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Abstract—In this work, we study the inconsistency problem As defined in [Bar-Shalom et al., 2001], a state estimator
of EKF-based SLAM from the perspective of observability. We is consistentf the estimation errors are zero-mean and have
analytically prove that when the Jacobians of the process and covariance matrix smaller or equal to the one calculated

measurement models are evaluated at the latest state estimatesD the filter. C it . f th . iteria f
during every time step, the linearized error-state system employed y the niter. Lonsistency 1S one o € primary criteria tor

in the EKF has observable subspace of dimension higher than €valuating the performance of any estimator; if an estimator is
that of the actual, nonlinear, SLAM system. As a result, the inconsistent, then the accuracy of the produced state estimates

covariance estimates of the EKF undergo reduction in directions js unknown, which in turn makes the estimator unreliable.
of the state space where no information is available, which is a Since SLAM is a nonlinear estimation problem, no provably

primary cause of the inconsistency. Based on these theoretical - . . .
results, we propose a general framework for improving the consistent estimator can be constructed for it. The consistency

consistency of EKF-based SLAM. In this framework, the EKF Of every estimator has to be evaluated experimentally. In
linearization points are selected in a way that ensures that the particular for thestandardEKF-SLAM algorithm, there exists

resulting linearized system model has an observable subspacesignificant empirical evidence showing that the computed state

of appropriate dimension. We describe two algorithms that are im n . nsisteni(cf ion Il
instances of this paradigm. In the first, termed Observability Con- estimates tend to bmconsistent(cf. Section Il).

strained EKF (OC-EKF), the linearization points are selected so  In this paper, we investigate in depth one fundamental cause
as to minimize their expected errors (i.e., the difference between of the inconsistency of the standard EKF-SLAM algorithm.
the linearization point and the true state) under the observability |, particular, we revisit this problem from a new perspective

constraints. In the second, the filter Jacobians are calculated . : - ; P
using the first-ever available estimates for all state variables. This .e., by analyzing the observability properties of the filters

latter approach is termed First-Estimates Jacobian (FEJ)-EKF. System model. Our key conjecture in this paper is that the
The proposed algorithms have been tested both in simulation observability properties of the EKF linearized system model
and experimentally, and are shown to significantly outperform profoundly affect the performance of the filter, and are a
the standard EKF both in terms of accuracy and consistency.  gjgnificant factor in determining its consistency. Specifically,

the major contributions of this work are the following:

I. INTRODUCTION « Through an observability analysis, we prove that the stan-
dard EKF-SLAM employs an error-state system model
Simultaneous localization and mapping (SLAM) is the that has an unobservable subspace of dimension two, even
process of building a map of an environment and concur- though the underlying nonlinear system model has three
rently generating an estimate of the robot pose (position unobservable degrees of freedom (corresponding to the
and orientation) from the sensor readings. For autonomous position and orientation of the global reference frame).
vehicles exploring unknown environments, the ability to per- As a result, the filter gains spurious information along
form SLAM is essential. Since [Smith and Cheeseman, 1987] directions of the state space where no information is
first introduced a stochastic-mapping solution to the SLAM  actually available. This leads to an unjustified reduction
problem, rapid and exciting progress has been made, resulting of the covariance estimates, and is a primary cause of
in several competing solutions. Recent interest in SLAM has filter inconsistency.
focused on the design of estimation algorithms [Montemerlo, « Motivated by this analysis, we propose a new methodol-
2003], [Paskin, 2002], data association techniques [Neira and ogy for improving the consistency of EKF-based SLAM.
Tardos, 2001], and sensor data processing [Se et al., 2002]. Specifically, we propose selecting the linearization points
Among the numerous algorithms developed thus far for the of the EKF in a way that ensures that the unobservable
SLAM problem, the extended Kalman filter (EKF) remains  subspace of the EKF system model is of appropriate
one of the most popular ones, and has been used in several ap- dimension. In our previous work [Huang et al., 2008a],
plications (e.g., [Newman, 1999], [Williams et al., 2000], [Kim [Huang et al., 2008b], we proved that this can be achieved
and Sukkarieh, 2003]). However, in spite of its widespread by computing the EKF Jacobians using the first-ever
adoption, the fundamental issue of ttensistencyf the EKF- available estimates for each of the state variables. The
SLAM algorithm has not yet been sufficiently investigated. resulting algorithm is termedrirst Estimates Jacobian



(FEJ)-EKF. In this work, we propose an alternativéhe robot observes a landmark, moves and then re-observes
approach, name@®bservability ConstraineqOC)-EKF, the landmark). A constraint that the filter Jacobians need to
which falls under the same general framework. In thilfill in this case so as to allow for consistent estimation, was
novel filter, the EKF linearization points are selected so @soposed. In [Huang and Dissanayake, 2007], it was shown
not only to guarantee the desired observability propertiésat this condition is generally violated, due to the fact that the
but also to minimize the expected errors of the linearizdilter Jacobians at different time instants are evaluated using
tion points (i.e., the difference between the linearizatiodifferent estimates for the same state variables. Interestingly,
point and the true state). This can be formulated asira Section V-C it is shown that this condition can also be
constrained minimization problem, whose solution rerderived as a special case of our generalized analysis.
ders the linearization points used for computing the filter [Bailey et al., 2006] examined several symptoms of the
Jacobians. inconsistency of the standard EKF-SLAM algorithm, and
o Through extensive simulations and real-world experargued, based on Monte Carlo simulation results, that the
ments, we verify that both the FEJ-EKF and the OGuncertainty in the robot orientation is the main cause of the
EKF outperform the standard EKF, even though theyconsistency of EKF-SLAM. However, no theoretical results
use less accurate linearization points in computing theere provided. The work of [Huang and Dissanayake, 2006]
filter Jacobians (since the linearization points used in tigrther confirmed the empirical findings in [Bailey et al.,
FEJ-EKF and OC-EKF are, in general, different fron2006], and argued by example that in EKF-SLAM the incon-
the latest, and thus best, state estimates). This restifitency is always in the form of overconfident estimates (i.e.,
supports our conjecture that the observability properti@ise computed covariances are smaller than the actual ones).
of the EKF system model play a fundamental role in The aforementioned works have described several symp-
determining consistency. toms of inconsistency that appear in the standard EKF-SLAM,
The remainder of the paper is organized as follows. Aft@nd have analytically studied only a few special cases, such as
an overview of related work in the next section, the standatidlat of a stationary robot [Julier and Uhlmann, 2001], and that
EKF-SLAM formulation with generalized system and measf one-step motion [Huang and Dissanayake, 2007]. However,
surement models is described in Section Ill. In Section IV, the theoretical analysis into the cause of inconsistency for the
observability analysis of SLAM is presented and is employegkneral case of a moving robot was conducted. To the best of
to prove that the standard EKF-SLAM always has incorreour knowledge, the first such analysis appeared in our previous
observability properties. Section V describes the propospdblications [Huang et al., 2008a], [Huang et al., 2008b].
approaches for improving the consistency of EKF-SLAM, an@iherein, the mismatch in the dimensions of the observable
in Sections VI and VII the performance of the FEJ-EKF angubspaces between the standard EKF and the underlying
OC-EKF is demonstrated through Monte-Carlo simulation®nlinear SLAM system was identified as a fundamental cause
and experiments. Finally, Section VIII outlines the main coref inconsistency, and the FEJ-EKF was proposed as a means

clusions of this work. of improving the consistency of the estimates.
In this paper, we present the theoretical analysis of [Huang
Il. RELATED WORK et al., 2008a], [Huang et al., 2008b] in more detail, and propose

. . a general framework for improving the consistency of EKF-

The inconsistency problem of the standard EKF-SLAM| AN |t is shown that the FEJ-EKF is one of several possible
algorithm has recently attracted considerable mterest_ [Casgé’[imators, which rely on the observability analysis for the
lanos et al., 2004], [Castellanos et al., 2007], [Julier angjection of EKF linearization points. Moreover, we propose
Uhlmann, 2001], [Bailey et al., 2006], [Huang and Disyp giternative EKF estimator, the OC-EKF, whose performance
sanayake, 2006], [Huang and Dissanayake, 2007], [HuaRdan improvement over the FEJ-EKF. The OC-EKF selects
et al,, 2008a], [Huang et al., 2008b]. The first work to drayhe gptimal linearization points in a way that minimizes the
attention to this issue was that of [Julier and Uhimangye |inearization errors, while ensuring that the observable
2001], who observed that when a stationary robot measUtgfspace of the EKF linearized system model has correct

the relative position of a new landmark multiple times, thgimensions. The following sections describe the theoretical
estimated variance of the robot’s orientation becomes Sma”&évelopment of the algorithms in detail.

Since the observation of a previously unseen feature does

not provide any information about the robot's state, this

reduction is artificial, and leads to inconsistency. Additionally, I1l. STANDARD EKF-SLAM FORMULATION

a condition that the filter Jacobians need to satisfy in order

to permit consistent estimation, was described. We show thain this section, we present the equations of the standard

this condition, derived in [Julier and Uhlmann, 2001] for th&€KF-SLAM formulation with generalizedsystem and mea-

case of a stationary robot, is a special case of an observabilgyrement models. To preserve the clarity of the presentation,

based condition derived in our work for the general case ofie first focus on the case wherssiaglelandmark is included

moving robot (cf. Lemma 5.1). in the state vector, while the case of multiple landmarks is
More recently, the work of [Huang and Dissanayake, 200@Hdressed later on. In the standard formulation of SLAM,

extended the analysis of [Julier and Uhlmann, 2001] to the cabe state vector comprises the robot pose and the landmark

of a robot that observes a landmark framo positions (i.e., position in the global frame of reference. Thus, at time-dtep



the state vector is given by: kinematic model (e.g., unicycle, bicycle, or Ackerman model).
. . T T In Appendix A, we derive the expressions for (2)-(4), as well
xp = [Pk, Sr. PL] =[xk, PL] (1) as the state and noise Jacobians, for the common case where
wherexg, = [ph  ¢r,]” denotes the robot pose, apg ~the unicycle model is used.
is the landmark position. EKF-SLAM recursively evolves in
two steps: propagation and update, based on the discrete-tBieEKF Update
process and measurement models, respectively.

