 −δφ
δφ 1

] [
x
y

]
=

[
x
y

]
+ δφ

[−y
x

]

where we have employed the small angle approximations
c(δφ) ' 1 and s(δφ) ' δφ. Using this result, we see that
if the plane containing the robot and landmarks is rotated by
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δφ, the SLAM state vector will change to:

x′ =




x′R
y′R
φ′R
x′L
y′L



'




xR

yR

φR

xL

yL




+ δφ




−yR

xR

1
−yL

xL




= x + δφn3 (19)

which indicates that the vectorn3 corresponds to a rotation of
the x − y plane. Sincen3 ∈ dG⊥, this result shows that any
such rotation is unobservable, and will cause no change to the
measurements. The preceding analysis for the meaning of the
basis vectors ofdG⊥ agrees with intuition, which dictates that
the global coordinatesof the state vector in SLAM (rotation
and translation) are unobservable.

B. EKF-SLAM Observability Analysis

In the previous section, it was shown that the underlying
physical system in SLAM has three unobservable degrees of
freedom. Thus, when the EKF is used for state estimation in
SLAM, we would expect that the system model employed by
the EKF also shares this property. However, in this section
we show that this is not the case, since the unobservable
subspace of the linearized error-state model of the standard
EKF is generally of dimension only 2.

First recall that in general the Jacobian matricesΦk, Gk,
andHk used in the EKF-SLAM linearized error-state model
(cf. (6) and (11)), are defined as:

Φk = ∇xk
f
∣∣∣
{x?

k|k,x?
k+1|k,0}

(20)

Gk = ∇wk
f
∣∣∣
{x?

k|k,0}
(21)

Hk = ∇xk
h
∣∣∣
x?

k|k−1

(22)

In these expressions,x?
`|`−1 and x?

`|` (` = k, k +1) denote
the linearization pointsfor the statex`, used for evaluating
the Jacobians before and after the EKF update at time-step`,
respectively. A linearization point equal to the zero vector is
chosen for the noise. The EKF employs the above linearized
system model for propagating and updating the estimates of
the state vector and covariance matrix, and thus the observ-
ability properties of this model affect the performance of the
estimator. To the best of our knowledge, a study of these
properties has not been carried out in the past, and is one
of the main contributions of this work.

Since the linearized error-state model for EKF-SLAM is
time-varying, we employ thelocal observability matrix[Chen
et al., 1990] to perform the observability analysis. Specifically,
the local observability matrix for the time interval between

time-stepsko andko + m is defined as:

M ,




Hko

Hko+1Φko

...
Hko+mΦko+m−1 · · ·Φko


 (23)

=




HRko
HLko

HRko+1ΦRko
HLko+1

...
...

HRko+m
ΦRko+m−1 · · ·ΦRko

HLko+m


 (24)

= M(x?
ko|ko−1,x

?
ko|ko

, . . . ,x?
ko+m|ko+m−1,x

?
ko+m|ko+m)

(25)

where (24) is obtained by substituting the matricesΦk and
Hk (cf. (6) and (11), respectively) into (23). The last expres-
sion, (25), makes explicit the fact that the observability matrix
is a function of the linearization points used in computing all
the Jacobians within the time interval[ko, ko + m]. In turn,
this implies thatthe choice of linearization points affects the
observability propertiesof the linearized error-state system of
the EKF. This key fact is the basis of our analysis. In the fol-
lowing, we discuss different possible choices for linearization,
and the observability properties of the corresponding linearized
systems.

1) Ideal EKF-SLAM: Before considering the rank of the
matrix M, which is constructed using theestimatedvalues of
the state in the filter Jacobians, it is interesting to study the
observability properties of the “oracle”, or “ideal” EKF (i.e.,
the filter whose Jacobians are evaluated using thetrue values
of the state variables, in other words,x?

k|k−1 = x?
k|k = xk,

for all k). In the following, all matrices evaluated using the
true state values are denoted by the symbol “˘ ”.

We start by noting that (cf. (8)):

Φ̆Rko+1Φ̆Rko
=

[
I2 J

(
pRko+2 − pRko

)
01×2 1

]
(26)

Based on this property, it is easy to show by induction that:

Φ̆Rko+`−1Φ̆Rko+`−2 · · · Φ̆Rko
=

[
I2 J

(
pRko+`

− pRko

)
01×2 1

]

which holds for all` > 0. Using this result, and substituting
for the measurement Jacobians from (12) and (13), we can
prove the following useful identity:

H̆Rko+`
Φ̆Rko+`−1 · · · Φ̆Rko

= (∇h̆ko+`)CT (φRko+`
)
[−I2 −J(pL − pRko

)
]

= HLko+`

[−I2 −J(pL − pRko
)
]

(27)

which holds for all` > 0. The observability matrixM̆ can
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now be written as:

M̆ = Diag
(
H̆Lko

, H̆Lko+1 , · · · , H̆Lko+m

)

︸ ︷︷ ︸
D̆

×




−I2 −J(pL − pRko
) I2

−I2 −J(pL − pRko
) I2

...
...

...
−I2 −J(pL − pRko

) I2




︸ ︷︷ ︸
N̆

(28)

Lemma 4.3:The rank of the observability matrix,̆M, of
the ideal EKF is 2.

Proof: The rank of the product of the matrices̆D andN̆
is given by (cf. (4.5.1) in [Meyer, 2001]):

rank(D̆N̆) = rank(N̆)− dim(N (D̆)
⋂
R(N̆)) (29)

SinceN̆ comprisesm+1 repetitions of the same2× 5 block
row, it is clear thatrank(N̆) = 2, and the range of̆N, R(N̆),
is spanned by the vectorsu1 andu2, defined as follows:

[
u1 u2

]
=



I2

...
I2


 (30)

We now observe that in general̆Dui 6= 0, for i = 1, 2.
Moreover, note that any vectory ∈ R(N̆) \ 0 can be written
as y = α1u1 + α2u2 for someα1, α2 ∈ R, whereα1 and
α2 are not simultaneously equal to zero. Thus, we see that
in general D̆y = α1D̆u1 + α2D̆u2 6= 0, which implies
that y does not belong to the nullspaceN (D̆) of D̆. There-
fore, dim(N (D̆)

⋂R(N̆)) = 0, and, finally, rank(M̆) =
rank(N̆)− dim(N (D̆)

⋂R(N̆)) = rank(N̆) = 2.
Most importantly, it can be easily verified that a basis for the

right nullspace ofN̆ (and thus for the right nullspace of̆M)
is given by the vectors shown in (18). Thus, the unobservable
subspace of the ideal EKF system model isidentical to the
spacedG⊥, which contains the unobservable directions of
the nonlinear SLAM system. We therefore see that if it was
possible to evaluate the Jacobians using the true state values,
the linearized error-state model employed in the EKF would
have observability properties similar to those of the actual,
nonlinear SLAM system.

The preceding analysis was carried out for the case where
a single landmark is included in the state vector. We now
examine the more general case whereM > 1 landmarks are
included in the state. Suppose theM landmarks are observed
at time-stepko + ` (` > 0), then the measurement matrix
H̆ko+` is given by:2

H̆ko+` =



H̆(1)

Rko+`
H̆(1)

Lko+`
· · · 0

...
...

.. .
...

H̆(M)
Rko+`

0 · · · H̆(M)
Lko+`


 (31)

2We here assume that allM landmarks are observed at every time step in
the time interval[ko, ko + m]. This is done only to simplify the notation,
and is not a necessary assumption in the analysis.

where H̆(i)
Rko+`

and H̆(i)
Lko+`

(i = 1, 2, ..., M ), are obtained
by (12) and (13) using the true values of the states, respec-
tively. The observability matrixM̆ now becomes:

M̆ = (32)


H̆
(1)
Rko

H̆
(1)
Lko

· · · 0

...
...

. . .
...

H̆
(M)
Rko

0 · · · H̆
(M)
Lko

H̆
(1)
Rko+1

Φ̆Rko
H̆

(1)
Lko+1

· · · 0

...
...

. . .
...

H̆
(M)
Rko+1

Φ̆Rko
0 · · · H̆

(M)
Lko+1

...
...

...
...

H̆
(1)
Rko+m

Φ̆Rko+m−1 · · · Φ̆Rko
H̆

(1)
Lko+m

· · · 0

...
...

. . .
...

H̆
(M)
Rko+m

Φ̆Rko+m−1 · · · Φ̆Rko
0 · · · H̆

(M)
Lko+m




Using the identity (27), substitution of the Jacobian matrices
in (32) yields:

M̆ = Diag
(
H̆

(1)
Lko

, · · · , H̆
(M)
Lko+m

)

︸ ︷︷ ︸
D̆

(33)

×




−I2 −J(pL1 − pRko
) I2 · · · 02×2

...
...

