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Abstract— In this paper the notion of generic final–state
asymptotically determinable hybrid system is introduced and
sufficient conditions for a linear hybrid system to be generic
final–state asymptotically determinable are given. These condi-
tions show that generic final–state asymptotic determinability
can be verified even if each of the continuous subsystems of the
hybrid system is not completely observable.

I. INTRODUCTION

Hybrid systems are powerful abstractions for modelling
complex systems so that they have been used in a number
of applications to provide models better reflecting the nature
of control problems such as the ones related to embedded
system design where discrete controls are routinely applied
to continuous processes. Their theoretical properties are still
the subject of intense research: in particular, observability
is one of the fundamental system properties that form the
foundations of control. The notion of observability is non
trivial and attention must be paid to the implications of
the definitions used. In traditional continuous and discrete–
time systems, the concept of observability has been studied
extensively. Among the seminal papers on the topic, Sontag
in [5] introduces precisely a set of observability–related
definitions and examines the implications among the various
concepts of observability.

In this paper we introduce the definition of generic final–
state asymptotically determinable hybrid system. Roughly
speaking, a hybrid system is generic final–state asympto-
tically determinable if any generic input/output experiment
permits the asymptotic determination of the state.

...
The paper is organized as follows: in Section II, we

introduce the notion ofgeneric final–state asymptotically de-
terminablehybrid system and in Section III we give sufficient
conditions for a linear hybrid system to be generic final–state
asymptotically determinable. Finally, in Section IV some
examples are provided and in Section V we offer concluding
remarks.

The work has been conducted with partial support by the European
Community Projects IST-2001-33520 CC (Control and Computation) and
IST-2001-32460 HYBRIDGE, and by CNR PF–MADESSII SP3.1.2.

II. GENERIC FINAL–STATE ASYMPTOTIC
DETERMINABILITY FOR HYBRID SYSTEMS

A hybrid systemH is a tuple

H = (Q,Σ,Ψ, ϕ, φ, η,X,U, Y, f, h, r)

whereQ = {q1, · · · , qN} is the finite set of discrete states
(locations) withN = |Q|, Σ is the finite set of possible input
and internal events,Ψ is the finite set of discrete outputs,
X ⊆ IRn, U ⊆ IRm, andY ⊆ IRp are the continuous state,
control and output domains, respectively. The functionsϕ, φ
andη characterize the dynamics of the discrete states of the
system as follows:

q(k + 1) ∈ ϕ (q(k), σ(k + 1)) (1)

σ(k + 1) ∈ φ
(
q(k), x(t−k+1), u(t

−
k+1)

)
(2)

ψ(k + 1) ∈ η (q(k), σ(k + 1), q(k + 1)) (3)

where q(k) ∈ Q and ψ(k) ∈ Ψ are, respectively, the
location and the discrete output after thek-th input event
σ(k) ∈ Σ

⋃
{ε}, andtk denotes the unknown time at which

this event takes place The finite setΣ is composed by both
internal events, auto-generated by the hybrid system on the
basis of the values of the continuous statex and inputu,
and exogenous input events, whose enabling condition may
or may not depend onx andu. The eventε is thesilent event
and it is introduced to model different possible situations for
the discrete dynamics. For example, ifφ(q, x, u) = {ε}, then
there is no discrete transition enabled for the given values of
x andu while if φ(q, x, u) = {σ, ε}, then it is possible either
to let time pass or to take the discrete transition associated to
σ. Moreover, ifφ(q, x, u) = {σ}, then the discrete transition
associated toσ is forced to occur. This is useful, for example,
to model internal transitions due to the continuous state
hitting a guard. The set–valued functionsϕ : Q×Σ → 2Q\{}
andη : Q×Σ×Q→ Ψ are the transition and output functions
respectively. The functionφ : Q×X × U → 2Σ∪{ε} \ {} is
the set–valued function specifying the possible events at each
location for given values of the continuous statex(t) ∈ X
and continuous inputu(t) ∈ U of the system.
The functionsf : Q ×X × U → IRn andh : Q ×X → Y
define the dynamics of the continuous variables of the hybrid



systems. For linear hybrid systems they are assumed to be
linear and time-invariant:

ẋ(t) = f(qi, x(t), u(t)) = Ai x(t) +Bi u(t) (4)

y(t) = h(qi, x(t)) = Ci x(t) (5)

wherey(t) ∈ Y is the continuous output of the system and
Ai ∈ IRn×n, Bi ∈ IRn×m, Ci ∈ IRp×n depend on the current
plant locationqi.
Finally, the function r : Q × Q × X → X describes
the continuous state resets associated to the hybrid system
transitions. For each transitionqi → qj the reset function is
assumed to be affine and described by

x(tk) = x(t+k ) = r(qi, qj , x(t−k )) = R1
ij x(t

−
k ) +R0

ij (6)

where tk denotes the transition time andR1
ij ∈ IRn×n,

R0
ij ∈ IRn. We assume that the hybrid systemH is subject to

an unbounded sequence of events, never reaches a blocking
condition and that there are no infinitely fast event sequences.
In this paper we investigate generic final–state asymptotically
determinability for linear hybrid systems, defined as follows:

Definition 1: A hybrid systemH is generic final–state
asymptotically determinableif there exists an integerK finite
and large enough such that, for any initial configuration
(q0, x0) and any inputsσ(k) andu(t), q(k) can be identified
for any k ≥ K andx(t) can be identified fort → ∞ from
the outputsψ(k) andy(t).

III. SUFFICIENT CONDITIONS FOR GENERIC
FINAL–STATE ASYMPTOTIC DETERMINABILITY

In [1] and [2], a class of generic final–state asymptoti-
cally determinable hybrid systems had been identified and
a scheme of hybrid observers that achieve asymptotic and
exponential hybrid state estimation had been described. To
this end, the notion of current–location observability of
hybrid systems had been introduced. A hybrid system is
current–location observableif, after an initial transient of
a bounded numberK of steps, the locationq(k̄), can be
determined for anȳk ≥ K, from the knowledge of the output
signalψ(k) from k = 1 to k = k̄, for any initial configuration
(q0, x0) and any inputsσ(k) and u(t). Hence, current–
location observable hybrid systems are generic final–state
determinable with respect to the discrete state. In general,
as shown in [1], for anȳk ≥ K, the locationq(k̄) belongs
to an easy–to–compute subsetEO of Q.
The following theorem, obtained by extending the results
in [2], gives a class of generic final–state asymptotically
determinable hybrid systems:

Theorem 2:A linear hybrid systemH is generic final–
state asymptotically determinable if

1) H is current–location observable;
2) H remains in each locationqi a bounded time greater

than or equal to a timeDm, i.e.

0 < Dm ≤ tk+1 − tk < ∞ (7)

3) for eachqi ∈ EO, there exists a gain matrixGi such
thatAi −GiCi has distinct eigenvalues and

α(Ai −GiCi) + max

0,
log

[
max

qj∈Reach(qi)
‖TiR

1
ijT

−1
j ‖

]
Dm

 < 0

whereα(·) denotes the spectral abscissa, Reach(qi) is the
set of locations reachable in one step fromqi, andTi is a
transformation matrix diagonalizingAi −GiCi.

If one can impose the sojourn time1 in each location, then
the following corollary may be used:

Corollary 3: Given a current–location observable linear
hybrid systemH, if all the pairs (Ai, Ci) are completely
observable then there exists a minimum dwell timeDm > 0
such that ifH remains in each locationqi a bounded time
greater than or equal toDm, thenH is generic final–state
asymptotically determinable.

The sufficient conditions given in Theorem 2 do not hold,
for example, for linear hybrid systems with undetectable (i.e.
unstable and unobservable) dynamics associated to at least
one location inEO. In fact, in this case. condition 3) cannot
be fulfilled.

In the sequel, sufficient conditions for generic final–state
asymptotic determinability for linear hybrid systems with
undetectable dynamics will be given. To this end, for each
qi ∈ EO, let us consider the Kalman decomposition of the
continuous state dynamics (4–5):

ẋOi(t) = AO
i xOi(t) +BO

i u(t) (8)