]T

During SLAM, the measurement used for updates in the
EKF is a function of the relative position of the landmark
A. EKF Propagation with respect to the robot:

In the propagation s_,tep, the_robots odometry measurements 25 = h(x;) + vy = h (Rka) + vy (10)
are processed to obtain an estimate of the pose change between
two consecutive time steps, and then employed in the EKFwiere f*p;, = CT(¢r,)(pL — Pr,) iS the position of the
propagate the robot state estimate. On the other hand, silremark with respect to the robot at time-stepand vy, is
the landmark is static, its state estimate does not change witito-mean Gaussian measurement noise with covariBnce
the incorporation of a new odometry measurement. The EKIF this work, we allowh to be any measurement function.

propagation equations are given by: For instancez; can be a direct measurement of relative posi-
. . . R n tion, a pair of range and bearing measurements, bearing-only
PR = Prij + ClOR0) " PRoy,y @ measurements from monocular cameras, etc. Generally, the
(Z’;Rk+1\k = QZ’RM + F <23Rk+1 (3) measurement function is nonlinear, and hence it is linearized
o _ 5 for use in the EKF. The linearized measurement error equation
PLy ik PL, (4) . .

is given by:

whereC(-) denotes the x 2 rotation matrix, and®xp, ,, = -

i Brgp . ]7 is the odometry-based estimate of zp ~ [Hp, Hp,| FRMI] + Vi,

the robot's motion between time-stegsand k + 1. This Erjk—

estimate is corrupted by zero-mean, white Gaussian noise £ HyXpp—1 + Vi (11)

wp = frxp, ., — ®xp, ., with covariance matrixQy.

This process model is nonlinear, and can be described by{ réere Hp, and H,, are the Jacobians di with respect

. . . . the robot pose and the landmark position, respectively,
following generic nonlinear function:

evaluated at the state estimatg,_;. Using the chain rule

xp41 = £(xp, %R, + W) (5) of differentiation, these are computed as:
In addition to the state propagation equations, the linearizd&lliz, = (th)CT(QASRMk,l) [-Io —J(Pr, . — PR y)]
error-state propagation equation is necessary for the EKF. This (12)
is given by: H;, = (Vhy)C" (¢r,,,_,) (13)
Rt 1)h = {(I)Rk 03X2] [’fRM} + {GRk] W where Vh;, denotes the Jacobian &f with respect to the
O2x3 I PLy 022 robot-relative landmark position (i.e., with respect to the vector
£& %y + Grwy, (6) "*py), evaluated at the state estimatg),_;.

where®y, andGpg, are obtained from the state propagation

equations (2)-(3): IV. SLAM OBSERVABILITY ANALYSIS

In this section, we perform an observability analysis for

dp, = L JC(¢Rk|k)R’“ka+1} (7) the generalized EKF-SLAM formulation derived in the pre-
[01x2 1 vious section, and compare its properties with those of the
[ I(Prou, — ;SRM)} ®) underlying nonlinear system. Based on this analysis, we draw
T 01x2 1 conclusions about the consistency of the filter. We note that,
:C(qBR ) Oaxi to keep the presentation clear, some intermediate steps of the
Gr, = 0 I 1 } (9) derivations have been omitted. The interested reader is referred
1z to [Huang et al., 2008c] for details.
with J & 0 -1 . It should be pointed out that the observability properties of
1 0 SLAM have been studied in only a few cases in the literature.

It is important to point out that the form of the propagatiom particular, [Andrade-Cetto and Sanfeliu, 2004], [Andrade-
equations presented above is general, and holds for any ropgtto and Sanfeliu, 2005] investigated the observability of a
. - _ _simplelinear time-invariant(LTl) SLAM system, and showed
IThroughout this paper the subscripj refers to the estimate of a quantity hat it i b bl h Kk of [Vidal lei |
at time-step?, after all measurements up to time-stepave been processed.t at It is unc_) servable. The work o [V' a'C_a eja et al.,
# is used to denote the estimate of a random variablehile z = = — # is  2007] approximated the SLAM system bypecewise constant
the error in this estimaté,, x» and1,,x, denotem x n matrices of zeros |inear (PWCL) one. and applied the technique of [Goshen-
and ones, respectively, whilg, is then x n identity matrix. Finally, we use . ’ -
the concatenated formsp and c¢ to denote thesin ¢ and cos ¢ functions, Meskin and Bar-ltzhack, 1992] to study the observability

respectively. properties of bearing-only SLAM. On the other hand, in [Lee



et al., 2006], [Huang et al., 2008a] the observability propertiexpressed in the robot fram@p .. The relation between these
of the nonlinear SLAM system were studied using the nonlin- TS _ | fe i
ear observability rank condition introduced by [Hermann a;%uantmes oL = Lw] - The analysis will be based on the
Krener, 1977]. These works proved that the nonlinear SLAf#llowing lemma:
system is unobservable, with three unobservable degrees dfemma 4.1:All the Lie derivatives of the nonlinear SLAM
freedom. system (cf. (14) and (15)) are functions @fand only.

All the aforementioned approaches examine the observabil- Proof: See Appendix B [ ]

ity properties of the nonlinear SLAM system, or of linear ap- \We will now employ this result for the nonlinear observabil-
proximations to it. However, to the best of our knowledge, afy analysis. In particular, assume that a number of different
analysis of the observability properties of the EKfearized measurements are available, = hi(p, ), i = 1,2,...,n.
error-statesystem model had not been carried out prior to odthen, since all the Lie derivatives for all measurements are
work [Huang et al., 2008a], [Huang et al., 2008b]. Since thfginctions of p and+ only, we can prove the following:

model is the one used in any actual EKF implementation, &) emma 4.2:The space spanned by all theth order Lie
lack of understanding of its observability properties appPeafigrivativesLt h; (Vk € N,j =1,2,i = 1,2,...,n) is denoted

to be a significant limitation. In fact, as shown in this Papepy g and the spacelG spanned by the gradients of the
these properties play a significant role in determining th8ements oG is given by:

consistency of the filter, and form the basis of our approach

for improving the performance of the estimator. Sop —Cor —COROT — sPROY —sbr  COR
49 = D cor  sér  SOROT —chrdy —chr —sor

A. Nonlinear Observability Analysis for SLAM
We start by carrying out the observability analysis fowheredz £z, — xr anddy £y, — yr.

the continuous-time nonlinear SLAM system. This analysis Proof: See Appendix C ]

is based on theobservability rank conditionintroduced in  The matrix shown above is the “observability matrix” for

[Hermann and Krener, 1977]. Specifically, Theorem 3.lthe nonlinear SLAM system under consideration. Clearly, this

therein states thatif‘a nonlinear system is locally weaklyis not a full-rank matrix, and the system is unobservable.

observable, the observability rank condition is satisfied genaptuitively, this is a consequence of the fact that we cannot

ically”. We here show that the SLAM system does not satisfyain absolute but rather onlyrelative state information from

the observability rank condition, and thus it is not locallyhe available measurements. Even though the notion of an

weakly observable nor locally observable. In particular, weinobservable subspace” cannot be strictly defined for this

conduct the analysis for a general measurement model, insteggtem, the physical interpretation of the basisd6f- will

of only relative-position or distance-bearing measurements gige us useful information for our analysis in Section IV-B.

in [Huang et al., 2008a], [Lee et al., 2006]. By inspection, we see that one possible basis for the space
For the continuous-time analysis, we employ a unicyclggL is given by:

kinematic model, although similar conclusions can be drawn

if different models are used [Lee et al., 2006]. The process

I 0 —yr
model in continuous-time form is given by: 0 1 =xp
1 _ o A
ir(t)]  [eon(t) 0 467 = span |0 01| S span [m no m] (18)
Yr(t) sor(t) 0 01 yz
or(t)| = 0 v(t) + | 1| w(t) L
a1, (t) 0 0
(1) 0 0 From the structure of the vectons; and n, we see that
o a change in the state bAx = an; + fns, a,8 € R
= x(t) = fru(t) + fow(t) (14) corresponds to a “shifting” of the —y plane bya units along
T x, and by units alongy. Thus, if the robot and landmark

whereu £ [v w] is the control input, consisting of linear

and rotational velocity. Since any type of measurement duriﬁg

SLAM is a function of the relative position of the Iandmarlp indistinguishable given the measurements. To understand

with respect to the robot, we can write the measurement momﬂ3 physical meaning ohi3, we consider the case yvhere the
in the following generic form: x — y plane is rotated by a small angtes. Rotating the
' coordinate system transforms any popit= [z y]’ to a

sitions are shifted equally, the statesand x + Ax will

z(t) = hip,v) (15) pointp’ = [z’ y']”, given by:
p=|lpr —Prll (16) / )
omwits oo —on @0 [} =cea [+l ][] e[

where p and ¢ are the robot-to-landmark relative distance

and bearing angle, respectively. Note that parameterizing thhere we have employed the small angle approximations
measurement with respect @ and « is equivalent to pa- ¢(d¢) ~ 1 and s(d¢) ~ d¢. Using this result, we see that
rameterizing it with respect to the relative landmark positioifi the plane containing the robot and landmarks is rotated by



d¢, the SLAM state vector will change to: time-stepsk, and k, + m is defined as:

T TR —Yr Hy,
Yr YR TR A Hy, 119y,
X = |d| = |ér| +06| 1 | =x+don; (@9 M= : (23)
Tl rL —YL H, b, . P
y/L L T . otm *ko+m—1 ko
HRk,o HLk,O
HRk(,+1(I)Rk Lip+1
which indicates that the vectar; corresponds to a rotation of = . : (24)
the 2 — y plane. Sincens € dG*, this result shows that any ' '
o ; Hpg PR i PR, Hp,
such rotation is unobservable, and will cause no change to the L7 ko tm = ko tm—1 ko kotm
measurements. The preceding analysis for the meaning of the = M(X} k.1, Xk, |k, - - - » Xkt kortm1 > Xhgm|ko-+m)
basis vectors ofiG+ agrees with intuition, which dictates that (25)

the global coordinatesof the state vector in SLAM (rotation

and translation) are unobservable. where (24) is obtained by substituting the matrié@s and