...
. ..

...
−I2 −J(pLM − pRko

) 02×2 · · · I2

−I2 −J(pL1 − pRko
) I2 · · · 02×2

...
...

...
. ..

...
−I2 −J(pLM

− pRko
) 02×2 · · · I2

...
...

...
...

...

−I2 −J(pL1 − pRko
) I2 · · · 02×2

...
...

...
. ..

...
−I2 −J(pLM − pRko

) 02×2 · · · I2




︸ ︷︷ ︸
N̆

Clearly, the matrixN̆ now consists ofm+1 repetitions of the
M block rows:[
−I2 −J(pLi − pRko

) 02×2 · · · I2︸︷︷︸
ith landmark

· · · 02×2

]

for i = 1, 2, ...,M . Therefore,rank(M̆) = 2M . Furthermore,
by inspection, a possible basis for the right nullspace ofM̆ is
given by

N (M̆) = span
col.




I2 JpRko

01×2 1
I2 JpL1

...
...

I2 JpLM




(34)
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Note the similarity of this result with that of (18). Clearly, the
physical interpretation of this result is analogous to that of the
single-landmark case: the global translation and orientation of
the state vector are unobservable.

2) Standard EKF-SLAM:We now study the observability
properties of the standard EKF-SLAM, in which the Jacobians
are evaluated at the latest state estimates (i.e.,x?

k|k−1 = x̂k|k−1

and x?
k|k = x̂k|k, for all k). Once again, we begin by

examining the single-landmark case. By deriving an expression
analogous to that of (26), we obtain (cf. Section IV-B1):

ΦRko+1ΦRko
=

[
I2 J

(
p̂Rko+2|ko+1 − p̂Rko|ko

−∆pRko+1

)

01×2 1

]

where∆pRko+1 , p̂Rko+1|ko+1 − p̂Rko+1|ko
is the correction

in the robot position due to the EKF update at time-stepko+1.
Using induction, we can show that:

ΦRko+`−1ΦRko+`−2 · · ·ΦRko
= (35)[

I2 J
(
p̂Rko+`|ko+`−1 − p̂Rko|ko

−∑ko+`−1
j=ko+1 ∆pRj

)

01×2 1

]

where` > 0. Therefore (cf. (11), (12), and (13))

HRko+`
ΦRko+`−1 · · ·ΦRko

= HLko+`

×
[
−I2 −J

(
p̂Lko+`|ko+`−1 − p̂Rko|ko

−∑ko+`−1
j=ko+1 ∆pRj

)]

(36)

Using this result, we can writeM (cf. (24)) as:

M = Diag
(
HLko

,HLko+1 , · · · ,HLko+m

)
︸ ︷︷ ︸

D

(37)

×




−I2 −J
(
p̂Lko|ko−1 − p̂Rko|ko−1

)
I2

−I2 −J
(
p̂Lko+1|ko

− p̂Rko|ko

)
I2

−I2 −J
(
p̂Lko+2|ko+1 − p̂Rko|ko

−∆pRko+1

)
I2

.

.

.
.
.
.

.

.

.

−I2 −J
(
p̂Lko+m|ko+m−1 − p̂Rko|ko

−∑ko+m−1
j=ko+1 ∆pRj

)
I2




︸ ︷︷ ︸
N

Lemma 4.4:The rank of the observability matrix,M, of
the system model of the standard EKF is equal to 3.

Proof: First, we note that the estimates of any given
state variable at different time instants are generally different.
Hence, in contrast to the case of the ideal EKF-SLAM,
the following inequalities generally hold:̂pRko+i|ko+i−1 6=
p̂Rko+i|ko+i

and p̂Lko+i|ko+i−1 6= p̂Lko+`|ko+`−1 , for i 6= `.
Therefore, the third column ofN will be, in general, a vector
with unequal elements, and thusrank(N) = 3. Proceeding
similarly to the proof of Lemma 4.3, we first find one possible
basis for the range space ofN, R(N). By inspection, we
see that such a basis is given simply by the first 3 columns
of N, which we denote byui (i = 1, 2, 3). Moreover,
it can be verified that generallyDui 6= 0. Therefore,
dim(N (D)

⋂R(N)) = 0, and finallyrank(M) = rank(N)−
dim(N (D)

⋂R(N)) = rank(N) = 3.
We thus see that the linearized error-state model employed

in the standard EKF-SLAM has different observability prop-
erties than that of the ideal EKF-SLAM (cf. Lemma 4.3) and
that of the underlying nonlinear system (cf. Lemma 4.2). In

particular, by processing the measurements collected in the
interval [ko, ko + m], the filter acquires information in 3 di-
mensions of the state space (along the directions corresponding
to the observable subspace of the EKF). However, the mea-
surements actually provide information in only 2 directions of
the state space (i.e., the robot-to-landmark relative position).
As a result, the EKF gains “spurious information” along the
unobservable directions of the underlying nonlinear SLAM
system, which leads to inconsistency.

To probe further, we note that the basis of the right nullspace
of M is given by:

N (M) = span
col.




I2

01×2

I2


 = span

[
n1 n2

]
(38)

Note that these two vectors correspond to a shifting of the
x−y plane, which implies that such a shifting is unobservable.
On the other hand, the direction corresponding to the global
orientation is “missing” from the unobservable subspace of
the EKF system model (cf. (18) and (19)). Therefore, we
see that the filter will gain “nonexistent” information about
the robot’s global orientation. This will lead to an unjustified
reduction in the orientation uncertainty, which will, in turn,
further reduce the uncertainty in all the state variables. This
agrees in some respects with [Bailey et al., 2006], [Huang and
Dissanayake, 2007], where it was argued that the orientation
uncertainty is the main cause of the filter’s inconsistency in
SLAM. However, we point out that theroot causeof the
problem is that the linearization points used for computing
the Jacobians in the standard EKF-SLAM (i.e., the latest state
estimates) change the dimension of the observable subspace,
and thus fundamentally alter the properties of the estimation
process.

Identical conclusions can be drawn whenM > 1 landmarks
are included in the state vector (cf. [Huang et al., 2008c]). For
this general case, the nullspace of the observability matrix can
be shown to be equal to:

N (M) = span
col.




I2

01×2

I2

...
I2




(39)

We thus see that the global orientation is erroneously observ-
able in this case as well, which leads to inconsistent estimates.

An interesting remark is that the covariance matrices of
the system and measurement noise do not appear in the
observability analysis of the filter’s system model. Therefore,
even if these covariance matrices are artificially inflated, the
filter will retain the same observability properties (i.e., the
same observable and unobservable subspaces). This shows that
no amount of covariance inflation can result in correct observ-
ability properties. Similarly, even if the iterated EKF [Bar-
Shalom et al., 2001] is employed for state estimation, the
same, erroneous, observability properties will arise, since the
landmark position estimates will generally differ at different
time steps.
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V. OBSERVABILITY-CONSTRAINED EKF DESIGN

In the preceding section, it was shown that when the
EKF Jacobians are evaluated using the latest state estimates,
the EKF error-state model has an observable subspace of
dimension higher than the actual nonlinear SLAM system.
This will always lead to unjustified reduction of the covari-
ance estimates, and thus inconsistency. We now describe a
framework for addressing this problem.

Our key conjecture is that, by ensuring an unobservable
subspace of appropriate dimension, we can avoid the influx of
spurious information in the erroneously observable direction
of the state space, and thus improve the consistency of the
estimates. Therefore, we propose selecting the linearization
points of the EKF in a way that guarantees an unobservable
subspace of dimension 3 for the linearized error-state model.
This corresponds to satisfying conditions (40)-(41) of the
following lemma:

Lemma 5.1:If the linearization points,x?
k|k and x?

k+1|k,
at which the EKF JacobiansΦk = Φk(x?

Rk+1|k ,x?
Rk|k) and

Hk+1 = Hk+1(x?
Rk+1|k ,p?

Lk+1|k) are evaluated, are selected
so as to fulfill the conditions:

Hko
U = 0 , for ` = 0 (40)

Hko+`Φko+`−1 · · ·ΦkoU = 0 , ∀ ` > 0 (41)

whereU is a 5 × 3 full-rank matrix, then the corresponding
observability matrix is of rank 2.

Proof: When (40)-(41) hold, then all the block rows of the
observability matrix (cf. (23)) will have the same nullspace,
spanned by the columns ofU.