ẋNi(t) = AP
i xOi(t) +AN

i xNi(t) +BN
i u(t) (9)

y(t) = CO
i xOi(t) (10)

where xOi and xNi respectively stand for the observable
and unobservable state components, which are related to the
original state space by the transformation[

xOi

xNi

]
= Tix =

[
TO

i

TN
i

]
x, (11)

x = T−1
i

[
xOi

xNi

]
=

[
T ′Oi T ′Ni

] [
xOi

xNi

]
(12)

where TO
i ∈ IRnOi×n, TN

i ∈ IRnNi×n, T ′Oi ∈ IRn×nOi

,
T ′Ni ∈ IRn×nNi

, nNi is the dimension of the unobservable
subspace andnOi = n−nNi. The matricesT ′Oi andT ′Ni are
such that Im{T ′Oi } = Im {O(Ai, Ci)T } and Im{T ′Ni } =
Ker {O(Ai, Ci)}, whereO(Ai, Ci) is the observability ma-
trix of the pair (Ai, Ci). If for some i the system (4–5) is
observable, i.e. rankO(Ci, Ai) = n, then nOi = n and

1Maximum dwell-time in the notation of [4].



nNi = 0. Under the given state space transformation, The
resets (6) for thek-th transition fromqi to qj become

xOj(tk) = rOj(qi, qj , xOi(t−k ), xNi(t−k )) = (13)

TO
j R

1
ijT

′O
i xOi(t−k ) + TO

j R
1
ijT

′N
i xNi(t−k ) + TO

j R
0
ij

xNj(tk) = rNj(qi, qj , xOi(t−k ), xNi(t−k )) = (14)

TN
j R1

ijT
′O
i xOi(t−k ) + TN

j R1
ijT

′N
i xNi(t−k ) + TN

j R0
ij

The following theorem gives sufficient conditions for gene-
ric final–state asymptotic determinability of current–location
observable hybrid systems with unobservable (possibly un-
detectable) subsystems.

Theorem 4:A linear hybrid systemH is generic final–
state asymptotically determinable if

1) H is current–location observable;
2) the graph describing the discrete–evolution ofH con-

tains only one cycle of locationsC;
3) H remains in each locationqi at least a timeDm and

no more than a timeDM , i.e.

0 < Dm ≤ tk+1 − tk ≤ DM < 1 (15)

4) for at least one locationq`1 ∈ C the following condition
is verified

R1
`S`1 T

′N
`S

TN
`S

· · · T ′N`2 TN
`2 R

1
`1`2 T

′N
`1 TN

`1 = 0 (16)

whereC = {q`1 , q`2 , . . . , q`S
};

5) there existε ∈ (0, 1) such that

DM ≤ ε

RN

[
(νA + 1)S − 1

] (17)

and matricesGi such that

e(S−1)αADM

[
eαF Dm + νP

eαADM −eαF DM

αA − αF

]
<

1− ε

2S−1RX
(18)

with

RN = ‖R1
`S`1

T ′N`S
‖ · ‖TN

`1
‖

∏S−1
i=1 ‖TN

`i+1
R1

`i`i+1
T ′N`i

‖
νA = max

i=1,...,S

{
‖AN

`i
‖ ·max[1, eα(AN

`i
)]
}

αA = max
i=1,...,S

|α(AN
`i

)|

αF = max
i=1,...,S

α(AO
`i
−G`i

CO
`i

)

νP = max
i=1,...,S

‖AP
`i
‖

RX = max
X∈{O,N}

‖R1
`S`1 T

′X
`S

‖ · max
X∈{O,N}

‖TX
`1 ‖·

S−1∏
i=1

max
X,Z∈{O,N}

‖TX
`i+1

R1
`i`i+1

T ′Z`i
‖

(19)

where α(·) denotes the spectral abscissa. Parameters (19)
are given forAi with distinct unobservable eigenvalues,
diagonalizable observable closed-loop dynamics, andTi such
thatAN

i andAO
i −GiC

O
i are diagonal.

Proof: Extending the methodology for hybrid observer
design proposed in [1], [2], the dynamics of the continuous
observer is:˙̃x(t) = 0, if q̃ 6∈ EO, and

˙̃xOi(t) = Fi x̃
Oi(t) +BO

i u(t) +Gi y(t)
˙̃xNi(t) = AP

i x̃Oi(t) +AN
i x̃Ni(t) +BN

i u(t)
(20)

if q̃ = {qi} ∈ EO, whereAO
i , BO

i , CO
i , AN

i , AP
i andBN

i

are as in (8–10),Fi = AO
i − GiC

O
i , and the observer gain

matrixGi ∈ IRnOi×p is the design parameter used to set the
velocity of convergence of the observable componentsx̃Oi

to xOi, in each locatioñq ∈ EO.
The continuous–time dynamics (20) are integrated over no-
empty time intervals[tk, tk+1). At time tk+1, when a tran-
sition to locationqj takes place, the plant observer state is
reset according to (13–14) as follows

x̃Oj(tk+1) = rOj(qi, qj , x̃Oi(t−k+1), x̃
Ni(t−k+1))

x̃Nj(tk+1) = rNj(qi, qj , x̃Oi(t−k+1), x̃
Ni(t−k+1))