H;. (cf. (6) and (11), respectively) into (23). The last expres-
sion, (25), makes explicit the fact that the observability matrix
is a function of the linearization points used in computing all
B. EKF-SLAM Observability Analysis the Jacobians within the time intervl,, k, + m]. In turn,
this implies thatthe choice of linearization points affects the

observability propertie®f the linearized error-state system of

In the previous section, it was shown that the underlyi . . . .
physical system in SLAM has three unobservable degreeg%)?.EKF' This key fact is the basis of our analysis. In the fol-

freedom. Thus, when the EKF is used for state estimationIl%wmg, we discuss different possible choices for linearization,

SLAM, we would expect that the system model employed bglnd the observability properties of the corresponding linearized
the EKF also shares this property. However, in this sectioXStems'

we show that this is not the case, since the unobservablel) Ideal EKF-SLAM: Before considering the rank of the
subspace of the linearized error-state model of the stand&ratrix M, which is constructed using thestimatedvalues of

EKF is generally of dimension only 2. the state in the filter Jacobians, it is interesting to study the

First recall that in general the Jacobian matrides G, observability properties of the “oracle”, or “ideal” EKF (i.e.,

andH; used in the EKF-SLAM linearized error-state modéi€ filter whose _Jacobigns are evaluated usingnievalues
(cf. (6) and (11)), are defined as: of the state variables, in other words;clkf1 = x;‘k = X,

for all k). In the following, all matrices evaluated using the
true state values are denoted by the symbol'*

P, = Vi, f (20) We start by noting that (cf. (8)):
{ESATRE SRRt
Gk = vw f (21) . . .
' (03 PR, 1 PRy, = |: b J (kao+2 kaO)} (26)
© o 01x2 1
Hy = Vi,h| (22)

Xklk—1

Based on this property, it is easy to show by induction that:

In these expressionscj, , andxj, (¢ = k,k+1) denote

the linearization points}or the statex,, used for evaluating x
the Jacobians before and after the EKF update at timefstep R’
respectively. A linearization point equal to the zero vector is

chosen for the noise. The EKF employs the above Iinearizijﬂch holds for all¢ > 0. Using this result, and substituting

system model for propagating and updating the estimatesfgj the measurement Jacobians from (12) and (13), we can
the state vector and covariance matrix, and thus the ObseﬁY()ve the following useful identity:

ability properties of this model affect the performance of the
estimator. To the best of our knowledge, a study of these 5 5
properties has not been carried out in the past, and is one Hg, ., ®Pr, ., , ' Pr,,

of the main contributions of this work. _ (Vflko+e)CT(¢Rko+g) -, —J(pr - Pr,,)]

Since the linearized error-state model for EKF-SLAM is —H 1, _J _ 27
time-varying, we employ théocal observability matri{Chen Liger [Tz (b2~ Py, )] @7
et al., 1990] to perform the observability analysis. Specifically, y
the local observability matrix for the time interval betweemvhich holds for all¢ > 0. The observability matrixM can

% 2 I, J(Pr.,.. — PR
kU+Z—1®RkO+£—2 A <I>Rko = {lez ( ko+471 ko)



now be written as: where H() " and H G = ..., M), are obtained
by (12) and (13) usmg “the true values of the states, respec-

M = Diag (HLkovHLzmw vHLko+m> tively. The observability matri®VI now becomes:
D M = (32)
I, —J(pr —Pr,,) I r W (O 0 7
_ — — L L,
I, —J(pz—Pr,) I
X . . (28) : ; : :
: : . N 0 . M)
—I, —J(pr—Pr,) I o ko
N ﬁg;gmi% HY e 0

Liy+1

Lemma 4.3:The rank of the observability matrixM, of : : . :

the ideal EKF is 2. 0y &g, o ... =M
Proof: The rank of the product of the matric&s and N ’ ’

is given by (cf. (4.5.1) in [Meyer, 2001]):

rank(DN) = rank(N) — dim(N(D R(N (29) o o .
(DN) (N) — dim(N (D) (| R(N)) O b ke, B
SinceN comprisesn + 1 repetitions of the sam x 5 block : : . :
row, it is clear thatank(NN) = 2, and thg range aN, R(N), H%f)w ST i 0 ﬁ%)m

is spanned by the vectors; andu,, defined as follows: - °
Using the identity (27), substitution of the Jacobian matrices

I in (32) yields:

u; Uq| = . 30 o \

[ ) L (20) M = Diag (H< ) Hgﬂ/f(jm) (33)
We now observe that in generddu; ;é 0, for i = 1,2. L - . _ I 0
Moreover, note that any vectgr € R(N) \ 0 can be written 2 PL, ~ Phy,) 2 2x2
asy = aju; + asuy for someoa;,ar € R, wherea; and : : : ) :
ap are not simultaneously equal to zero. Thus, we see that —I, —J(Pry —Pr,,) O2x2 -+ Iy
in generalDy = a;Du; + asDuy; # 0, which implies
thaty does not belong to the nullspagé(D) of D. There- I, —J(pr, —Pr.,) Lo Ooxo
fore, dim(M(D)R(N)) = 0, and, finally, rank(M) = . . . .
rank(N) — dim(NV (D) N R(N)) = rank(N) = 2. [ : :

Most importantly, it can be easily verified that a basis for the I =3Py —PRi,) O2x2 -+ I

right nullspace ofN (and thus for the right nullspace ®f)
is given by the vectors shown in (18). Thus, the unobservable
subspace of the ideal EKF system modeldentical to the
spacedG=*, which contains the unobservable directions of I, —J(Pr, —Pry,) I - 0oy
the nonlinear SLAM system. We therefore see that if it was
possible to evaluate the Jacobians using the true state values, : :
the linearized error-state model employed in the EKF would [-To —J(PLy —Pry,) O2xz -+ To |
have observability properties similar to those of the actual, 5
nonlinear SLAM system.

The preceding analysis was carried out for the case whé&tearly, the matrixN' now consists ofn + 1 repetitions of the
a single landmark is included in the state vector. We nol/ Plock rows:

examine the more general case whefe> 1 landmarks are [-I, —J(pz, — Pr,,) O2xz --- I, <+ O2x2
included in the state. Suppose thé landmarks are observed ith ;nf;mk
at time-stepk, + ¢ (¢ > 0), then the measurement matrix .
Hy, 1 is given by? fori=1,2,..., M. Thereforerank(M) = 2M. Furthermore,
.0 ) by inspection, a possible basis for the right nullspac®/bfs
HRkoH HLk0+e o 0 given by
Hy 0= : : : (31) I, Jpg,,
(M) 0 U = (€2)) 012 1
Rite Liote v I
N(M) = span | *2

col.

IpL, (34)

2We here assume that alll landmarks are observed at every time step in
the time intervallk,, ko + m]. This is done only to simplify the notation, I J
and is not a necessary assumption in the analysis. 2 PLy



Note the similarity of this result with that of (18). Clearly, theparticular, by processing the measurements collected in the
physical interpretation of this result is analogous to that of theterval [k,, k, + m], the filter acquires information in 3 di-
single-landmark case: the global translation and orientation mensions of the state space (along the directions corresponding
the state vector are unobservable. to the observable subspace of the EKF). However, the mea-
2) Standard EKF-SLAM:We now study the observability surements actually provide information in only 2 directions of
properties of the standard EKF-SLAM, in which the Jacobiarlke state space (i.e., the robot-to-landmark relative position).
are evaluated at the latest state estimates;(ci;%Ll =Xy k-1 As aresult, the EKF gains “spurious information” along the

and xz‘k = Xy, for all k). Once again, we begin by unobservable directions of the underlying nonlinear SLAM
examining the single-landmark case. By deriving an expressigystem, which leads to inconsistency.
analogous to that of (26), we obtain (cf. Section IV-B1): To probe further, we note that the basis of the right nullspace
; . of M is given by:
@Rk léRk = |: 12 J <kao+2|k/o+1 - I)R’“o\ko - AI)er7+1>:|
ot ° 01x2 1 I,
. . N(M) = 0 = n, n 38
where Apr, ., = PR, 1,11 — PRy, 11, IS the correction (M) span i:z span[ mi mp | (38)
in the robot position due to the EKF update at time-stgp 1.
Using induction, we can show that: Note that these two vectors correspond to a shifting of the
x—1y plane, which implies that such a shifting is unobservable.
(I)RkUJrl—l @Rko+e—2 to (I)Rko = (35)

On the other hand, the direction corresponding to the global
I, J (kaﬁMﬁH — PR, — Z?;:f: ApRj> orientation is “missing” from the unobservable subspace of
010 1 the EKF system model (cf. (18) and (19)). Therefore, we
see that the filter will gain “nonexistent” information about
where( > 0. Therefore (cf. (11), (12), and (13)) the robot's global orientation. This will lead to an unjustified
reduction in the orientation uncertainty, which will, in turn,
further reduce the uncertainty in all the state variables. This
X [—12 —J (IA)L,%M,%M,1 — PR, — Zfi;f:& APR,)} agrees in some respects with [Bailey et al., 2006], [Huang and
(36) Dissanayake, 2007], where it was argued that the orientation
uncertainty is the main cause of the filter’'s inconsistency in
SLAM. However, we point out that theoot causeof the
M = Diag (H;, ,Hg, ..., -~ Hp, ..) (37) problem is that the linearization points used for computing
the Jacobians in the standard EKF-SLAM (i.e., the latest state

HRkoﬁ»Z@RkO#»Zfl T (I)Rko = HLko+e

Using this result, we can writd1I (cf. (24)) as:

. B (1; o ) L estimates) change the dimension of the _observable sgbsp_ace,
Eiolko—1 ~ PRkglko—1 and thus fundamentally alter the properties of the estimation
L ~3(PLyy 11, ~ PRI, iy 2| process.
x |~I 3 (B saing s ~ PRk, — APRL, 41 ) T2 Identical conclusions can be drawn wheh> 1 landmarks