Essentially, the selection ofU is a design choice, which
allows us to control the unobservable subspace of the EKF
system model. Ideally we would like the column vectors ofU
to be identical to those in (18), which define the unobservable
directions of the actual, nonlinear SLAM system. However,
this cannot be achieved in practice, since these directions
depend on thetrue values of the state, which are unavailable
during any real-world implementation.

A natural selection, which is realizable in practice, is to
define the unobservable subspace of the observability matrix
based on the state estimates at the first time instant a landmark
was detected, i.e., for the single-landmark case to choose3

U =




I2 Jp̂Rko|ko−1

01×2 1
I2 Jp̂Lko|ko


 (42)

which satisfies condition (40).
We stress that this is just one of several approaches for

selecting the matrixU. For instance, one limitation with this
approach is that, in cases where the initial estimates of the
landmarks are not of sufficient accuracy, the subspace defined
in this manner might not be close to the actual unobservable
subspace. To address this problem one can employ advanced
techniques for landmark initialization (e.g., delayed-state ini-
tialization [Leonard et al., 2002]), to obtain more precise initial

3When multiple (M > 1) landmarks are included in the state vector,U can
be chosen analogously, augmented by a new block row,

[
I2 Jp̂Li,ko|ko

]
,

corresponding to each landmark,Li (i = 1, 2, . . . , M ) [Huang et al., 2008c].

estimates, and use these to define a matrixU. This approach,
which could lead to improved accuracy in certain situations,
is one of several interesting options to explore within the
proposed design methodology.

OnceU has been selected, the next design decision to be
made is the choice of the linearization points at each time
step. For the particular selection ofU in (42), this amounts
to choosing the linearization points for allk > ko to ensure
that (41) holds (note that (40) is satisfied by construction in
this case). Clearly, several options exist, each of which leads to
a different algorithm within the general framework described
here. In what follows, we present two approaches to achieve
this goal.

A. First Estimates Jacobian (FEJ)-EKF

We first describe the First Estimates Jacobian (FEJ)-
EKF estimator that was originally proposed in our previous
work [Huang et al., 2008a], [Huang et al., 2008b]. The key
idea of this approach is to choose thefirst-ever available
estimates for all the state variables as the linearization points.
In particular, compared to the standard EKF, the following
two changes are required in the way that the Jacobians are
evaluated:

1) Instead of computing the state-propagation Jacobian
matrix ΦRk

as in (8), we employ the expression:

Φ′
Rk

=
[

I2 J
(
p̂Rk+1|k − p̂Rk|k−1

)
01×2 1

]
(43)

The difference compared to (8) is that the prior robot
position estimate,p̂Rk|k−1 , is used in place of the
posterior estimate,̂pRk|k .

2) In the evaluation of the measurement Jacobian matrix
Hk+1 (cf. (11), (12), and (13)), we always utilize the
landmark estimatefrom the first timethe landmark was
detected and initialized. Thus, if a landmark was first
seen at time-stepko, we compute the measurement
Jacobian as:

H′
k+1 =

[
H′

Rk+1
H′

Lk+1

]

= (∇hk+1)CT (φ̂Rk+1|k)

× [−I2 −J(p̂Lko|ko
− p̂Rk+1|k) I2

]
(44)

As a result of the above modifications, only thefirst estimates
of all landmark positions and all robot poses appear in the
filter Jacobians. It is easy to verify that the above Jacobians
satisfy (40) and (41) for the choice ofU in (42). Thus,
the FEJ-EKF is based on an error-state system model whose
unobservable subspace is of dimension 3.

B. Observability Constrained (OC)-EKF

Even though the FEJ-EKF typically performs substantially
better than the standard EKF (cf. Sections VI and VII), it relies
heavily on the initial state estimates, since it uses them at all
time steps for computing the filter Jacobians. If these estimates
are far from the true state, the linearization errors incurred
may be large, and could degrade the performance of the
estimator. As a motivating example, consider the linearization
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of a general, scalar nonlinear functionf(x) around a pointx?.
By employing Taylor expansion, we obtain:

f(x) = f(x?) + f ′(x?)(x− x?) +
f ′′(ξ)

2
(x− x?)2 (45)

In this expression, which holds in the interval(x, x?), f ′

and f ′′ are the first- and second-order derivatives off ,
and ξ ∈ (x, x?). The last term in the above expression,
f ′′(ξ)

2 (x−x?)2, describes thelinearization error, which should
be kept as small as possible to maintain the validity of the
linear approximation. Since we do not have control over the
term f ′′(ξ), to keep the linearization error small, we see that
the term(x− x?)2 should be kept as small as possible.

An interesting observation is that ifx in the above example
is a Gaussian random variable with meanx̂, then the expected
value of (x − x?)2 is minimized by choosingx? = x̂. This
is precisely what the standard EKF does: at each time step, it
employs the mean of the state for computing the linearization
Jacobians. This leads to small linearization error for each
time step, but as explained in Section IV-B2, it also changes
the observability properties of the SLAM system model, and
adversely affects performance.

The above discussion shows that, in the context of SLAM,
there are two competing goals that should be reconciled: re-
duced linearization errors at each time step and correct observ-
ability properties of the linearized system model. Therefore,
we propose selecting the linearization points of the EKF so
as to minimize the expected squared error of the linearization
points while satisfying the observability conditions (40)-(41).
This can be formulated as a constrained minimization problem
where the constraints express the observability requirements.
Thus we term the resulting filterObservability-Constrained
(OC)-EKF.

Specifically, at time-stepk+1, we aim at minimizing the lin-
earization error of the pointsx?

Rk|k andx?
k+1|k, which appear

in the JacobiansΦk and Hk+1, subject to the observability
constraint (41). Mathematically, this is expressed as:

min
x?

Rk|k
, x?

k+1|k

(∫ ∣∣∣∣xRk
−x?

Rk|k

∣∣∣∣2p(xRk
|z0:k)dxRk

+

∫ ∣∣∣∣xk+1−x?
k+1|k

∣∣∣∣2p(xk+1|z0:k)dxk+1

)
(46)

s.t. Hk+1Φk · · ·ΦkoU = 0 , ∀k ≥ ko (47)

wherez0:k denotes all the measurements available during the
time interval [0, k]. Note that only the robot pose appears in
the Jacobians of the propagation model (cf. (6)), while both the
robot pose and the landmark positions appear in the Jacobians
of the measurement equations (cf. (11)). This justifies the
choice of the above cost function.

In general, the constrained minimization problem (46)-
(47) is intractable. However, when the two pdfs,p(xRk

|z0:k)
and p(xk+1|z0:k), are Gaussian distributions (which is the
assumption employed in the EKF), we can solve the problem
analytically and find a closed-form solution. In the following,
we show how the closed-form solution can be computed for the
simple case where only one landmark is included in the state
vector. The case of multiple landmarks is presented in [Huang
et al., 2008c].

We note that the following lemma will be helpful for the
ensuing derivations:

Lemma 5.2:The constrained optimization problem (46)-
(47) is equivalent to the following:

min
x?

Rk|k
, x?

k+1|k

∣∣∣∣x̂Rk|k−x?
Rk|k

∣∣∣∣2 +
∣∣∣∣x̂k+1|k−x?

k+1|k
∣∣∣∣2 (48)

s.t. p?
Lk+1|k−p?

Rk|k = p̂Lko|ko
−p?

Rk|k−1
+

k−1∑

j=ko

∆p?
Rj

(49)

where∆p?
Rj

, p?
Rj|j − p?

Rj|j−1
.

Proof: See Appendix D.
Using the technique of Lagrangian multipliers, the optimal

solution to the problem (48)-(49) can be obtained as:

p?
Rk|k = p̂Rk|k +

λk

2
, φ?

Rk|k = φ̂Rk|k ,

x?
Rk+1|k = x̂Rk+1|k , p?

Lk+1|k = p̂Lk+1|k −
λk

2
(50)

with

λk =
(
p̂Lk+1|k − p̂Lko|ko

)−

p̂Rk|k − p?

Rk|k−1
+

k−1∑

j=ko

∆p?
Rj




Note that in the case where multiple landmarks are included
in the state vector, each landmark imposes a constraint anal-
ogous to (49), and thus the analytical solution of the optimal
linearization points can be obtained similarly [Huang et al.,
2008c].