(21)

Notice that since the location observer instantaneously identi-
fies the hybrid plant transitions, then the continuous observer
dynamics switching and resets occur synchronously with the
hybrid transitions and resets at timetk. To be more precise,
from the hypothesis of current-location observability of the
hybrid systemH it follows that there exists a positive integer
K such that the current location of the hybrid system is
properly identified for anyk ≥ K. Moreover, after at most
|EO| additional transitions, say at timet`1 > tK , the hybrid
system reaches the locationq`1 and starts repeating forever
the cycleC. Then, asymptotic convergence of the continuous
observation errorζ(t) = x̃(t)− x(t) is analyzed fort ≥ t`1 .
According to the transformation in (11), the observation error
ζ is decomposed into the components(ζOi , ζNi), where[

ζOi

ζNi

]
=

[
x̃Oi − xOi

x̃Ni − xNi

]
=

[
TO

i

TN
i

]
ζ (22)

ζ = T ′Oi ζOi + T ′Ni ζNi (23)

and is subject to

ζ̇Oi(t) = Fiζ
Oi(t)

ζ̇Ni(t) = AN
i ζ

Ni(t) +AP
i ζ

Oi(t)
(24)

By (24) and (23), fort ∈ [tk, tk+1), beingq = qi,

ζ(t) =
[
T ′Oi eFi(t−tk)TO

i + T ′Ni eAN
i (t−tk)TN

i

+ T ′Ni

∫ t−tk

0

eAN
i τAP

i e
Fi(t−tk−τ)dτ TO

i

]
ζ(tk)

and, by (6) and (21)

ζ(tk+1) = R1
ij ζ(t

−
k+1) =

R1
ij

[
T ′Oi eFi(tk+1−tk)TO

i + T ′Ni eAN
i (tk+1−tk)TN

i

+ T ′Ni

∫ tk+1−tk

0

eAN
i τAP

i e
Fi(tk+1−tk−τ)dτ TO

i

]
ζ(tk)



Consider now an evolution of the hybrid systemH along the
cycle C = {q`1 , q`2 , . . . , q`S

}, starting from locationq`1 at
time tk and here ending at timetk+S . We have

ζ(tk+S) =
S∏

i=1

{
R1

`i`i+1

[
T ′O`i

eF`i
(tk+i−tk+i−1)TO

`i
+

T ′N`i
eAN

`i
(tk+i−tk+i−1)TN

`i
+ T ′N`i

∫ tk+i−tk+i−1

0

(25)

eAN
`i

τAP
`i
eF`i

(tk+i−tk+i−1−τ)dτ TO
`i

]}
ζ(tk)

The matrix multiplyingζ(tk) can be rewritten as the sum of
2S terms

MX`1 ,...,X`S
= R1

`S`1 Y
X`S

`S
. . . Y

X`2
`2

R1
`1`2 Y

X`1
`1

where eitherX`i = O or X`i = N , and

Y O
`i

= T ′O`i
eF`i

(tk+i−tk+i−1)TO
`i

+ T ′N`i
·∫ tk+i−tk+i−1

0

eAN
`i

τAP
`i
eF`i

(tk+i−tk+i−1−τ)dτ TO
`i

Y N
`i

= T ′N`i
eAN

`i
(tk+i−tk+i−1)TN

`i

The most critical term is

MN,...,N = R1
`S`1 Y

N
`S

. . . Y N
`2 R1

`1`2 Y
N
`1 ,

since it is composed of unobservable dynamics only, whose
evolutions are not modifiable by observer feedbacksGi.
TermsY N

`i
can be rewritten as

Y N
`i

= T ′N`i

[
eAN

`i
(tk+i−tk+i−1) − I

]
TN

`i
+ T ′N`i

TN
`i
,

where the exponential term, forDM < 1, can be bounded
as follows ∥∥∥eAN

`i
(tk+i−tk+i−1) − I

∥∥∥ ≤ νA DM (26)

with νA is as in (19). MatrixMN,...,N can be written as the
sum of 2S terms, where by condition (16) the one without
any exponential matrix is null. Then, forDM < 1, we have