: : : are included in the state vector (cf. [Huang et al., 2008c]). For
I, -J (f)Lk mlbosm_1 — PRy — XSS ApR].) I.| this general case, the nullspace of the observability matrix can
be shown to be equal to:

N
Lemma 4.4:The rank of the observability matriX\i, of I
the system model of the standard EKF is equal to 3. 01x2
Proof: First, we note that the estimates of any given N(M) = span I (39)
state variable at different time instants are generally different. col. :

Hence, in contrast to the case of the ideal EKF-SLAM,
the following inequalities generally holdbr, ... ..., #
PR, cisss @ADL, o F DLy, e, fOr i # €. We thus see that the global orientation is erroneously observ-
Therefore, the third column dN will be, in general, a vector able in this case as well, which leads to inconsistent estimates.
with unequal elements, and thusnk(N) = 3. Proceeding  An interesting remark is that the covariance matrices of
similarly to the proof of Lemma 4.3, we first find one possibl¢he system and measurement noise do not appear in the
basis for the range space df, R(N). By inspection, we observability analysis of the filter's system model. Therefore,
see that such a basis is given simply by the first 3 columesen if these covariance matrices are artificially inflated, the
of N, which we denote byu; (i = 1,2,3). Moreover, filter will retain the same observability properties (i.e., the
it can be verified that generallDu; # 0. Therefore, same observable and unobservable subspaces). This shows that
dim(NM(D) N R(N)) = 0, and finallyrank(M) = rank(IN)—  no amount of covariance inflation can result in correct observ-
dim(NM (D) R(N)) = rank(N) = 3. m ability properties. Similarly, even if the iterated EKF [Bar-
We thus see that the linearized error-state model employ8dalom et al., 2001] is employed for state estimation, the
in the standard EKF-SLAM has different observability propsame, erroneous, observability properties will arise, since the
erties than that of the ideal EKF-SLAM (cf. Lemma 4.3) anthndmark position estimates will generally differ at different
that of the underlying nonlinear system (cf. Lemma 4.2). ltime steps.

I,



V. OBSERVABILITY-CONSTRAINED EKF DESIGN estimates, and use these to define a matrixThis approach,

In the preceding section, it was shown that when tH_/éhich could lead tq improyed accuracy in certain si_tugtions,
EKF Jacobians are evaluated using the latest state estimdfegne of several interesting options to explore within the
the EKF error-state model has an observable subspaceP@P0osed design methodology. _ o
dimension higher than the actual nonlinear SLAM system. OnceU has been selected, the next design decision to be
This will always lead to unjustified reduction of the covarimade is the choice of the linearization points at each time
ance estimates, and thus inconsistency. We now describ&@P- For the particular selection &f in (42), this amounts
framework for addressing this problem. to choosing the linearization pqmts f_or_aidl> ko, to ensure

Our key conjecture is that, by ensuring an unobservaﬂf@t (41) holds (note that (40_) is sat_|sf|ed by cons_tructlon in
subspace of appropriate dimension, we can avoid the influxBiS case). Clearly, several options exist, each of which leads to
spurious information in the erroneously observable directighdifferent algorithm within the general framework described
of the state space, and thus improve the consistency of ﬁ%e. In what follows, we present two approaches to achieve
estimates. Therefore, we propose selecting the linearizatift 902l-
points of the EKF in a way that guarantees an unobservable

subspace of dimension 3 for the linearized error-state modal. First Estimates Jacobian (FEJ)-EKF

This corresponds to safisfying conditions (40)-(41) of the we first describe the First Estimates Jacobian (FEJ)-

following lemma: . o . EKF estimator that was originally proposed in our previous
Lemma 5.1:If the linearization pointsxj, and xj. .. work [Huang et al., 2008a], [Huang et al., 2008b]. The key

at which the EKF Jacobian®, = ®,(x%, , ,..Xg, ) @and idea of this approach is to choose tfiest-ever available

Hipr = Hei (xR, 0 PL,,,,) are evaluated, are selectedbstimates for all the state variables as the linearization points.

so as to fulfill the conditions: In particular, compared to the standard EKF, the following
H, U=0, for (=0 (40) two changes are required in the way that the Jacobians are
? evaluated:

Hioe®hpe-1- B, U=0, V>0 (41) 1) Instead of computing the state-propagation Jacobian
whereU is a5 x 3 full-rank matrix, then the corresponding matrix ®r, as in (8), we employ the expression:
observability matrix is of rank 2. L J (f)R — br )

Proof: When (40)-(41) hold, then all the block rows of the = o R T (43)
observability matrix (cf. (23)) will have the same nullspace, 1z
spanned by the columns &f. ™ The difference compared to (8) is that the prior robot
Essentially, the selection df is a design choice, which position estimate pr,,,_,, is used in place of the

allows us to control the unobservable subspace of the EKF  posterior estimatepg, , -

system model. Ideally we would like the column vectordbf ~ 2) In the evaluation of the measurement Jacobian matrix
to be identical to those in (18), which define the unobservable ~ Hy+1 (cf. (11), (12), and (13)), we always utilize the
directions of the actual, nonlinear SLAM system. However, landmark estimatérom the first timethe landmark was
this cannot be achieved in practice, since these directions detected and initialized. Thus, if a landmark was first
depend on therue values of the state, which are unavailable ~ seen at time-stegk,, we compute the measurement

during any real-world implementation. Jacobian as:
A natural selection, which is realizable in practice, is to H. . . — [H’ H ]
define the unobservable subspace of the observability matrix kot it Rkas
based on the state estimates at the first time instant a landmark = (Vhy1)CT (9r, )
was detected, i.e., for the single-landmark case to cHoose x [Ty —J(PLy,n, — PRujips) L] (44)
L, Jpr,, ., . As a result of the above modifications, only tlirst estimates
U= |01x2 1 (42)  of all landmark positions and all robot poses appear in the
I Iy, k. filter Jacobians. It is easy to verify that the above Jacobians

which satisfies condition (40). satisfy (40) and (41) for the choice d@J in (42). Thus,

We stress that this is just one of several approaches {Bf FEJ-EKF is based on an error-state system model whose
selecting the matrisU. For instance, one limitation with this Unobservable subspace is of dimension 3.
approach is that, in cases where the initial estimates of the
landmarks are not of sufficient accuracy, the subspace defif&dObservability Constrained (OC)-EKF

in this manner might not_be close to the actual unobservablegyen though the FEJ-EKF typically performs substantially

subspace. To address this problem one can employ advanggfler than the standard EKF (cf. Sections VI and VII), it relies

techniques for landmark initialization (e.g., delayed-state ikeavily on the initial state estimates, since it uses them at all

tialization [Leonard et al., 2002]), to obtain more precise initialme steps for computing the filter Jacobians. If these estimates
i ) ) are far from the true state, the linearization errors incurred

3When multiple (/ > 1) landmarks are included in the state vecldrcan
be chosen analogously, augmented by a new block fbw, By, (k.. may be large, anq cquld degrade the _performgnce_of .the
corresponding to each landmark; (; = 1,2,..., M) [Huang et al., 2008c]. estimator. As a motivating example, consider the linearization



of a general, scalar nonlinear functigfez) around a point:*. We note that the following lemma will be helpful for the

By employing Taylor expansion, we obtain: ensuing derivations:
£7(6) ) Lemma 5.2:The constrained optimization problem (46)-
flx) = fa*) + f'(a")(z — 2*) + T(l" —x*)°  (45) (47) is equivalent to the following:
In this expression, which holds in the intervak, z*), /' min, ||>7:R,€|kij%klk||2 + ||>“<,€+1|k—x;+”k”2 (48)
and f” are the first- and second-order derivatives faf R’ ke
and ¢ € (z,2*). The last term in the above expression, k=1
S48 (z— a2, describes thénearization error, which should st PLy . PRy, = PLiy, “PRy T > Apj,
be kept as small as possible to maintain the validity of the i=ko
linear approximation. Since we do not have control over the (49)

term f”(), to keep the linearization error small, we see thgthare A
the term(x — 2*)? should be kept as small as possible.
An interesting observation is thatif in the above example
is a Gaussian random variable with megrthen the expected
value of (z — z*)? is minimized by choosing:* = #. This

p}%j = pﬁj\] B p%j j—1"
Proof: See Appendix I5 [ ]
Using the technique of Lagrangian multipliers, the optimal
solution to the problem (48)-(49) can be obtained as:

. . . . . R A R
is precisely what the standard EKF does: _at each _tlme_step, it pﬁm = PRy + 5 qﬁ?w = bRy »
employs the mean of the state for computing the linearization A\
Jacobians. This leads to small linearization error for eachy* =% * =B _ 2k 50
. = ; . R R : PLiiir = PLia (50)
time step, but as explained in Section IV-B2, it also changes " e r e 2
the observability properties of the SLAM system model, andith
adversely affects performance. b1

The above dlscusspn shows that, in the context of SLAMy, = (P, — Pro,)—| PRy — Py, T Z Apj,
there are two competing goals that should be reconciled: re- =k

duced linearization errors at each time step and correct obsq\rlv—

ability properties of the linearized system model. Therefore ote that in the case where mult|pl_e landmarks are mcluded
we propose selecting the linearization points of the EKE Swé the state vector, each landmark imposes a constraint anal-
ous to (49), and thus the analytical solution of the optimal

as to minimize the expected squared error of the Iinearizatigﬁ o . ; o
. . Lo o . Inearization points can be obtained similarly [Huang et al.,

points while satisfying the observability conditions (40)-(41)%908C]

This can be formulgted as a constrained m|n|m|zatlon .proble Using the linearization points in (50), the filter Jacobians in

where the constraints express the observability reqwremenﬁs. ]

i . - . the OC-EKF are now computed as follows:

Thus we term the resulting filte®bservability-Constrained ) i o _

(OC)-EKF. 1) The state-propagation Jacobian matrix is calculated as:
S_pe(?ifically, at time-ste_ﬁH-l, we aim at minimiz_ing the lin- & L, J (ﬁRk+l|k — Pryy — %)

earization error of the pomtsj%m ande,H‘k, which appear Ry —

in the Jacobiangb;, and H; 1, subject to the observability

constraint (41). Mathematically, this is expressed as:

51
O1x2 (51)

2) The measurement Jacobian matrix is calculated as:

1 — H// H//
. * 2 k+1 [ Ryt Lk+1}
. min, (/”XR —Xg || p(XR, |Zo:k)dXR, + .
Ry TRtk ’ e ' * = (th+1)CT(¢Rk+1|k> (52)
~ ~ A
[lxes =i o i) @6) [ I (Briw ~ PR — %) L

It is important to note that, compared to the FEJ-EKF,
the OC-EKF not only guarantees the correct observability
wherezg.;, denotes all the measurements available during theoperties of the EKF linearized system model (so does
time interval[0, k]. Note that only the robot pose appears ithe FEJ-EKF), butalso minimizes the linearization errors
the Jacobians of the propagation model (cf. (6)), while both thader the given observability requirements. The simulation
robot pose and the landmark positions appear in the Jacobiand experimental results presented in Sections VI and VII
of the measurement equations (cf. (11)). This justifies tlsbow the OC-EKF attains slightly better performance than the
choice of the above cost function. FEJ-EKF. We also point out that, compared to the standard

In general, the constrained minimization problem (46EKF, theonly change in the OC-EKF is the way in which the
(47) is intractable. However, when the two pdf¢éxr, |zo.x) Jacobians are computed. The state estimates in the OC-EKF
and p(xx+1|z0.x), are Gaussian distributions (which is theare propagated and updated in the same way as in the standard
assumption employed in the EKF), we can solve the probleBKF, as outlined in Algorithm 1. In addition, we stress that
analytically and find a closed-form solution. In the following,both the FEJ-EKF and OC-EKF estimators are also causal
we show how the closed-form solution can be computed for thad realizable “in the real world,” since they do not utilize
simple case where only one landmark is included in the statey knowledge of the true state. Interestingly, although both
vector. The case of multiple landmarks is presented in [Huattte FEJ-EKF and the OC-EKF do not use the latest available
et al., 2008c]. state estimates (and thus utilize Jacobians that are less accurate

s.t. Hii 19y (I’k'oU =0, Vk>k, (47)
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than those of the standard EKF), both simulation tests and reBiheorem 1 therein):
world experiments demonstrate that they perform significantly

better than the standard EKF in terms of consistency and Vh* — VhPVg* = 0
accuracy (cf. Sections VI and VII). < Hgr, +H;, Vg = 0
I, ]
Algorithm 1 Observability Constrained (OC)-EKF SLAM < [HR’“ HLk] {Vg"} =0
Propagation: When an odometry measurement is received: < HU, = 0 (53)
- propagate the robot pose estimate, via (2)-(3) where, using our notatiolVh* = Hp, and —VhP = Hy,
« compute the robot pose propagation Jacobian (cf. (51jre the measurement Jacobian matrices with respect to the
« propagate the state covariance matrix: robot pose and landmark position, respectively, ahgK is
P 3P T 4 G.0.CT the landmark initialization Jacobian Wltlh. respect.to' the robot
etk = PxPup @i+ GrQrGy pose at time-step,. Note that the condition (53) is identical
where to the one in (40) for the special case of a stationary robot.

T
@) = Diag (®}, ,Iy) and Gy, = [ng OZ;M)XQ} Re_markably, t_he space spanr_1ed by the columns of the
) ~ matrix Uy, for this special case, is same as the one spanned
Update: When a robot-to-landmark measurement is recelvegy the columns ofU in (42). To see that, we first need
» compute the measurement residual: to derive an expression fowg*. In [Julier and Uhlmann,

2001], a relative-position measurement model is employed (by
combining a distance and a bearing measurement), and thus
« compute the measurement Jacobian matrix (cf. (52)) the initialization functiong(-) is given by:
o compute the Kalman gain:

1 = Zet1 — B(Xpi)x)

Pr., = 8(XR,, s Zk,, Vk,) = C(¢R,,) (Zk, — Vk,) + PR,

T —
Kii1 =Priaw Z+1Sk;i1 (54)
with . wherez,, is the first measurement of the landmark’s relative
Skt1 :Hg+]Pk+1\kH%+] + Riyt1 position andvy, denotes the noise in this measurement.

. update the state estimate: Evaluating the derivative of this fupctlon with respect to the
robot pose at the current state estimate we have:

Xpt1k+1 = Xpp1k + Ket1Th+1 R
ve* = [L ICGn,,, )m.|

= [12 J(f)Lk'olk'o _kao‘kofl)] (55)
where this last equation results from taking conditional expec-

tations on both sides of (54) and solving far, .
Substituting (55) in the expression for, (cf. (53)), yields:

» Update the state covariance matrix:

T
Ptk = Prype — Kir1Se1 Ky

C. Relation to Prior Work I, 021

At this point, it is interesting to examine the relation of our Us = Oixz I (5 _1 R
analysis, which addresses the general case of a moving robot, 2 (Prigin, ~ PRiyje,-1)
to the previous work that has focused on special cases [Juliie can easily verify thatl, and U span the same column
and Uhlmann, 2001], [Huang and Dissanayake, 2007]. We firsta L,  JIPr, . .| _ U
note that the “correct” observability properties of the FEJ-EKPP 012 1 o
and OC-EKF are attributed to the fact that conditions (40)-(41) 2) Moving robot with one-step motione now consider
hold, which is not the case for the standard EKF. Thus, (4GJe special case studied in [Huang and Dissanayake, 2007],
(41) can be seen as sufficient conditions that, when satisfigtlere a robot observes a landmark, moves once and then re-
by the filter Jacobians, ensure that the observability matmbserves the landmark. In [Huang and Dissanayake, 2007], the
has a nullspace of appropriate dimensions. Note also thety Jacobian relationship that needs to be satisfied in order
due to the identity (27), the conditions (40)-(41) are triviallyo obtain consistent estimation in this case (cf. Theorem 4.2
satisfied by the ideal EKF with null spat&= [n; n; ng] therein) is given by:
(cf. (18)). In what follows, we show that the conditions (40)-
(41) encompass the ones derived in [Julier and Uhimann, A =BV [, (56)
2001] and [Huang and Dissanayake, 2007] as special cas

1) Stationary robot: We first examine the special cas
studied in [Julier and Uhlmann, 2001], where the robot re- fox = ®p,
mains stationary, while observing the relative position of a AT _ —Hil H
single landmark. In [Julier and Uhlmann, 2001] the following ¢ Ly ko
Jacobian constraint for consistent estimation was derived (cf. B. = —Hfi

ce by noting thatJ, [

Zﬁéing our notation, the above matrices are written as:
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Substituting in (56) and rearranging terms yields: °'ZT S (e )
1 1 0.21 = = = Est. err. (FEJ-EKF)
Hy HRko+1(I)RkU - HZkOHRko =0 ~© Estem (OC-EKP)

Lpg,41 /++ Est. err. (Robocentric)
(I) 0 I 0.15 —©— £30 bounds (Ideal-EKF)
Ry, 3x2 3 —=— 30 bounds (Std-EKF)
< |Hg, H ° -1 =0 —%— £30 bounds (FEJ-EKF)
[ Bkot1 LkOH] 03T><2 I _HL HRk 01 —&— 430 bounds (OC-EKF)
ko ° TIRR0000000%506000000060000e0000es, ——— £30 bounds (Robocentric)
= Hko+1(I)kOU1 =0 0.05 0000000

(rad)

which is the same as the condition in (41) for the speci :
case of¢ =1 (i.e., the robot moves only once). Additionally, s ML
it is easy to verify thatH,, U; = 0, which corresponds e
to condition (40). Moreover, it is fairly straightforward to -0z
show that for the case of distance and bearing measureme
considered in [Huang and Dissanayake, 2007], the m&fsix

spans the same column space @sin (42). This analysis -02]]

demonstrates that the Jacobian constraints (40)-(41) deri

ool “le
| eoppeopt ST
R I ]

gt
LA T IV
! (R} e A SN
Ty 1A ~",~.;’,|'«m»' BT AP ,'",',. [
I v r\l‘llj,‘r\”( . . VW "\‘,’I’\',‘\
L3 Te b

]

based on the observability criterion are general, and encomp R U S
the condition of [Huang and Dissanayake, 2007] as a special
case. Fig. 1. Orientation estimation errors vsr Bounds obtained from one typical

realization of the Monte Carlo simulations. Thevalues are computed as the
square-root of the corresponding diagonal element of the estimated covariance
VI. SIMULATION RESULTS matrix. Note that the estimation errors and tlet®unds of the ideal EKF, the

. . . FEJ-EKF, the OC-EKF and the robocentric mapping filter are almost identical,
A series of Monte-Carlo comparison studies were conduct@fich makes the corresponding lines difficult to distinguish.

under various conditions, in order to validate the preceding
theoretical analysis and to demonstrate the capability of the

FEJ-EKF and OC-EKF estimators to improve the consistengyry ime step. Note that this simulation was run sufficiently
of EKF-SLAM. The metrics used to evaluate filter perforTOng to ensure that the filters (approximately) reach their

mance are: (i) the RMS error, and (ii) the average normalizegh - 4y states and thus exhibit divergence (if any) more clearly.
(state) estimation error squared (NEES) [Bar-Shalom et g, g simulation, all filters process the same data, to ensure

2001]. Specifically, for the landmarks we compute the average,r comparison. The five EKF estimators compared are: (1)
RMS errors and average.NEES by averaging the squared MO ideal EKF, (2) the standard EKF, (3) the FEJ-EKF, (4)
and the NEES, respectively, over all Monte Carlo runs, le oc_EKF, and (5) the robocentric mapping filter presented
landmarks, and all time steps. On the other hand, for the rOl?Iqt[Castellanos et al., 2004], which aims at improving the

pose we compute these error metrics by averaging over @&nsistency of SLAM by expressing the landmarks in a robot-
Monte Carlo runs for each time step (cf. [Huang et al., Zoosﬁllative frame.

for a more detailed description).