Using the linearization points in (50), the filter Jacobians in
the OC-EKF are now computed as follows:

1) The state-propagation Jacobian matrix is calculated as:

Φ′′
Rk

=
[

I2 J
(
p̂Rk+1|k − p̂Rk|k − λk

2

)
01×2 1

]
(51)

2) The measurement Jacobian matrix is calculated as:

H′′
k+1 =

[
H′′

Rk+1
H′′

Lk+1

]

= (∇hk+1)CT (φ̂Rk+1|k) (52)

× [−I2 −J
(
p̂Lk+1|k − p̂Rk+1|k − λk

2

)
I2

]

It is important to note that, compared to the FEJ-EKF,
the OC-EKF not only guarantees the correct observability
properties of the EKF linearized system model (so does
the FEJ-EKF), butalso minimizes the linearization errors
under the given observability requirements. The simulation
and experimental results presented in Sections VI and VII
show the OC-EKF attains slightly better performance than the
FEJ-EKF. We also point out that, compared to the standard
EKF, theonly change in the OC-EKF is the way in which the
Jacobians are computed. The state estimates in the OC-EKF
are propagated and updated in the same way as in the standard
EKF, as outlined in Algorithm 1. In addition, we stress that
both the FEJ-EKF and OC-EKF estimators are also causal
and realizable “in the real world,” since they do not utilize
any knowledge of the true state. Interestingly, although both
the FEJ-EKF and the OC-EKF do not use the latest available
state estimates (and thus utilize Jacobians that are less accurate



10

than those of the standard EKF), both simulation tests and real-
world experiments demonstrate that they perform significantly
better than the standard EKF in terms of consistency and
accuracy (cf. Sections VI and VII).

Algorithm 1 Observability Constrained (OC)-EKF SLAM

Propagation: When an odometry measurement is received:

• propagate the robot pose estimate, via (2)-(3)
• compute the robot pose propagation Jacobian (cf. (51))
• propagate the state covariance matrix:

Pk+1|k = Φ′′
kPk|kΦ′′

k
T + GkQkGT

k

where

Φ′′
k = Diag

(
Φ′′

Rk
, I2M

)
andGk =

[
GT

Rk
0T

(2M)×2

]T

Update: When a robot-to-landmark measurement is received:

• compute the measurement residual:

rk+1 = zk+1 − h(x̂k+1|k)

• compute the measurement Jacobian matrix (cf. (52))
• compute the Kalman gain:

Kk+1 = Pk+1|kH′′T
k+1S

−1
k+1

with
Sk+1 = H′′

k+1Pk+1|kH′′T
k+1 + Rk+1

• update the state estimate:

x̂k+1|k+1 = x̂k+1|k + Kk+1rk+1

• update the state covariance matrix:

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1KT
k+1

C. Relation to Prior Work

At this point, it is interesting to examine the relation of our
analysis, which addresses the general case of a moving robot,
to the previous work that has focused on special cases [Julier
and Uhlmann, 2001], [Huang and Dissanayake, 2007]. We first
note that the “correct” observability properties of the FEJ-EKF
and OC-EKF are attributed to the fact that conditions (40)-(41)
hold, which is not the case for the standard EKF. Thus, (40)-
(41) can be seen as sufficient conditions that, when satisfied
by the filter Jacobians, ensure that the observability matrix
has a nullspace of appropriate dimensions. Note also that,
due to the identity (27), the conditions (40)-(41) are trivially
satisfied by the ideal EKF with null spaceU =

[
n1 n2 n3

]
(cf. (18)). In what follows, we show that the conditions (40)-
(41) encompass the ones derived in [Julier and Uhlmann,
2001] and [Huang and Dissanayake, 2007] as special cases.

1) Stationary robot: We first examine the special case
studied in [Julier and Uhlmann, 2001], where the robot re-
mains stationary, while observing the relative position of a
single landmark. In [Julier and Uhlmann, 2001] the following
Jacobian constraint for consistent estimation was derived (cf.

Theorem 1 therein):

∇hx −∇hp∇gx = 0

⇔ HRk
+ HLk

∇gx = 0

⇔ [
HRk

HLk

] [
I3

∇gx

]
= 0

⇔ HkUs = 0 (53)

where, using our notation,∇hx = HRk
and−∇hp = HLk

are the measurement Jacobian matrices with respect to the
robot pose and landmark position, respectively, and∇gx is
the landmark initialization Jacobian with respect to the robot
pose at time-stepko. Note that the condition (53) is identical
to the one in (40) for the special case of a stationary robot.

Remarkably, the space spanned by the columns of the
matrix Us, for this special case, is same as the one spanned
by the columns ofU in (42). To see that, we first need
to derive an expression for∇gx. In [Julier and Uhlmann,
2001], a relative-position measurement model is employed (by
combining a distance and a bearing measurement), and thus
the initialization functiong(·) is given by:

pLko
= g(xRko

, zko
,vko

) = C(φRko
) (zko

− vko
) + pRko

(54)

wherezko is the first measurement of the landmark’s relative
position andvko denotes the noise in this measurement.
Evaluating the derivative of this function with respect to the
robot pose at the current state estimate we have:

∇gx =
[
I2 JC(φ̂Rko|ko−1)zko

]

=
[
I2 J

(
p̂Lko|ko

− p̂Rko|ko−1

)]
(55)

where this last equation results from taking conditional expec-
tations on both sides of (54) and solving forzko .

Substituting (55) in the expression forUs (cf. (53)), yields:

Us =




I2 02×1

01×2 1
I2 J

(
p̂Lko|ko

− p̂Rko|ko−1

)




One can easily verify thatUs andU span the same column

space by noting thatUs

[
I2 Jp̂Rko|ko−1

01×2 1

]
= U.

2) Moving robot with one-step motion:We now consider
the special case studied in [Huang and Dissanayake, 2007],
where a robot observes a landmark, moves once and then re-
observes the landmark. In [Huang and Dissanayake, 2007], the
key Jacobian relationship that needs to be satisfied in order
to obtain consistent estimation in this case (cf. Theorem 4.2
therein) is given by:

Ae = Be∇fA
φXr

(56)

Using our notation, the above matrices are written as:

∇fA
φXr

= ΦRko

Ae = −H−1
Lko

HRko

Be = −H−1
Lko+1

HRko+1
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Substituting in (56) and rearranging terms yields:

H−1
Lko+1

HRko+1ΦRko
−H−1

Lko
HRko

= 0

⇔ [
HRko+1 HLko+1

] [
ΦRko

03×2

0T
3×2 I2

] [
I3

−H−1
Lko

HRko

]
= 0

⇔ Hko+1ΦkoU1 = 0

which is the same as the condition in (41) for the special
case of` = 1 (i.e., the robot moves only once). Additionally,
it is easy to verify thatHko

U1 = 0, which corresponds
to condition (40). Moreover, it is fairly straightforward to
show that for the case of distance and bearing measurements
considered in [Huang and Dissanayake, 2007], the matrixU1

spans the same column space asU in (42). This analysis
demonstrates that the Jacobian constraints (40)-(41) derived
based on the observability criterion are general, and encompass
the condition of [Huang and Dissanayake, 2007] as a special
case.

VI. SIMULATION RESULTS

A series of Monte-Carlo comparison studies were conducted
under various conditions, in order to validate the preceding
theoretical analysis and to demonstrate the capability of the
FEJ-EKF and OC-EKF estimators to improve the consistency
of EKF-SLAM. The metrics used to evaluate filter perfor-
mance are: (i) the RMS error, and (ii) the average normalized
(state) estimation error squared (NEES) [Bar-Shalom et al.,
2001]. Specifically, for the landmarks we compute the average
RMS errors and average NEES by averaging the squared errors
and the NEES, respectively, over all Monte Carlo runs, all
landmarks, and all time steps. On the other hand, for the robot
pose we compute these error metrics by averaging over all
Monte Carlo runs for each time step (cf. [Huang et al., 2008c]
for a more detailed description).

The RMS of the estimation errors provides us with a concise
metric of the accuracy of a given estimator. On the other
hand, the NEES is a metric for evaluating filter consistency.
Specifically, it is known that the NEES of anN -dimensional
Gaussian random variable follows aχ2 distribution with N
degrees of freedom. Therefore, if a certain filter is consistent,
we expect that the average NEES for the robot pose will be
close to 3 for allk, and that the average landmark NEES will
be close to 2. The larger the deviations of the NEES from these
values, the worse the inconsistency of the filter. By studying
both the RMS errors and NEES of all the filters considered
here, we obtain a comprehensive picture of the estimators’
performance.

In the simulation tests presented in this section, two SLAM
scenarios with loop closure were considered. In the first case, a
robot moves on a circular trajectory and continuously observes
2 landmarks, while in the second case the robot sequentially
observes 20 landmarks in total.