‖MN,...,N‖ < RN

[
(νADM + 1)S − 1

]
(27)

< RN

[
(νA + 1)S − 1

]
DM

whereRN is as in (19). Hence, forε such that condition (17)
holds, we have‖MN,...,N‖ < ε.
Moreover, for the other2S − 1 terms, MX`1 ,...,X`S

6=
MN,...,N , we have2∥∥∥eF`i

(tk+i−tk+i−1)
∥∥∥ ≤ eαF Dm∥∥∥∥∫ tk+i−tk+i−1

0

eAN
`i

τAP
`i
eF`i

(tk+i−tk+i−1−τ)dτ

∥∥∥∥ ≤
νP
eαADM − eαF DM

αA − αF∥∥∥eAN
`i

(tk+i−tk+i−1)
∥∥∥ ≤ eαADM

2For diagonal matricesD, ‖eDt‖ ≤ eα(D)t, ∀t ≥ 0 (see [3]).

whereνP , αA andαF are as in (19), and

‖MX`1 ,...,X`S
‖ ≤ RXe

kOαADM ·[
eαF Dm + νP

eαADM − eαF DM

αA − αF

]kN

with kO and kN being the number ofO and N terms,
respectively, inX`1 , . . . , X`S

, andRX is as in (19). Then
the sum of the2S − 1 termsMX`1 ,...,X`S

6= MN,...,N , is
upper bounded by

2SRXe
(S−1)αADM

[
eαF Dm + νP

eαADM − eαF DM

αA − αF

]
Then, by choosingGi according to (18), we have from (25)

‖ζ(tk+S)‖ <
[∑

‖MX`1 ,...,X`S
‖
]
‖ζ(tk)‖ < ‖ζ(tk)‖

This shows that the value of the norm of the observation
error after each cycleC = {q`1 , q`2 , . . . , q`S

} decreases and
this concludes the proof.

Remark 5:ConstraintDM < 1 in (15) is introduced
to obtain a very simple form for condition (17). Similar
results can be obtained forDM > 1, replacing (17) with a
polynomial constraint forDM derived from (27).

Remark 6:Slightly more involved expressions for
parameters in (19) can be given when eitherAi has multiple
unobservable eigenvalues or the observable closed-loop
dynamics is defective.

Equation (16) is a geometric condition on the dimension
and orientation of the unobservable subspaces, as well as on
the reset mappings between them, under which continuous
state determinability can be achieved for the hybrid system
by switching between the subsystems. However, continuous
state determinability can be gained only if the switching is
fast enough. In fact, constraint (17) provides an upper bound
for the sojourn time in each location for the switching to
be effective. Finally, condition (18) expresses how fast the
observation dynamics should be in order to overcome the
possible unstability of the unobservable evolutions.

IV. EXAMPLES

In this section, some examples of final–state asympto-
tically determinable hybrid systems are given in order to
illustrate the results of Theorem 4.
In geometric condition (16) both the orientation of the
unobservable subspaces and the reset maps play a role. As an
example, consider a hybrid system with a two dimensional
continuous space and a two–location cycle with coincident
unobservable subspaces, e.g.T ′N1 = T ′N2 =

[
0 1

]T
. If

one of the reset map is the2 × 2 permutation matrix, e.g.

R1
12 =

[
0 1
1 0

]
, then (16) is satisfied with̀1 = 1, `2 = 2

and final–state determinability may be achieved. In fact, the



second component of the state space is unobservable for both
subsystems, but at each switching fromq1 to q2 its value
is mapped into the first component, which is observable.
Hence, after each transition toq2, the component that was
not observable can be recovered.