o . . . For the results presented in this section, a robot with a
The RMS of the estimation errors provides us with a concise : . ;
. . . simple differential drive model moves on a planar surface,
metric of the accuracy of a given estimator. On the othér : . .
: : . : ) at a constant linear velocity of = 0.25 m/sec. The two drive
hand, the NEES is a metric for evaluating filter ConSIStenC9(iheels are equipped with encoders that measure revolutions
Specifically, it is known that the NEES of aN-dimensional quipp

Gaussian random variable follows# distribution with N and provide measurements of velocity (i.e., right and left wheel

. A X vFlocities, v, and v;, respectively) with standard deviation
degrees of freedom. Therefore, if a certain filter is consster&duaI too — 5%u for each wheel. These measurements are
we expect that the average NEES for the robot pose will be o7 :

.USed to obtain linear and rotational velocity measurements for
close to 3 for allk, and that the average landmark NEES wil : . vt ty vp—v
o he robot, which are given by = =™ andw = =",
be close to 2. The larger the deviations of the NEES from thes : . 2 . a
wherea = 0.5 m is the distance between the drive wheels.

values, the worse the inconsistency of the filter. By Stmy'gﬁﬁus, the standard deviations of the linear and rotational

both the RMS errors and NEES of all the filters consider . V3 V2
. ; : ) velocity measurements are, = %o and o, = Y=o,

here, we obtain a comprehensive picture of the estimators . : 2 a

performance réspectively. The robot continuously records measurements of

In the simulation tests presented in this section, two SLAt e relative positions of the landmarks which are placed inside

. . . ! the trajectory circle, with standard deviation equal to 2% of
scenarios with loop closure were considered. In the first case, a . :

. . . he robot-to-landmark distance along each axis.
robot moves on a circular trajectory and continuously observes_

2 landmarks, while in the second case the robot sequentiall ig. 1 shows the results for the robot orientation estimation
observes 20 landmarks in total efrors in a typical realization. As evident, the errors of the

standard EKF grow significantly faster than those of all other
filters, which indicates that the standard EKF tends to diverge.
Note also that although the orientation errors of the ideal EKF,
To validate the preceding observability analysis, we firiEEJ-EKF, OC-EKF as well as the robocentric mapping filter
ran a SLAM simulation where a robot executes 80 loops onramain well within their correspondingz3bounds (computed
circular trajectory, and continuously observes 2 landmarks fabm the square-root of the corresponding diagonal element

A. First Simulation: Always Observing 2 Landmarks
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Ideal-EKF  Std-EKF FEJ-EKF OC-EKF  Robocentric ideal EKF, and substantially better than that of the standard
EKF, both in terms of RMS errors and NEES. This occurs
even though the Jacobians used in the FEJ-EKF and OC-

Robot Position Err. RMS (m)

0.6932 1.1406 0.7093 0.6977 08111 EKF are less accurate than those used in the standard EKF,
Robot Heading Err. RMS (rad) as explained in the preceding section. This fact indicates
0.0634 0.0956 0.0671 0.0641 0.0716 that the errors introduced by the use of inaccurate Jacobians

have a less detrimental effect on consistency and accuracy

Robot Pose NEES L
than the use of an error-state system model with incorrect

3.4643 18.5585 4.4979 3.8850 7.9436 observability properties. Moreover, it is important to note that
Landmark Position Err. RMS (m) the performance of the OC-EKF is superior to that of the
0.7377 1.2554 0.7558 0.7387 0.8726 FEJ-EKF by a small margin. This is attributed to the fact

that the FEJ-EKF has larger linearization errors than the OC-
EKF, since the OC-EKF is optimal by construction, in terms
of linearization errors, under the observability constraints.

Landmark Position NEES
2.2647 18.4959 3.4480 2.9949 7.0308

ROBOT POSE AND LANDMARKTPA(\)BSLIEI(I)N ESTIMATION PERFORMANCE
C. Comparison to Robocentric Mapping Filter

From the plots of Fig. 2, we clearly see that both the FEJ-
: . . EKF and the OC-EKF also perform better than the robocentric
of the estimated covariance matrix), those of the stand pping filter [Castellanos et al., 2004], [Castellanos et al.,
EKF exceed them. Most importantly, ther ounds of the 2007], both in terms of accuracy and consistency. This result

standard EKF continuousljecreaseover time, as if the robot cannot be justified based on the observability properties of the

orientation was observable. However, the robot has no access <. in [Castellanos et al., 2004], [Castellanos et al., 2007],

to any new absolute qrientation information (beyond what tfe landmarks are represented in the robot frame, which can
avallable by re-abserving the same two landmarks), and t shown to result in a system model with 3 unobservable

its orientation covariance shouldot continuously decreasedegrees of freedom [Huang et al., 2008c]. However, in the

at steady state. The results of Fig. 1 further strengthen WHocentric mapping filter, during each propagation saip

claim that in contrast to the ideal EKF, FEJ-EKF, OC-EK landmark position estimates need to be changed, since they

and robocentric mapping filter (cf. Sections IV-B1, V-A, V-Bare expressed with respect to the moving robot frame. As
and VI-C), the incorrect observability properties of the stan; : ; .

A L . ~a result, during each propagation step (terncednposition
dard EKF cause an unjustified reduction in the orientati 9 bropag P ( P

: R [Castellanos et al., 2004], [Castellanos et al., 2007]), all
uncertainty. landmark estimates and their covariance are affected by the
linearization errors of the process model. This problem does
B. Second Simulation: Loop Closure not exist in the world-centric formulation of SLAM, and it

To further test the performance of the five estimators, waould offer an explanation for the observed behavior.
conducted 50 Monte Carlo simulations in a SLAM scenario To test this argument, we first examine the Kullback-Leibler
with loop closure. In this scenario, a robot executes 10 loogivergence (KLD), between the pdf estimated by each filter,
on a circular trajectory and observes 20 landmarks in total. Famd the pdf estimated by its “ideal” counterpart. Specifically,
the results presented in the following, identical robot and sewe compute the KLD (i) between the pdf computed by the
sor models to the preceding simulation (cf. Section VI-A) aleEJ-EKF and that of the ideal EKF, (ii) between the pdf
used, while different sensor noise characteristics are employedmputed by the OC-EKF and that of the ideal EKF, and (jii)
Specifically, the standard deviation for each wheel of the robog¢tween the pdf computed by the robocentric mapping filter
is equal toc = 2%w, while the standard deviation of theand that produced by an “ideal” robocentric mapping filter,
relative-position measurements is equal to 12% of the robathich employs the true states in computing all the Jacobian
to-landmark distance along each axis. Moreover, the robot novatrices. The KLD is a standard measure for the difference
only observes the landmarks that lie within its sensing rangetween probability distributions. It is nonnegative, and equals
of 5 m. It should be pointed out that the sensor-noise levedero only if the two distributions are identical [Cover and
selected for this simulation are larger than what is typicallfhomas, 1991]. By computing the KLD between the estimated
encountered in practice. This was done purposefully, sinpdf and that of the “ideal” filter in each case, we can evaluate
higher noise levels lead to larger estimation errors, which makew close each filter is to its respective “golden standard”.
the effects of inconsistency more apparent. These results pertain to the same simulation setup presented

The comparative results for all filters are presented in Section VI-B.

Fig. 2 and Table I. Specifically, Fig. 2(a) and Fig. 2(b) Since the five filters considered here (i.e., the OC-EKF,
show the average NEES and RMS errors for the robot posiee FEJ-EKF, the ideal EKF, the robocentric mapping filter,
respectively, versus time. On the other hand, Table | preseats the ideal robocentric mapping filter) employ a Gaussian
the average values of all relevant performance metrics for b@pproximation of the pdf, we can compute the KLD in

the landmarks and the robot. As evident, the performance absed form. Specifically, the KLD from an approximation

the FEJ-EKF and the OC-EKF igery closeto that of the distribution, p,(x) = AN (u.,P,), to the ideal distribution,
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Fig. 2. Monte Carlo results for a SLAM scenario with multiple loop closures. (a) Average NEES of the robot pose errors (b) RMS errors for the robot pose
(position and orientation). In these plots, the solid lines correspond to the ideal EKF, the dashed lines to the FEJ-EKF, the dotted lines to the OC-EKF, the
solid lines with circles to the standard EKF, and the dash-dotted lines to the robocentric mapping filter of [Castellanos et al., 2004], [Castellanos et al., 2007].
Note that the RMS errors of the ideal EKF, FEJ-EKF, and OC-EKF are almost identical, which makes the corresponding lines difficult to distinguish.

Po(x) = N(p,mPo), is given by: . —o—rorev
:SCJEKF" I
1 det(PO) . obocentric ~_Jag =
dgp = = In [ —=% ) + tr(P;'P, ‘L :
KL 2( n(det(Pa)) F P Pa) ) =

+ (ko = 1a) TP (1o — pa) — dim(x)> (57) ] s = ]

Fig. 3 presents the KLD over time, between the Gaussian d g w°
tributions computed by the robocentric mapping filter, the FE TP 000000000008000ee00eeROCORT T
EKF and the OC-EKF, and those computed by their respecti
ideal filters (note that the-axis scale is logarithmic). It is
evident that the KLD in the case of the robocentric mappir ]
filter is orders of magnitude larger than in the cases of the FE  1° ¢ E
EKF and the OC-EKF. This indicates that the linearizatio
errors in the robocentric mapping filter result in a wors ‘ ‘
approximation of the ideal pdf. 0 s00 00 ey ° 2000 2500
We attribute this fact to the structure of the filter Jacobians.
During the update step, the structure of the Jacobians Fig. 3. Comparison results of the KLD in the SLAM scenario with multiple

; _ ; ; lgop closures. In this plot, the solid line with circles corresponds to the FEJ-
both the robocentric and the world-centric formulations I§KF, the solid line with crosses to the OC-EKF, and the solid line with squares

quite similar [Huang et al., 2008c]. In both cases, the termsine robocentric mapping filter [Castellanos et al., 2004]. Note thaythe
appearing in the measurement Jacobians are either rotatiginscale is logarithmic. Note that the KLD of the FEJ-EKF and OC-EKF are

matrices. or the robot-to-landmark position vector. Howevé}lmOSt identical, which makes the corresponding lines difficult to distinguish.
the Jacobians employed during the composition step in the
robocentric mapping filter are substantially more complex than
those appearing in the world-centric EKF propagation (cf. (6)%,&1 R

