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Observability, reconstructibility and state observers

of Boolean Control Networks
Ettore Fornasini and Maria Elena Valcher

Index Terms—Boolean networks, Boolean control networks,
observability, reconstructibility, state observers.

Abstract—The aim of this paper is to introduce and charac-
terize observability and reconstructibility properties for Boolean
networks and Boolean control networks, described according to
the algebraic approach proposed by D. Cheng and co-authors in
the series of papers [3], [6], [7] and in the recent monography
[8]. A complete characterization of these properties, based both
on the Boolean matrices involved in the network description and
on the corresponding digraphs, is provided. Finally, the problem
of state observer design for reconstructible BNs and BCNs is
addressed, and two different solutions are proposed.

I. INTRODUCTION

Research interests in Boolean networks (BNs) have been

motivated by the large number of natural and artificial systems

whose describing variables display only two distinct configu-

rations, and hence take only two values. Originally introduced

to model simple neural networks, BNs have recently proved

to be suitable to describe and simulate the behavior of genetic

regulatory networks. Indeed, regulatory genes inside the cells

act just like switches, that may take either an “on” or an “off”

state (1 and 0, respectively), and this discovery led Kauffman

[14] to introduce random Boolean networks as models for

genetic networks (see also [23]). As a further application area,

BNs have also been used to describe the interactions among

agents and hence to investigate consensus problems [12], [21].

BNs are autonomous systems, since they evolve as automata,

whose dynamics is uniquely determined once the initial con-

ditions are assigned. On the other hand, when the network

behavior depends also on some (Boolean) control inputs, the

concept of BN naturally extends to that of Boolean control

network (BCN).

In the last decade, D. Cheng and co-workers have developed

an algebraic framework to deal with both BNs and BCNs [3],

[4], [5], [6], [7]. Their research efforts resulted in the recent

monography [8], where several theoretic problems, ranging

from stability and stabilizability to controllability, disturbance

decoupling and optimal control, have been investigated. Even

more, they stimulated further research in this area (see, for

instance [1], [9], [16], [18], [20]), aimed at deepening specific

control issues. The main idea underlying this approach is that

a Boolean network with n state variables exhibits 2n possible

configurations, and if any such configuration is represented

by means of a canonical vector of size 2n, all the logic maps
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that regulate the state-updating can be equivalently described

by means of 2n × 2n Boolean matrices. As a result, every

Boolean network can be described as a discrete-time linear

system. In a similar fashion, a Boolean control network can

be converted into a discrete-time bilinear system or, more

conveniently, it can be seen as a family of BNs, each of them

associated with a specific value of the input variables, and in

that sense it represents a switched system. As a consequence

of this algebraic set-up, logic-based problems can be converted

into algebraic problems and hence solved by resorting to the

standard mathematical tools available for linear state-space

models and, in particular, for positive state-space models [10],

[22], first of all graph theory.

In this paper, by following this stream of research, we first

address and characterize observability and reconstructibility

of Boolean networks. Then, we extend this analysis to the

class of BCNs. Finally, we address the problem of designing

a state observer for a BCN. In detail, the paper is organized

as follows: in section II we introduce and characterize ob-

servability, by first considering two elementary cases (BNs

consisting of a single cycle or of a single cycle and some

vertices accessing that cycle), and then moving to the general

case. Reconstructibility is the focus of section III, where it

is proved that this property is equivalent to the observability

of the reduced BN consisting of all the states of the BN

that belong to some cycle. Observability and reconstructibility

for BCNs are introduced and investigated in sections IV and

V, respectively. Finally, in section VI, the observer design

problem for BCNs (and hence, as a corollary, for BNs),

under the reconstructibility assumption, is analyzed, and two

different solutions are proposed. A preliminary version of the

first part of the paper has been accepted for presentation at

the next CDC 2012 conference [11].