A. First Simulation: Always Observing 2 Landmarks

To validate the preceding observability analysis, we first
ran a SLAM simulation where a robot executes 80 loops on a
circular trajectory, and continuously observes 2 landmarks at
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Fig. 1. Orientation estimation errors vs. 3σ bounds obtained from one typical
realization of the Monte Carlo simulations. Theσ values are computed as the
square-root of the corresponding diagonal element of the estimated covariance
matrix. Note that the estimation errors and the 3σ bounds of the ideal EKF, the
FEJ-EKF, the OC-EKF and the robocentric mapping filter are almost identical,
which makes the corresponding lines difficult to distinguish.

every time step. Note that this simulation was run sufficiently
long to ensure that the filters (approximately) reach their
steady states and thus exhibit divergence (if any) more clearly.
In this simulation, all filters process the same data, to ensure
a fair comparison. The five EKF estimators compared are: (1)
the ideal EKF, (2) the standard EKF, (3) the FEJ-EKF, (4)
the OC-EKF, and (5) the robocentric mapping filter presented
in [Castellanos et al., 2004], which aims at improving the
consistency of SLAM by expressing the landmarks in a robot-
relative frame.

For the results presented in this section, a robot with a
simple differential drive model moves on a planar surface,
at a constant linear velocity ofv = 0.25 m/sec. The two drive
wheels are equipped with encoders that measure revolutions
and provide measurements of velocity (i.e., right and left wheel
velocities, vr and vl, respectively) with standard deviation
equal toσ = 5%v for each wheel. These measurements are
used to obtain linear and rotational velocity measurements for
the robot, which are given byv = vr+vl

2 and ω = vr−vl

a ,
wherea = 0.5 m is the distance between the drive wheels.
Thus, the standard deviations of the linear and rotational
velocity measurements areσv =

√
2

2 σ and σω =
√

2
a σ,

respectively. The robot continuously records measurements of
the relative positions of the landmarks which are placed inside
the trajectory circle, with standard deviation equal to 2% of
the robot-to-landmark distance along each axis.

Fig. 1 shows the results for the robot orientation estimation
errors in a typical realization. As evident, the errors of the
standard EKF grow significantly faster than those of all other
filters, which indicates that the standard EKF tends to diverge.
Note also that although the orientation errors of the ideal EKF,
FEJ-EKF, OC-EKF as well as the robocentric mapping filter
remain well within their corresponding 3σ bounds (computed
from the square-root of the corresponding diagonal element
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Ideal-EKF Std-EKF FEJ-EKF OC-EKF Robocentric

Robot Position Err. RMS (m)

0.6932 1.1406 0.7093 0.6977 0.8111

Robot Heading Err. RMS (rad)

0.0634 0.0956 0.0671 0.0641 0.0716

Robot Pose NEES

3.4643 18.5585 4.4979 3.8850 7.9436

Landmark Position Err. RMS (m)

0.7377 1.2554 0.7558 0.7387 0.8726

Landmark Position NEES

2.2647 18.4959 3.4480 2.9949 7.0308

TABLE I
ROBOT POSE AND LANDMARK POSITION ESTIMATION PERFORMANCE

of the estimated covariance matrix), those of the standard
EKF exceed them. Most importantly, the 3σ bounds of the
standard EKF continuouslydecreaseover time, as if the robot
orientation was observable. However, the robot has no access
to any new absolute orientation information (beyond what is
available by re-observing the same two landmarks), and thus
its orientation covariance shouldnot continuously decrease
at steady state. The results of Fig. 1 further strengthen our
claim that in contrast to the ideal EKF, FEJ-EKF, OC-EKF,
and robocentric mapping filter (cf. Sections IV-B1, V-A, V-B,
and VI-C), the incorrect observability properties of the stan-
dard EKF cause an unjustified reduction in the orientation
uncertainty.

B. Second Simulation: Loop Closure

To further test the performance of the five estimators, we
conducted 50 Monte Carlo simulations in a SLAM scenario
with loop closure. In this scenario, a robot executes 10 loops
on a circular trajectory and observes 20 landmarks in total. For
the results presented in the following, identical robot and sen-
sor models to the preceding simulation (cf. Section VI-A) are
used, while different sensor noise characteristics are employed.
Specifically, the standard deviation for each wheel of the robot
is equal toσ = 2%v, while the standard deviation of the
relative-position measurements is equal to 12% of the robot-
to-landmark distance along each axis. Moreover, the robot now
only observes the landmarks that lie within its sensing range
of 5 m. It should be pointed out that the sensor-noise levels
selected for this simulation are larger than what is typically
encountered in practice. This was done purposefully, since
higher noise levels lead to larger estimation errors, which make
the effects of inconsistency more apparent.

The comparative results for all filters are presented in
Fig. 2 and Table I. Specifically, Fig. 2(a) and Fig. 2(b)
show the average NEES and RMS errors for the robot pose,
respectively, versus time. On the other hand, Table I presents
the average values of all relevant performance metrics for both
the landmarks and the robot. As evident, the performance of
the FEJ-EKF and the OC-EKF isvery closeto that of the

ideal EKF, and substantially better than that of the standard
EKF, both in terms of RMS errors and NEES. This occurs
even though the Jacobians used in the FEJ-EKF and OC-
EKF are less accurate than those used in the standard EKF,
as explained in the preceding section. This fact indicates
that the errors introduced by the use of inaccurate Jacobians
have a less detrimental effect on consistency and accuracy
than the use of an error-state system model with incorrect
observability properties. Moreover, it is important to note that
the performance of the OC-EKF is superior to that of the
FEJ-EKF by a small margin. This is attributed to the fact
that the FEJ-EKF has larger linearization errors than the OC-
EKF, since the OC-EKF is optimal by construction, in terms
of linearization errors, under the observability constraints.

C. Comparison to Robocentric Mapping Filter

From the plots of Fig. 2, we clearly see that both the FEJ-
EKF and the OC-EKF also perform better than the robocentric
mapping filter [Castellanos et al., 2004], [Castellanos et al.,
2007], both in terms of accuracy and consistency. This result
cannot be justified based on the observability properties of the
filters: in [Castellanos et al., 2004], [Castellanos et al., 2007],
the landmarks are represented in the robot frame, which can
be shown to result in a system model with 3 unobservable
degrees of freedom [Huang et al., 2008c]. However, in the
robocentric mapping filter, during each propagation stepall
landmark position estimates need to be changed, since they
are expressed with respect to the moving robot frame. As
a result, during each propagation step (termedcomposition
in [Castellanos et al., 2004], [Castellanos et al., 2007]), all
landmark estimates and their covariance are affected by the
linearization errors of the process model. This problem does
not exist in the world-centric formulation of SLAM, and it
could offer an explanation for the observed behavior.

To test this argument, we first examine the Kullback-Leibler
divergence (KLD), between the pdf estimated by each filter,
and the pdf estimated by its “ideal” counterpart. Specifically,
we compute the KLD (i) between the pdf computed by the
FEJ-EKF and that of the ideal EKF, (ii) between the pdf
computed by the OC-EKF and that of the ideal EKF, and (iii)
between the pdf computed by the robocentric mapping filter
and that produced by an “ideal” robocentric mapping filter,
which employs the true states in computing all the Jacobian
matrices. The KLD is a standard measure for the difference
between probability distributions. It is nonnegative, and equals
zero only if the two distributions are identical [Cover and
Thomas, 1991]. By computing the KLD between the estimated
pdf and that of the “ideal” filter in each case, we can evaluate
how close each filter is to its respective “golden standard”.
These results pertain to the same simulation setup presented
in Section VI-B.

Since the five filters considered here (i.e., the OC-EKF,
the FEJ-EKF, the ideal EKF, the robocentric mapping filter,
and the ideal robocentric mapping filter) employ a Gaussian
approximation of the pdf, we can compute the KLD in
closed form. Specifically, the KLD from an approximation
distribution, pa(x) = N (µa,Pa), to the ideal distribution,
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Fig. 2. Monte Carlo results for a SLAM scenario with multiple loop closures. (a) Average NEES of the robot pose errors (b) RMS errors for the robot pose
(position and orientation). In these plots, the solid lines correspond to the ideal EKF, the dashed lines to the FEJ-EKF, the dotted lines to the OC-EKF, the
solid lines with circles to the standard EKF, and the dash-dotted lines to the robocentric mapping filter of [Castellanos et al., 2004], [Castellanos et al., 2007].
Note that the RMS errors of the ideal EKF, FEJ-EKF, and OC-EKF are almost identical, which makes the corresponding lines difficult to distinguish.

po(x) = N (µo,Po), is given by:

dKL =
1
2

(
ln

(
det(Po)
det(Pa)

)
+ tr(P−1

o Pa)

+ (µo − µa)T P−1
o (µo − µa)− dim(x)

)
(57)

Fig. 3 presents the KLD over time, between the Gaussian dis-
tributions computed by the robocentric mapping filter, the FEJ-
EKF and the OC-EKF, and those computed by their respective
ideal filters (note that they-axis scale is logarithmic). It is
evident that the KLD in the case of the robocentric mapping
filter is orders of magnitude larger than in the cases of the FEJ-
EKF and the OC-EKF. This indicates that the linearization
errors in the robocentric mapping filter result in a worse
approximation of the ideal pdf.