On the other hand, if the reset maps are the identity matrix
but the unobservable subspaces have a trivial intersection,
e.g. T ′N1 =

[
1 0

]T
and T ′N2 =

[
0 1

]T
, then (16) is

satisfied. In fact, both components from time to time become
observable.
As a final example, consider a three–location hybrid system,
with locationsq1, q2, q3 connected in a cycleq1 → q2 →
q3 → q1, continuous dynamics in (4–5) given by

A1 =


− 2258

3125 − 1996
3125

1996
3125

998
3125

504
3125 − 6502

3125 − 5998
3125 − 2999

3125

16049
12500 − 2003

3125 − 31963
12500 − 4011

3125

3931
6250 − 989

3125 − 8047
6250 − 3961

6250

CT
1 =


1
10

6
5

4
5

2
5



A2 =


− 3163

12500
777
6250 − 436

3125 − 401
6250

411
3125 − 451

6250
311
6250

401
12500

− 411
3125

777
12500 − 747

12500 − 401
12500

− 193
3125

213
6250 − 143

6250 − 47
3125

CT
2 =


4
5

− 2
5

2
5

1
5



A3 =


− 1

100 0 0 1
250

0 1
200

1
250 0

0 0 −2 0

0 0 0 −5

 CT
3 =


0

0

1

1


and no continuous state resets during transitions, i.e.R1

ij = I
andR0

ij = 0 in (6). Computing a Kalman decomposition in
observable and unobservable components, we obtainnO1 =
nN1 = nO3 = nN3 = 2, nO2 = 1, nN2 = 3 and
transformation matrices (11–12) as follows

T1 =

 TO
1

TN
1

 =


9/20 2/5 −2/5 −1/5
2/5 −1/5 −4/5 −2/5
−4/5 2/5 −9/10 4/5
−4/5 2/5 −2/5 −1/5



T−1
1 =

[
T ′O1 T ′N1

]
=


4/5 0 0 −4/5
8/5 −1 0 2/5
0 −4/5 −2/5 0
0 −2/5 4/5 −1



T2 =

 TO
2

TN
2

 =


−4/5 2/5 −2/5 −1/5

0 1/5 0 2/5
1/5 0 −2/5 0
0 1/5 1/5 0



T−1
2 =

[
T ′O2 T ′N2

]
=


−4/5 −2/5 9/5 2
2/5 1/5 8/5 4
−2/5 −1/5 −8/5 1
−1/5 12/5 −4/5 −2



T3 =

 TO
3

TN
3

 =


0 0 0 1
0 0 1 0
0 1 0 0
−1 0 0 0



T−1
3 =

[
T ′O3 T ′N3

]
=


0 0 0 −1
0 0 1 0
0 1 0 0
1 0 0 0


In the transformed space, dynamics (8–10) are given by

AO
1 =

[
−2 0

0 −4

]
, CO

1 =
[

2 −2
]

AN
1 =

[
1

100 0

0 − 1
250

]
, AP

1 =

[
− 1

250 0

0 0

]

AO
2 = −2/5, CO

2 = −1

AN
2 =


0 0 0

0 1
100 0

0 0 − 1
100

 , AP
2 =


− 1

500

0

0



AO
3 =

[
−5 0

0 −2

]
, CO

3 =
[

1 1
]

AN
3 =

[
1

200 0

0 − 1
100

]
, AP

3 =

[
0 1

250

− 1
250 0

]
Since

R1
31 T

′N
3 TN

3 R1
23 T

′N
2 TN

2 R1
12 T

′N
1 TN

1 =
T ′N3 TN

3 T ′N2 TN
2 T ′N1 TN

1 = 0

condition (16) is verified and final–state determinability can
be achieved if the system switches fast enough. By (19),
RN = 4.3554 and νA = 0.01, the upper boundDM <
7.5773 for the sojourn time is obtained from (17) withε = 1.
ChoosingDM = 7.5, (17) is verified withε = 0.9898.
To complete the observability test, matricesGi for which
(18) holds should be determined. Since the cycle has three
locations,S = 3. By (19), αA = 0.01 and νP = 0.004.
MatricesGi are chosen such thatαF = −10. Then, matrices
TO

i andT ′Oi are recomputed to diagonalize the closed loop
matricesAO

i − GiC
0
i . With the resulting transformations,

by (19) RX = 1825. Since with this choice ofGi inequa-
lity (18) is verified, then given hybrid system is final–state
asymptotically determinable according to Theorem 4.

V. CONCLUDING REMARKS

We discussed the notion of generic final–state asympto-
tic determinability for hybrid systems following the lead
of Sontag [5]. This notion facilitates the constructions of



asymptotic state observers. Interestingly, generic final–state
asymptotic determinability can be verified even if each of the
continuous subsystems of the hybrid system is not completely
observable. This result is based on the synergy that can be
exploited between the continuous and the discrete dynamics.
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