Notation. Z+ denotes the set of nonnegative integers. Given

two integers k, n ∈ Z+, with k ≤ n, by the symbol [k, n]
we denote the set of integers {k, k + 1, . . . , n}. We consider

Boolean vectors and matrices, taking values in B := {0, 1},

with the usual operations (sum +, product · and negation ¬).

δi
k will denote the ith canonical vector of size k, Lk the

set of all k-dimensional canonical vectors, and Lk×n ⊂ Bk×n

the set of all k × n matrices whose columns are canonical

vectors of size k. Any matrix L ∈ Lk×n can be repre-

sented as a row vector whose entries are canonical vectors in

Lk, namely L = [ δi1
k δi2

k . . . δin

k ] , for suitable indices

i1, i2, . . . , in ∈ [1, k].

A permutation matrix Π is a nonsingular square matrix in
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Lk×k. In particular, a matrix

Π = C =









0 0 . . . 0 1
1 0 . . . 0 0

0 1
. . . 0 0

...
...

. . .
. . .

...

0 0 . . . 1 0









= [ δ2k δ3k . . . δk
k δ1k ]

(1)

is a k × k cyclic (permutation) matrix.

Given a matrix L ∈ Bk×k (in particular, L ∈ Lk×k), we

associate with it [2] a digraph D(L), with vertices 1, . . . , k.

There is an arc (j, ℓ) from j to ℓ if and only if the (ℓ, j)th
entry of L is unitary. A sequence j1 → j2 → . . . → jr →
jr+1 in D(L) is a path of length r from j1 to jr+1 provided

that (j1, j2), . . . , (jr, jr+1) are arcs of D(L). A closed path

is called a cycle. In particular, a cycle γ with no repeated

vertices is called elementary, and its length |γ| coincides with

the number of (distinct) vertices appearing in it. Note that a k×
k cyclic matrix has a digraph that consists of one elementary

cycle with length k.

There is a bijective correspondence between Boolean vari-

ables X ∈ B and vectors x ∈ L2, defined by the relationship

x =

[
X
¬X

]

.

We introduce the (left) semi-tensor product ⋉ between ma-

trices (and hence, in particular, vectors) as follows [8], [17],

[19]: given L1 ∈ R
r1×c1 and L2 ∈ R

r2×c2 (in particular,

L1 ∈ Lr1×c1
and L2 ∈ Lr2×c2

), we set

L1⋉L2 := (L1⊗IT/c1
)(L2⊗IT/r2

), T := l.c.m.{c1, r2},

where l.c.m. denotes the least common multiple. The semi-

tensor product represents an extension of the standard matrix

product, by this meaning that if c1 = r2, then L1⋉L2 = L1L2.

Note that if x1 ∈ Lr1
and x2 ∈ Lr2

, then x1⋉x2 ∈ Lr1r2
. For

the various properties of the semi-tensor product we refer to

[8]. By resorting to the semi-tensor product, we can extend

the previous correspondence to a bijective correspondence

between Bn and L2n . This is possible in the following way:

given X = [X1 X2 . . . Xn ]
⊤ ∈ Bn set

x :=

[
X1
¬X1

]

⋉

[
X2
¬X2

]

⋉ . . .⋉

[
Xn
¬Xn

]

.

This amounts to saying that

x =

2

6

6

6

6

4

X1X2 . . . Xn−1Xn

X1X2 . . . Xn−1
¬Xn

X1X2 . . .¬ Xn−1Xn

...,
¬X1

¬X2 . . .¬ Xn−1
¬Xn

3

7

7

7

7

5

.