We attribute this fact to the structure of the filter Jacobians.
During the update step, the structure of the Jacobians in
both the robocentric and the world-centric formulations is
quite similar [Huang et al., 2008c]. In both cases, the terms
appearing in the measurement Jacobians are either rotation
matrices, or the robot-to-landmark position vector. However,
the Jacobians employed during the composition step in the
robocentric mapping filter are substantially more complex than
those appearing in the world-centric EKF propagation (cf. (6)).
Specifically, in the robocentric mapping filter, the state vector
is given by (assuming a single landmark for simplicity):

Rkxk =
[
RkpT

G
RkφG

RkpT
L

]T
(58)

The composition step is described by the following equations:

Rk p̂G = CT (Rk−1 φ̂Rk
)(Rk−1 p̂G − Rk−1 p̂Rk

) (59)
Rk φ̂G = Rk−1 φ̂G −Rk−1 φ̂Rk

(60)
Rk p̂L = CT (Rk−1 φ̂Rk

)(Rk−1 p̂L − Rk−1 p̂Rk
) (61)

where R` p̂L is the estimate of the landmark position with
respect to the robot frame at time-step` (` = k − 1, k),
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Fig. 3. Comparison results of the KLD in the SLAM scenario with multiple
loop closures. In this plot, the solid line with circles corresponds to the FEJ-
EKF, the solid line with crosses to the OC-EKF, and the solid line with squares
to the robocentric mapping filter [Castellanos et al., 2004]. Note that they-
axis scale is logarithmic. Note that the KLD of the FEJ-EKF and OC-EKF are
almost identical, which makes the corresponding lines difficult to distinguish.

{Rk−1 p̂Rk
, Rk−1 φ̂Rk

} is the estimate for the robot pose change
between time-stepsk − 1 and k, expressed with respect to
the robot frame at time-stepk − 1, and {R`pG, R` φ̂G} is
the estimate for the transformation between the robot frame
and the global frame at time-step̀. The linearized error
propagation equation is given by:




Rk p̃G
Rk φ̃G
Rk p̃L


 = JL

Rk−1 p̃L + JG

[
Rk−1 p̃G
Rk−1 φ̃G

]
+ JR

[
Rk−1 p̃Rk

Rk−1 φ̃Rk

]

(62)
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Fig. 4. Monte Carlo results for a “mini-SLAM” scenario with multiple loop closures where the robot trajectory and all landmarks are confined within a very
small area of 1 m× 1 m. (a) Average NEES of the robot pose errors (b) RMS errors for the robot pose (position and orientation). In these plots, the solid
lines correspond to the ideal EKF, the dashed lines to the FEJ-EKF, the dotted lines to the OC-EKF, the solid lines with circles to the standard EKF, and the
dash-dotted lines to the robocentric mapping filter of [Castellanos et al., 2004]. Note that in this case both the NEES and the RMS errors of the ideal EKF,
FEJ-EKF, OC-EKF, and the robocentric mapping filter are almost identical, which makes the corresponding lines difficult to distinguish.

where

JL =
[

03×2

CT (Rk−1 φ̂Rk
)

]
, JG =



CT (Rk−1 φ̂Rk

) 02×1

01×2 1
02×2 02×1




JR =



−CT (Rk−1 φ̂Rk

) −JRk p̂G

01×2 −1
−CT (Rk−1 φ̂Rk

) −JRk p̂L


 (63)

We note that the state estimates appear in the Jacobian matrices
JL andJG only through the rotation matrixC(Rk−1 φ̂Rk

). As
a result, the difference between the ideal and actual Jacobians,
JL − J̆L and JG − J̆G will only contain terms of the form
c(Rk−1 φ̂Rk

) − c(Rk−1φRk
), and s(Rk−1 φ̂Rk

) − s(Rk−1φRk
).

The magnitude of these terms is in the same order asRk−1 φ̃Rk
,

which is typically a very small quantity. Thus, the discrepancy
between the actual and ideal Jacobians is expected to be very
small for JL andJG.

On the other hand, inJR the estimates for the landmark
position and for the origin of the global frame with respect
to the robot appear as well. As a result, the difference
JR − J̆R will also contain the termsRk p̃G andRk p̃L, whose
magnitude can be significantly larger, e.g., in the order of
meters (cf. Fig. 2). Thus, the JacobianJR can be very
inaccurate. In contrast, the propagation Jacobians in the world-
centric formulation contain terms depending on (i) the robot’s
displacement between consecutive time steps, and (ii) the
rotation matrix of the robot’s orientation (cf. (8) and (9)). Since
both of these quantities can be estimated with small errors, the
world-centric EKF Jacobians are significantly more accurate
than those of the robocentric formulation.

To further test this argument, we ran a simulation of a “mini-
SLAM” scenario, where both the robot trajectory and the
landmarks are confined within a small area of 1 m×1 m (while
all other settings are identical to the preceding simulation).
In this setup, the estimation errorsRk p̃G and Rk p̃L remain
small, and thus the Jacobians of the robocentric mapping filter

become more accurate. The plots of Fig. 4 show the average
NEES and RMS errors for the robot pose in this scenario.
Interestingly, we observe that in this case the performance of
the FEJ-EKF, the OC-EKF, and the robocentric mapping filter
are almost identical. This validates the preceding discussion,
and indicates that the representation used in the robocentric
mapping filter results in performance loss in the case of large
environments. This may justify the fact that the FEJ-EKF
and OC-EKF outperform the algorithm of [Castellanos et al.,
2004], even though all three filters employ a system model
with three unobservable degrees of freedom.

As a final remark, we note that, in comparison to the FEJ-
EKF and OC-EKF, the computational cost of the robocentric
mapping filter is significantly higher. Specifically, both the
FEJ-EKF and the OC-EKF have computational cost identical
to the standard world-centric SLAM algorithm:linear in
the number of landmarks during propagation, andquadratic
during updates. On the other hand, both the update and
the composition steps in the robocentric mapping filter have
computational costquadraticin the number of features, which
results in approximately double overall computational burden.

VII. E XPERIMENTAL RESULTS

Two sets of real-world experiments were performed to
further test the proposed FEJ-EKF and OC-EKF algorithms.
The results are presented next.

A. First Experiment: Indoors

The first experiment was conducted in an indoor office
environment. The robot was commanded to perform 10 loops
around a square with sides approximately equal to 20 m
(cf. Fig. 5). This special trajectory was selected since repeated
re-observation of the same landmarks tends to make the effects
of inconsistency more apparent, and facilitates discerning the
performance of the various filters. A Pioneer robot equipped
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Fig. 5. The MAP estimate of the robot trajectory in the indoor experiment (solid line), overlaid on the blueprint of the building. The boxes (¤) denote the
corners whose exact location is known from the building’s blueprint.
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Fig. 6. (a) NEES of the robot pose errors (b) RMS errors for the robot pose (position and orientation). In these plots, the solid lines correspond to the
standard EKF, the dashed lines to the FEJ-EKF, and the dotted lines to the OC-EKF, the dash-dotted lines to the robocentric mapping filter of [Castellanos
et al., 2004]. Note that both the NEES and the RMS errors of the FEJ-EKF and OC-EKF are almost identical, which makes the corresponding lines difficult
to distinguish.

with a SICK LMS200 laser range-finder and wheel encoders
was used in this experiment. From the laser range data, corner
features were extracted and used as landmarks, while the wheel
encoders provided the linear and rotational velocity measure-
ments. Propagation was carried out using the kinematic model
described in Appendix A.