Rk*l I . .
- . . o PR, ®r, } is the estimate for the robot pose change
Specifically, in the robocentric mapping filter, the state vect tween time-stepé — 1 and k, expressed with respect to

is given by (assuming a single landmark for simplicity): the robot frame at time-step — 1, and {R’ZPG,RZGBG} is
(58) the estimate for the transformation between the robot frame

Frxy = [pg Froa pl
- ] ) ) . and the global frame at time-stefp The linearized error
The composition step is described by the following eq“at'onﬁfopagation equation is given by:

Brpe = CT(F=16p,) (" 1pg — = 1pr,) (59)
fegg = M1gg =M1 g, (60) Rip, I
A~ n ~ ~ ~ k—1
fepy = CT (M 19p, ) (" 1pr — ™ 1pp,) (61) Brgo | =3 pL+Ja [Rk_lgG
~ G

. . .. . R,
where ®p; is the estimate of the landmark position with "PL
respect to the robot frame at time-stép(¢{ = k — 1,k),

]T

Rp_133
Pr
J-an ]

(62)
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Fig. 4. Monte Carlo results for a “mini-SLAM” scenario with multiple loop closures where the robot trajectory and all landmarks are confined within a very
small area of 1 mx 1 m. (a) Average NEES of the robot pose errors (b) RMS errors for the robot pose (position and orientation). In these plots, the solid
lines correspond to the ideal EKF, the dashed lines to the FEJ-EKF, the dotted lines to the OC-EKF, the solid lines with circles to the standard EKF, and the
dash-dotted lines to the robocentric mapping filter of [Castellanos et al., 2004]. Note that in this case both the NEES and the RMS errors of the ideal EKF,
FEJ-EKF, OC-EKF, and the robocentric mapping filter are almost identical, which makes the corresponding lines difficult to distinguish.

where become more accurate. The plots of Fig. 4 show the average
CT(Rk,ldA) ) 0 NEES and RMS errors for the robot pose in this scenario.

_ { 032 } _ ftr 2t Interestingly, we observe that in this case the performance of

JL = In ’ JG - O1x2 1 ! . . X

CT(F+—19p,) 0 0 the FEJ-EKF, the OC-EKF, and the robocentric mapping filter
S R e 2 are almost identical This validates the preceding discussion,

—CT (" or,) —JI™Pa and indicates that the representation used in the robocentric

Jr = 012 —1 (63) mapping filter results in performance loss in the case of large
—CT(fr1¢p,) —I%py environments. This may justify the fact that the FEJ-EKF

We note that the state estimates appear in the Jacobian matrftts OC-EKF outperform the algorithm of [Castellanos et al.,
J1, andJ¢ only through the rotation matri€(?-1¢g, ). As 2004], even though all three filters employ a system model
a result, the difference between the ideal and actual Jacobiakéh three unobservable degrees of freedom.
Jr — jL and Jo — jG will On|y contain terms of the form As a final remark, we note that, in Comparison to the FEJ-
C(Rk_lquk) — ¢(®r=1¢p,), and S(Rk_lg{,Rk) — (P14 ). EKF and OC-EKF, the computational cost of the robocentric
The magnitude of these terms is in the same ordérasp,,, Mapping filter is significantly higher. Specifically, both the
which is typically a very small quantity. Thus, the discrepandyEJ-EKF and the OC-EKF have computational cost identical
between the actual and ideal Jacobians is expected to be \injthe standard world-centric SLAM algorithniinear in
small forJ; andJg. the number of landmarks during propagation, anpdratic

On the other hand, id; the estimates for the landmarkduring updates. On the other hand, both the update and
position and for the origin of the global frame with respedhe composition steps in the robocentric mapping filter have
to the robot appear as well. As a result, the differen&@mputational cosfjuadraticin the number of features, which
Jr — Jx will also contain the term&* pe andf+p ., whose results in approximately double overall computational burden.
magnitude can be significantly larger, e.g., in the order of
meters (cf. Fig. 2). Thus, the Jacobialr can be very VIl. EXPERIMENTAL RESULTS

inaccurate. In contrast, the propagation Jacobians in the world,,o sets of real-world experiments were performed to

centric formulation contain terms depending on (i) the robot§ iher test the proposed FEJ-EKF and OC-EKF algorithms.
displacement between consecutive time steps, and (i) ¥ge results are presented next.

rotation matrix of the robot’s orientation (cf. (8) and (9)). Since

both of these quantities can be estimated with small errors, the )

world-centric EKF Jacobians are significantly more accurafe First Experiment: Indoors

than those of the robocentric formulation. The first experiment was conducted in an indoor office
To further test this argument, we ran a simulation of a “minenvironment. The robot was commanded to perform 10 loops

SLAM” scenario, where both the robot trajectory and tharound a square with sides approximately equal to 20 m

landmarks are confined within a small area of ¥ Inm (while (cf. Fig. 5). This special trajectory was selected since repeated

all other settings are identical to the preceding simulatiome-observation of the same landmarks tends to make the effects

In this setup, the estimation errof$pe and #+p;, remain of inconsistency more apparent, and facilitates discerning the

small, and thus the Jacobians of the robocentric mapping filfgrformance of the various filters. A Pioneer robot equipped
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Fig. 5. The MAP estimate of the robot trajectory in the indoor experiment (solid line), overlaid on the blueprint of the building. Thed hakesote the
corners whose exact location is known from the building’s blueprint.
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Fig. 6. (a) NEES of the robot pose errors (b) RMS errors for the robot pose (position and orientation). In these plots, the solid lines correspond to the
standard EKF, the dashed lines to the FEJ-EKF, and the dotted lines to the OC-EKF, the dash-dotted lines to the robocentric mapping filter of [Castellanos
et al., 2004]. Note that both the NEES and the RMS errors of the FEJ-EKF and OC-EKF are almost identical, which makes the corresponding lines difficult
to distinguish.

with a SICK LMS200 laser range-finder and wheel encodecsrners, as well as all other measurements obtained by the
was used in this experiment. From the laser range data, corrasot (including to corners whose location was not knaavn
features were extracted and used as landmarks, while the whg@ri), were processed using a batch maximum a posteriori
encoders provided the linear and rotational velocity measu(®AP) estimator, to obtain an accurate estimate of the entire
ments. Propagation was carried out using the kinematic motkajectory. This estimate, as well as the locations of the known
described in Appendix A. corners, are shown in Fig. 5. This constitutes the ground truth
Because the ground truth of the robot pose could not Bgainst which the performance of the following filters was
obtained using external sensors (e.g., overhead cameras);dmpared: (1) the standard EKF, (2) the FEJ-EKF, (3) the
this experiment, we obtained a reference trajectory by utilizifgC-EKF, and (4) the robocentric mapping filter. Clearly, due
the known map of the area where the experiment took plade.the way the ground truth is computed, the filter errors are
Specifically, the exact location of 20 corners was know@xpected to have some correlation to the errors in the ground
from the blueprints of the building. Measurements to the&ith. However, since these correlations are the same for all
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Std-EKF  FEJ-EKF OC-EKF Robocentric Std-EKF  FEJ-EKF OC-EKF Robocentric

Robot Position Err. RMS (m) Robot Position Err. RMS (m)
0.8209 0.5748 0.5754 0.7160 0.1002 0.0523 0.0522 0.0838
Robot Heading Err. RMS (rad) Robot Position NEES
0.0604 0.0397 0.0397 0.0391 2.8900 2.5197 2.4705 2.8265
Robot Pose NEES Landmark Position Err. RMS (m)
11.0706 3.5681 3.5282 7.2949 0.3812 0.1858 0.1860 0.2755
Landmark Position Err. RMS (m) Landmark Position NEES
1.1041 0.8675 0.8680 1.0957 2.5196 2.0197 1.9818 2.4800
Landmark Position NEES TABLE IlI
8.5033 5.9821 5.9836 9.6691 ROBOT AND LANDMARK POSITION ESTIMATION PERFORMANCE
TABLE I

ROBOT POSE AND LANDMARK POSITION ESTIMATION PERFORMANCE

presents the average values of all relevant performance metrics
for the robot and the landmarks. On the other hand, Fig. 7
four filters, we can still have a fair comparison of their relativehows the trajectory and landmark estimates produced by the
performance. four filters, while Fig. 8 shows the NEES and RMS errors of
The results of NEES and RMS errors for all filters ar¢he robot position over time. We point out that the NEES in
presented in Figs. 6(a) and 6(b) and Table Il. We point othis case pertains only to the robot position, and therefore the
that during the experiment the robot detected a number ‘ofptimal” value for it is 2.
features that were not included in the set of 20 known cornersSimilarly to the results presented in the first experiment, this
(e.g., movable objects such as furniture). Since no groutebt also demonstrates that both the FEJ-EKF and OC-EKF
truth is available for the position of these objects, we onlyutperform the standard EKF and the robocentric mapping
used the 20 known corners for computing the landmarks’ erriiter, and perform very close to each other. In particular,
statistics. From the experimental results it becomes clear tita¢ average RMS errors and the average NEES for the FEJ-
in this particular experiment both the FEJ-EKF and OC-EKEKF and OC-EKF are smaller than the corresponding ones for
outperform the standard EKF and the robocentric mappitige two competing filters. These results, along with those of
filter, and perform almost identically to each other. This agreéise simulations presented in the previous section, support our
with the simulation results presented in the preceding secti@monjecture, which states that the mismatch in the dimension
of the unobservable subspace between the linearized SLAM
B. Second Experiment: Outdoors system and the underlying nonlinear system is a fundamental