II. OBSERVABILITY OF BOOLEAN NETWORKS

A Boolean Network (BN) is described by the following

equations

X(t+ 1) = f(X(t)),
Y (t) = h(X(t)), t ∈ Z+,

(2)

where X(t) and Y (t) denote the n-dimensional state variable

and the p-dimensional output variable at time t, taking values

in Bn and Bp, respectively. f and h are (logic) functions,

namely maps f : Bn → Bn and h : Bn → Bp. Upon

representing the state and the output vectors X(t) and Y (t)
by means of their equivalent x(t) and y(t) in LN and LP ,

respectively, where N := 2n and P := 2p, the BN (2) can be

described [8] as

x(t+ 1) = L⋉ x(t) = Lx(t),
y(t) = H ⋉ x(t) = Hx(t), t ∈ Z+,

(3)

where L ∈ LN×N and H ∈ LP×N are matrices whose

columns are canonical vectors of size N and P , respectively.

Definition 1: Given a BN (3),

• two states x1 = δi
N and x2 = δ

j
N are said to be

indistinguishable, if the two output evolutions of the BN

starting at t = 0 from x(0) = x1 and from x(0) = x2,

respectively1, coincide at every time instant t ∈ Z+;

otherwise they are distinguishable;

• the BN is said to be observable if every two distinct states

are distinguishable.

In order to analyze the observability problem, we introduce

a family of equivalence relations on the set LN of all states.

We say that x1 and x2 are indistinguishable in k steps (x1 ∼k

x2) if the output evolutions, say y1(t) and y2(t), stemming

from x1(0) = x1 and x2(0) = x2, respectively, coincide for

every t ∈ [0, k−1]. The equivalence relation ∼k partitions LN

into disjoint classes. We let C∼,k be the set of such classes. It is

easily seen that if two states are indistinguishable in k+1 steps

then they are indistinguishable in k steps, while the converse

is not necessarily true. Therefore the cardinality of the set

C∼,k+1 in general is greater than or equal to the cardinality of

C∼,k, and

|C∼,1| ≤ |C∼,2| ≤ |C∼,3| ≤ . . . . (4)

On the other hand, it can be shown [11] that if, for some

positive integer k, |C∼,k| = |C∼,k+1|, then C∼,k = C∼,k+1 and

C∼,k = C∼,k+ℓ for every ℓ ∈ Z+.

Note that condition |C∼,1| = 1 corresponds to the situation

when all the BN states produce the same output value, a

situation that surely prevents the BN from being observable.

So, when discussing observability, we will always assume that

ρ := |C∼,1|, which coincides with the number of nonzero rows

of H , is at least 2. Based on the above reasoning, we can prove

a preliminary lemma.

Lemma 1: Given a BN (3), with ρ ≥ 2, consider two

states x1 and x2 ∈ LN , and let y1(t) and y2(t), t ∈ Z+,

be the output trajectories stemming from x1(0) = x1 and

x2(0) = x2, respectively. Condition y1(t) = y2(t) for every

t ∈ [0, N − ρ] implies y1(t) = y2(t) for every t ∈ Z+.

Proof: We only need to show that the smallest k such

that |C∼,k| = |C∼,k+1| cannot be greater than N − ρ+1. This

follows from the fact that |C∼,1| = ρ and, therefore, as far

1In the following, we will denote the state and the output trajectories
stemming from xi by xi(t) and yi(t), t ∈ Z+, respectively. Accordingly,
we will use xi(0) = xi for the initial state.
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as the sequence (4) is strictly increasing we have |C∼,k| ≥
k + ρ − 1. On the other hand, |C∼,k| ≤ N for every k. This

ensures that |C∼,N−ρ+1| = |C∼,N−ρ+2|. Therefore, two output

trajectories coincide if and only if they coincide on the time

interval [0, N − ρ].

As an immediate consequence of the previous lemma, a BN

(3) is observable if and only if, given the first N−ρ+1 samples

of any output trajectory of the BN, y(t), t ∈ [0, N − ρ], we

can determine the initial condition x(0) that has generated it.

In fact, (see Example 1, below), this bound is tight, by this

meaning that there exist BNs for which N − ρ + 1 output

values are required to determine the initial state. Lemma 1

immediately leads to the following condition, which reminds

of the analogous one obtained for linear systems.