Because the ground truth of the robot pose could not be
obtained using external sensors (e.g., overhead cameras), in
this experiment, we obtained a reference trajectory by utilizing
the known map of the area where the experiment took place.
Specifically, the exact location of 20 corners was known
from the blueprints of the building. Measurements to these

corners, as well as all other measurements obtained by the
robot (including to corners whose location was not knowna
priori ), were processed using a batch maximum a posteriori
(MAP) estimator, to obtain an accurate estimate of the entire
trajectory. This estimate, as well as the locations of the known
corners, are shown in Fig. 5. This constitutes the ground truth
against which the performance of the following filters was
compared: (1) the standard EKF, (2) the FEJ-EKF, (3) the
OC-EKF, and (4) the robocentric mapping filter. Clearly, due
to the way the ground truth is computed, the filter errors are
expected to have some correlation to the errors in the ground
truth. However, since these correlations are the same for all
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Std-EKF FEJ-EKF OC-EKF Robocentric

Robot Position Err. RMS (m)

0.8209 0.5748 0.5754 0.7160

Robot Heading Err. RMS (rad)

0.0604 0.0397 0.0397 0.0391

Robot Pose NEES

11.0706 3.5681 3.5282 7.2949

Landmark Position Err. RMS (m)

1.1041 0.8675 0.8680 1.0957

Landmark Position NEES

8.5033 5.9821 5.9836 9.6691

TABLE II
ROBOT POSE AND LANDMARK POSITION ESTIMATION PERFORMANCE

four filters, we can still have a fair comparison of their relative
performance.

The results of NEES and RMS errors for all filters are
presented in Figs. 6(a) and 6(b) and Table II. We point out
that during the experiment the robot detected a number of
features that were not included in the set of 20 known corners
(e.g., movable objects such as furniture). Since no ground
truth is available for the position of these objects, we only
used the 20 known corners for computing the landmarks’ error
statistics. From the experimental results it becomes clear that
in this particular experiment both the FEJ-EKF and OC-EKF
outperform the standard EKF and the robocentric mapping
filter, and perform almost identically to each other. This agrees
with the simulation results presented in the preceding section.

B. Second Experiment: Outdoors

In the second experiment, the performance of the FEJ-EKF
and OC-EKF was tested on the Sydney Car Park data set
collected by Guivant and Nebot4. The experimental platform
is a 4-wheeled vehicle equipped with a GPS receiver, a laser
sensor, and wheel encoders. The kinematic GPS system was
used to provide ground truth for the robot position with 5 cm
accuracy. Since the GPS has different frequency (up to 2 Hz)
from the other sensors, we interpolated the GPS data to obtain
the ground truth at each time step. Wheel encoders were
used to provide odometric measurements, and propagation
was carried out using the Ackerman model. In this particular
application, 60 mm steel poles covered with reflective tape
were used artificial landmarks. With this approach, it is easy to
extract the features and the measurement model becomes very
accurate. Since the true position of the landmarks was also
obtained with GPS, a true map was available for comparison
purposes.

In this test, because the ground truth for the robot orientation
was still unavailable, the ideal EKF could not be tested, and
therefore the same filters as in the first experiment were com-
pared: (1) the standard EKF, (2) the FEJ-EKF, (3) the OC-EKF,
and (4) the robocentric mapping filter. The comparison results
are shown in Table III, and Figs. 7 and 8. Specifically, Table III

4The data set is available at: www-personal.acfr.usyd.edu.au/nebot/dataset

Std-EKF FEJ-EKF OC-EKF Robocentric

Robot Position Err. RMS (m)

0.1002 0.0523 0.0522 0.0838

Robot Position NEES

2.8900 2.5197 2.4705 2.8265

Landmark Position Err. RMS (m)

0.3812 0.1858 0.1860 0.2755

Landmark Position NEES

2.5196 2.0197 1.9818 2.4800

TABLE III
ROBOT AND LANDMARK POSITION ESTIMATION PERFORMANCE

presents the average values of all relevant performance metrics
for the robot and the landmarks. On the other hand, Fig. 7
shows the trajectory and landmark estimates produced by the
four filters, while Fig. 8 shows the NEES and RMS errors of
the robot position over time. We point out that the NEES in
this case pertains only to the robot position, and therefore the
“optimal” value for it is 2.

Similarly to the results presented in the first experiment, this
test also demonstrates that both the FEJ-EKF and OC-EKF
outperform the standard EKF and the robocentric mapping
filter, and perform very close to each other. In particular,
the average RMS errors and the average NEES for the FEJ-
EKF and OC-EKF are smaller than the corresponding ones for
the two competing filters. These results, along with those of
the simulations presented in the previous section, support our
conjecture, which states that the mismatch in the dimension
of the unobservable subspace between the linearized SLAM
system and the underlying nonlinear system is a fundamental
cause of filter inconsistency.

VIII. S UMMARY

In this paper, we have presented an observability-based
study of the inconsistency problem in EKF-based SLAM. By
comparing the observability properties of the nonlinear SLAM
system model with those of the linearized error-state model
employed in the EKF, we proved that the observable subspace
of the standard EKF is always of higher dimension than the
observable subspace of the underlying nonlinear system. As a
result, the covariance estimates of the EKF undergo reduction
in directions of the state space where no information is
available, which is a primary cause of inconsistency. Based on
the above analysis, we have proposed a new methodology for
the design of EKF-based estimators for SLAM. Our approach
dictates selecting the linearization points of the EKF so as
to ensure that the resulting linearized system model has three
unobservable directions.

We propose two filters, the First Estimates Jacobian (FEJ)-
EKF and the Observability Constrained (OC)-EKF, which
adhere to the above design methodology. Specifically, in the
FEJ-EKF all Jacobians are calculated using the first available
estimate for each state variable, while in the OC-EKF the
linearization points are obtained in closed form by solving
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Fig. 8. (a) NEES of the robot position errors (b) RMS errors for the robot position. In these plots, the solid lines correspond to the standard EKF, the dashed
lines to the FEJ-EKF, the dotted lines to the OC-EKF, and the dash-dotted lines to the robocentric mapping filter of [Castellanos et al., 2004]. Note that both
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an observability-constrained minimization problem (i.e., mini-
mizing the expected linearization errors subject to the observ-
ability constraints). As a result, the linearized system models
employed in these two filters have the desirable observability
properties. Extensive simulation and experimental tests verify
that the FEJ-EKF and the OC-EKF perform significantly
better, in terms of both accuracy and consistency, than the
standard EKF and the robocentric mapping filter. This occurs
despite the fact that the Jacobians used in the FEJ-EKF and
OC-EKF are evaluated using less accurate linearization points.
These results indicate that ensuring the correct observability
properties of the linearized system model is a crucial require-
ment.

APPENDIX A
UNICYCLE MODEL

If the unicycle model is used, and we employ the ap-
proximation that the velocity and heading are constant
during each propagation interval, we obtainRk x̂Rk+1 =
[vmk

δt 0 ωmk
δt]T , where umk

= [vmk
ωmk

]T are the
linear and rotational velocity measurements, respectively, and
δt is the sampling period. Substitution in (2)-(3) yields the
familiar robot pose propagation equations:

p̂Rk+1|k = p̂Rk|k +

[
vmk

δtc(φ̂Rk|k)
vmk

δts(φ̂Rk|k)

]
(64)

φ̂Rk+1|k = φ̂Rk|k + ωmk
δt (65)

Similarly, the commonly used expressions for the Jaco-
bian matricesΦRk

and GRk
can be derived from (6), (7)
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and (9). Specifically, by substituting the robot displacement
Rk p̂Rk+1 =

[
vmk

δt 0
]T

into (7), we have:

ΦRk
=




1 0 −vmk
δts(φ̂Rk|k)

0 1 vmk
δtc(φ̂Rk|k)

0 0 1


 (66)

To derive the Jacobian matrixGo
Rk

with respect to the odom-
etry vectoruk, instead ofRk x̂Rk+1 , we apply the chain rule
of differentiation as follows:

Go
Rk

=
∂(xRk+1)

∂(RkxRk+1)

∣∣∣
Rk x̂Rk+1

× ∂(RkxRk+1)
∂uk

∣∣∣
umk

(67)

The first term is the Jacobian with respect to the robot pose
change (displacement and orientation change), evaluated at the
estimateRk x̂Rk+1 , and is given in (9). The second term is the
Jacobian of the robot pose change with respect touk. Since
RkxRk+1 =

[
vkδt 0 ωkδt

]T
, this Jacobian is simply given

by:

∂(RkxRk+1)
∂uk

∣∣∣
umk

=




δt 0
0 0
0 δt


 (68)

Therefore, substitution of (68) and (9) into (67) yields:

Go
Rk

=




δtc(φ̂Rk|k) 0
δts(φ̂Rk|k) 0

0 δt


 (69)

We thus showed how the commonly used expressions for (2)-
(4), as well as the state and noise Jacobians can be derived.