In the second experiment, the performance of the FEJ-EKRYS® of filter inconsistency.
and OC-EKF was tested on the Sydney Car Park data set
collected by Guivant and NelfotThe experimental platform VIIl. SUMMARY
is a 4-wheeled vehicle equipped with a GPS receiver, a laser

sensor, and wheel encoders. The kinematic GPS system Walgd thifs hpaper, we have prTjente_d SQFobbser(\j/agli_li;y“-ﬂbaBsed
used to provide ground truth for the robot position with 5 crtudY Of the inconsistency problem in -hase - By

accuracy. Since the GPS has different frequency (up to 2 mparing the ob_servability proper.ties qf the nonlinear SLAM
from the other sensors, we interpolated the GPS data to ob Fem quel with those of the linearized error-state model
the ground truth at each time step. Wheel encoders w ployed in the EKF, we proved thqt the ot.)serva'ble subspace
used to provide odometric measurements, and propagat nthe standard EKF is always of h_|gher dlmen5|on than the
was carried out using the Ackerman model. In this particulg servable subspace of the underlying nonlinear system. As a

application, 60 mm steel poles covered with reflective taﬁgsg!t’ th_e cova?ar;ce estimates of thf‘ EKF un(_jefrgo re(_jucu_on
were used artificial landmarks. With this approach, it is easy't% .Ilreblcnonf]_ ?] .t N s_tate space V\;.ere nptln ormBatlond IS
extract the features and the measurement model becomes \?3'6‘) able, which IS a primary cause ol inconsistency. based on

accurate. Since the true position of the landmarks was aﬁg :bo_\/e ar;aéstli:s,bwe gave_propose;d aSrlieAv'\\/Amgthodology fr?r
obtained with GPS, a true map was available for comparis esign ot ERF-base est_lma_tors or - Dur approac
purposes dictates selecting the linearization points of the EKF so as

In this test, because the ground truth for the robot orientatifh €nNsure that the rgsultmg linearized system model has three
was still unavailable, the ideal EKF could not be tested, awobservable d|rect|-ons. ) ) )
therefore the same filters as in the first experiment were com-/é Propose two filters, the First Estimates Jacobian (FEJ)-
pared: (1) the standard EKF, (2) the FEJ-EKF, (3) the OC-EKEKF and the Observability Constrained (OC)-EKF, which
and (4) the robocentric mapping filter. The comparison resuidhere to the above design methodology. Specifically, in the

are shown in Table 111, and Figs. 7 and 8. Specifically, Table I[fEJ-EKF all Jacobians are calculated using the first available
’ ’ estimate for each state variable, while in the OC-EKF the

4The data set is available at: www-personal.acfr.usyd.edu.au/nebot/datdieearization points are obtained in closed form by solving
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Fig. 7. The robot trajectory and landmark estimates. In this plot, the solid line depicts the ground truth obtained from GPS, while thé) lzorethé
known beacon positions. The dashed line with crosses and the crasgdsr{ote the estimated trajectory and landmarks, respectively, corresponding to the
standard EKF, the dashed line and stagsdorrespond to the FEJ-EKF, the dotted line and circigddq the OC-EKF, and the dash-dotted line and x-crosses
(x) to the robocentric mapping filter of [Castellanos et al., 2004].
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Fig. 8. (a) NEES of the robot position errors (b) RMS errors for the robot position. In these plots, the solid lines correspond to the standard EKF, the dashed
lines to the FEJ-EKF, the dotted lines to the OC-EKF, and the dash-dotted lines to the robocentric mapping filter of [Castellanos et al., 2004]. Note that both
the NEES and the RMS errors of the FEJ-EKF and OC-EKF are almost identical, which makes the corresponding lines difficult to distinguish.

an observability-constrained minimization problem (i.e., mini- APPENDIXA

mizing the expected linearization errors subject to the observ- UNICYCLE MODEL

ability constraints). As a result, the linearized system models|; the unicycle model is used, and we employ the ap-
employed in these two filters have the desirable observabilfyoximation that the velocity and heading are constant
properties. Extensive simulation and experimental tests verfyring each propagation interval, we obtafrxp, ,, =

that the FEJ-EKF and the OC-EKF perform significantl 6t 0w, 01T, Whereu,, = [vm, wm,|T are the
better, in terms of both accuracy and consistency, than Higear and rotational velocity measurements, respectively, and
standard EKF and the robocentric mapping filter. This occuss is the sampling period. Substitution in (2)-(3) yields the
despite the fact that the Jacobians used in the FEJ-EKF agfhiliar robot pose propagation equations:

OC-EKF are evaluated using less accurate linearization points.

These results indicate that ensuring the correct observability N .
properties of the linearized system model is a crucial require- PResije = PRy
ment.

Umy, 6tc(q§Rk\k)
Uiy 0tS(PRy,,,)

PRyirje = PRypy + Wiy O (65)

Similarly, the commonly used expressions for the Jaco-
bian matrices®, and G, can be derived from (6), (7)

(64)
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and (9). Specifically, l%y substituting the robot displacemeifttis important to note that sincé is a function ofp and

bR,y = [vm, 0t 0] into (7), we have: 1 only, the termsg—z and g—h are also functions op and
. only. As a result, the matrixA, is a function ofp and v,
10 _“mz«&s(bem) whose exact structure depends on the particular measurement
Pr. = |0 1 vy dte(dr,,) (66)  function .

0 0 1
The first-order (i.e.k = 1) Lie derivatives are calculated

To derive the Jacobian matr&7, with respect to the 0dom- 5.qrding to the definition (70), and employing the results
etry vectoruy, instead of®*xp,,,, we apply the chain rule of (71) and (72), as:

of differentiation as follows:
Ry
o _ a(ka+1) % 6( kXRlc+1)
0 = ki) A
F a(kaRkJrl) HCE I Ouy, Wmy,

(67)

. . . . Ll p=|8 0ok ng( f
The first term is the Jacobian with respect to the robot pose *~f: ap Y Tw 1

change (displacement and orientation change), evaluated at the

estimate’*%p, ,,, and is given in (9). The second term is the — A, {l_czc‘m" - Sgsd)R } — A, {sff] (74)
Jacobian of the robot pose change with respeat,toSince 5 (s0cOR — cOsr) I
Rexp,., = [vgdt 0 widt]”, this Jacobian is simply given do 0
by: Ry [ k k } ply g LL}L: [%’; %} [%ﬁ f2 :AO 1 (75)
LS. TRVD B (68)
ouy, Uy, 0 6t i .
We thus see that both the zeroth- and the first-order Lie
Therefore, substitution of (68) and (9) into (67) yields: derivatives are functions op and only. This is the base

- case for the proof by induction.
5tC(¢Rk|k) 0
%, = 5t5(¢3RMk) 0 (69) Now assume thé&-th order Lie derivativesL’f?ih, i=1,2,

0 5t are functions ofp and« only.® Then their gradients can be

We thus showed how the commonly used expressions for (E?_mputed by:
(4), as well as the state and noise Jacobians can be derived.

APPENDIX B d(Lk h) 0 -
PROOF OFLEMMA 4.1 d}i = |3,(Lgh) %(Lﬂ_h)} [
The proof is based on mathematical induction, by verifying
the structure of théth order Lie derivatives. We define the Lie
derivative of aC> functions on an open subseé c R%(X)
along an analytic vector fielfl on S, as:

Leh = (dh)f (70)

wheredh is the gradient of, with respect to the state vector
x. We start by noting the following identities, which will be
useful in the ensuing derivations.

S

} (76)

Ay,

i

where A, is a function ofp and+ only. Thus, the(k+ 1)-th
order Lie derivatives are computed as follows:

dp
9 fé) dx
it e - [ i 5]
dx P ’ per )
- —cOcpr — sOs —C
) = [-c) —s0 0 cf s0] (71) = Ay, [1(890i§— ceszg)] = Ak { wﬂ (0
Y 1 [51, 5z sy 61:} ’ | | '
— = | 2z, % oz =
P P P P gx 0
s s =[gatn osn][E]s -]
p [s cl p st c ] (72) (78)

wheredz £ T, — TR, 5y e YL — YR, andg = Y+ Pr.
We first prove that ifx has the special structure shown
in (15), then the zeroth- and first-order Lie derivatives ar€learly, the(k + 1)-th order Lie derivatives are also functions
functions ofp and« only. of p and only, and the proof by induction is complete.
By applying the chain rule of differentiation, the zeroth-
order (i.e.,k = 0) Lie derivative is computed as follows:

d
pop e dh _ {i’ @} pr (73) . . . . o
dx op OV | |dp SExtension of this analysis to the case of mixeth order Lie derivatives is
——— tdx straightforward, though more involved in terms of notation; thus, it is omitted
Ao to preserve presentation clarity.
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APPENDIXC Using (79) and (80), as well as the fact that the tRigg,,,
PROOF OFLEMMA 4.2 and P, are independent of the linearization points, the

Employing the expressions for the Lie derivatives derive@!lowing equivalence is immediate:
in Appendix B, we have: tr (PRRW) + tr (P;m\k) +

d(L°h d(L°h,, min . 2 N 2
(df( 1),, ey a( dlxi)’ xgk‘k, Xk Hka\kix}ik\k” + ||Xk+1\k*X;+1|k||
d(L{ h1) d(Lg hn) . X L X . )
dG = span dx o dx &, min ||ka\k “XRyk H + ”Xk+1|k_xk+1|kH
R Xt fk
d(Lg h1) d(L§, hn) . o .
— e e We now derive the following identities for the observability
) dp dp T constraint (47) (cf. (36) and (42)):
AO |:iz:| ) ) Ag gj )
s i | Hp 1@y @, U=0
Al‘ dx , A" dx . . k N
= span 1 {gﬂ ’ 1 {g}j ’ <:>HLK+1 I, -J (pLMk_kaowo_ > ApRJ_) IL,|U=0
j=ko+1
N dp k—1
n A~
Ak] {%Z)} o kj {%}j @pszrl\k - p}}k\k =PLyyk, ~ p}}'k\k—l + Z Ap*Rj
—
where the index; = 1,2 corresponds to the vectofs and ) !
f,, and the superscriptin A’ to the measurement functionNiS completes the proof.
h; (i.e.,i=1,2,...,n). Clearly, the row-span of all the above
vectors is identical to the row-span &¢ and 4%, i.e., ACKNOWLEDGEMENTS
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