APPENDIX B
PROOF OFLEMMA 4.1

The proof is based on mathematical induction, by verifying
the structure of thekth order Lie derivatives. We define the Lie
derivative of aC∞ functionh on an open subsetS ⊂ Rdim(x)

along an analytic vector fieldf on S, as:

Lfh = (dh)f (70)

wheredh is the gradient ofh with respect to the state vector
x. We start by noting the following identities, which will be
useful in the ensuing derivations.

dρ

dx
=

[
− δx

ρ − δy
ρ 0 δx

ρ
δy
ρ

]

=
[−cθ −sθ 0 cθ sθ

]
(71)

dψ

dx
=

1
ρ

[
δy
ρ − δx

ρ −ρ − δy
ρ

δx
ρ

]

=
1
ρ

[
sθ −cθ −ρ −sθ cθ

]
(72)

whereδx , xL − xR, δy , yL − yR, andθ , ψ + φR.
We first prove that ifh has the special structure shown

in (15), then the zeroth- and first-order Lie derivatives are
functions ofρ andψ only.

By applying the chain rule of differentiation, the zeroth-
order (i.e.,k = 0) Lie derivative is computed as follows:

L0h , dh

dx
=

[
∂h
∂ρ

∂h
∂ψ

]

︸ ︷︷ ︸
A0

[
dρ
dx
dψ
dx

]
(73)

It is important to note that sinceh is a function ofρ and
ψ only, the terms∂h

∂ρ and ∂h
∂ψ are also functions ofρ and ψ

only. As a result, the matrixA0 is a function ofρ and ψ,
whose exact structure depends on the particular measurement
function h.

The first-order (i.e.,k = 1) Lie derivatives are calculated
according to the definition (70), and employing the results
of (71) and (72), as:

L1
f1h =

[
∂h
∂ρ

∂h
∂ψ

] [
dρ
dx
dψ
dx

]
f1

= A0

[ −cθcφR − sθsφR
1
ρ (sθcφR − cθsφR)

]
= A0

[−cψ
sψ
ρ

]
(74)

L1
f2h =

[
∂h
∂ρ

∂h
∂ψ

] [
dρ
dx
dψ
dx

]
f2 = A0

[
0
−1

]
(75)

We thus see that both the zeroth- and the first-order Lie
derivatives are functions ofρ and ψ only. This is the base
case for the proof by induction.

Now assume thek-th order Lie derivativesLk
fi
h, i = 1, 2,

are functions ofρ and ψ only.5 Then their gradients can be
computed by:

d(Lk
fi
h)

dx
=

[
∂
∂ρ (Lk

fi
h) ∂

∂ψ (Lk
fi
h)

]

︸ ︷︷ ︸
Aki

[
dρ
dx
dψ
dx

]
(76)

whereAki is a function ofρ andψ only. Thus, the(k +1)-th
order Lie derivatives are computed as follows:

Lk+1
f1

h =
[

∂
∂ρ (Lk

f1
h) ∂

∂ψ (Lk
f1

h)
] [

dρ
dx
dψ
dx

]
f1

= Ak1

[ −cθcφR − sθsφR
1
ρ (sθcφR − cθsφR)

]
= Ak1

[−cψ
sψ
ρ

]
(77)

Lk+1
f2

h =
[

∂
∂ρ (Lk

f2
h) ∂

∂ψ (Lk
f2

h)
] [

dρ
dx
dψ
dx

]
f2 = Ak2

[
0
−1

]

(78)

Clearly, the(k +1)-th order Lie derivatives are also functions
of ρ andψ only, and the proof by induction is complete.

5Extension of this analysis to the case of mixedk-th order Lie derivatives is
straightforward, though more involved in terms of notation; thus, it is omitted
to preserve presentation clarity.
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APPENDIX C
PROOF OFLEMMA 4.2

Employing the expressions for the Lie derivatives derived
in Appendix B, we have:

dG = span





d(L0h1)
dx , ..., d(L0hn)

dx ,
d(L1

fj
h1)

dx , ...,
d(L1

fj
hn)

dx ,
· · · · · · · · ·
d(Lk

fj
h1)

dx , ...,
d(Lk

fj
hn)

dx





= span





A1
0

[
dρ
dx
dψ
dx

]
, ..., An

0

[
dρ
dx
dψ
dx

]
,

A1
1j

[
dρ
dx
dψ
dx

]
, ..., An

1j

[
dρ
dx
dψ
dx

]
,

· · · · · · · · ·
A1

kj

[
dρ
dx
dψ
dx

]
, ..., An

kj

[
dρ
dx
dψ
dx

]





where the indexj = 1, 2 corresponds to the vectorsf1 and
f2, and the superscripti in Ai to the measurement function
hi (i.e., i = 1, 2, ..., n). Clearly, the row-span of all the above
vectors is identical to the row-span ofdρ

dx and dψ
dx , i.e.,

dG = span
row

[−cθ −sθ 0 cθ sθ
sθ
ρ − cθ

ρ −1 − sθ
ρ

cθ
ρ

]

= span
row

{
J Diag

(
1
ρ
, 1

)
CT (ψ)

×
[
sφR −cφR −cφRδx− sφRδy −sφR cφR

cφR sφR sφRδx− cφRδy −cφR −sφR

]}

= span
row

[
sφR −cφR −cφRδx− sφRδy −sφR cφR

cφR sφR sφRδx− cφRδy −cφR −sφR

]

APPENDIX D
PROOF OFLEMMA 5.2

Under the Gaussianity assumption, it isp(xRk
|z0:k) =

N (x̂Rk|k ,PRRk|k), where PRRk|k is the covariance matrix
corresponding to the robot pose, obtained by partitioning the

state covariance matrix asPk|k =
[
PRRk|k PRLk|k
PT

RLk|k PLLk|k

]
, and

p(xk+1|z0:k) = N (x̂k+1|k,Pk+1|k).
The first term of the cost function (46) is computed as:∫ ∣∣∣∣xRk

− x?
Rk|k

∣∣∣∣2p(xRk
|z0:k)dxRk

=
∫ (

xT
Rk

xRk
− 2xT

Rk
x?

Rk|k + x?T
Rk|kx

?
Rk|k

)
p(xRk

|z0:k)dxRk

= E
(
xT

Rk
xRk

)− 2E
(
xT

Rk

)
x?

Rk|k + x?T
Rk|kx

?
Rk|k

= tr
(
PRRk|k + x̂Rk|k x̂

T
Rk|k

)
− 2x̂T

Rk|kx
?
Rk|k + x?T

Rk|kx
?
Rk|k

= tr
(
PRRk|k

)
+ x̂T

Rk|k x̂Rk|k − 2x̂T
Rk|kx

?
Rk|k + x?T

Rk|kx
?
Rk|k

= tr
(
PRRk|k

)
+

∣∣∣∣x̂Rk|k−x?
Rk|k

∣∣∣∣2 (79)

where E(·) denotes expectation andtr(·) the matrix trace.
Proceeding similarly, the second term of the cost function (46)
can be derived as:∫ ∣∣∣∣xk+1 − x?

k+1|k
∣∣∣∣2p(xk+1|z0:k)dxk+1

= tr
(
Pk+1|k

)
+

∣∣∣∣x̂k+1|k − x?
k+1|k

∣∣∣∣2 (80)

Using (79) and (80), as well as the fact that the truePRRk|k
and Pk+1|k are independent of the linearization points, the
following equivalence is immediate:

min
x?

Rk|k
, x?

k+1|k

{
tr

(
PRRk|k

)
+ tr

(
Pk+1|k

)
+∣∣∣∣x̂Rk|k−x?

Rk|k

∣∣∣∣2 +
∣∣∣∣x̂k+1|k−x?

k+1|k
∣∣∣∣2

}

⇔ min
x?

Rk|k
, x?

k+1|k

∣∣∣∣x̂Rk|k−x?
Rk|k

∣∣∣∣2 +
∣∣∣∣x̂k+1|k−x?

k+1|k
∣∣∣∣2

We now derive the following identities for the observability
constraint (47) (cf. (36) and (42)):

Hk+1Φk · · ·ΦkoU = 0

⇔HLk+1

[
−I2 −J

(
p?

Lk+1|k−p?
Rko|ko

−
k∑

j=ko+1

∆p?
Rj

)
I2

]
U= 0

⇔p?
Lk+1|k − p?

Rk|k = p̂Lko|ko
− p?

Rk|k−1
+

k−1∑

j=ko

∆p?
Rj

This completes the proof.
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