Proposition 1: A BN (3) is observable if and only if the

observability matrix in N − 1 steps

ON−1 :=









H

HL

HL2

...

HLN−2









(5)

has N distinct columns.

As a further step, we want to relate the observability of a

BN (3) to the structure of the associated digraph D(L). To this

goal, we first consider a BN whose digraph D(L) contains a

single cycle and all the other states access the cycle.

Proposition 2: Consider a BN (3), with

L =

[
W 0
T C

]

∈ LN×N ,

where C is a k×k cyclic matrix and W is nilpotent. The BN

is observable if and only if

i) [distinguishability of states before state merging] if i 6= j,

condition Lδi
N = Lδ

j
N implies Hδi

N 6= Hδ
j
N ;

ii) [distinguishability of states belonging to the cycle] every

state belonging to the cycle, δi
N , i ∈ [N − k + 1, N ],

generates a periodic output trajectory with minimal period

k.

Proof: [Necessity] If condition i) was not satisfied,

the two initial states x1(0) = δi
N and x2(0) = δ

j
N would

produce the same state trajectory, starting at t = 1, and the

corresponding output trajectories, y1(t) and y2(t), t ∈ Z+,

would coincide for every t ∈ Z+. Hence the two states would

be indistinguishable. On the other hand, if condition ii) is

not satisfied, there would be a state belonging to the cycle,

say x(0) = δi
N , i ∈ [N − k + 1, N ], generating a periodic

output trajectory with minimal period k̄, a proper divisor of

k, and hence it would be y(t + k̄) = y(t) for every t ∈ Z+.

Consequently, the two states x(0) 6= x(k̄), belonging to the

cycle, would be indistinguishable.

[Sufficiency] We want to prove that if conditions i) and ii)

hold, then the BN is observable. Suppose it is not. Then two

distinct states x1(0) = x1 and x2(0) = x2 can be found that

produce the same output trajectories, i.e. y1(t) = y2(t),∀ t ∈

Z+. If the two state trajectories eventually coincide, then there

exists a minimum t′ ∈ Z+ such that x1(t
′ + 1) = x2(t

′ + 1).
But then assumption i) is contradicted for the two distinct

states x1(t
′) = δi

N and x2(t
′) = δ

j
N . So, we now assume that,

at every time t ∈ Z+, x1(t) 6= x2(t). Consider the sequence of

pairs (x1(t),x2(t)), t ∈ Z+. Since all such pairs take values

in the finite set LN ×LN , there exist tm, tM ∈ Z+, with tm <

tM , such that (x1(tm),x2(tm)) = (x1(tM ),x2(tM )). As both

the trajectories x1(t) and x2(t) are periodic starting (at least)

from t = tm, this means that x1(tm) = δi
N and x2(tm) =

δ
j
N , i 6= j, are indistinguishable states corresponding to the

cyclic part C. So, both these states, belonging to the cycle,

generate a periodic output trajectory whose minimal period is

smaller than k.

Remark 1: Condition ii) in Proposition 2 can be

simply restated by saying that the ordered k-tuple

(y(0),y(1), . . . ,y(k − 1)) corresponding to any periodic

state trajectory is irreducible, namely it cannot be obtained

by repeating a shorter ordered sequence.

Example 1: Consider the BN (3) with L = C an N × N

cyclic matrix and

H = [ δ12 δ12 . . . δ12 δ22 ] ∈ L2×N .

We may describe the BN by means of a suitable digraph,

obtained by adding to D(L) the information regarding the

static output map H . This can be achieved by associating with

each node of D(L) a dashed arrow, labeled by the value of

the corresponding output.

1	  

y	  =	  δ2
1	  

2	  

y	  =	  δ2
1	  

3	  

y	  =	  δ2
1	  

4	  

y	  =	  δ2
1	  

N	  

y	  =	  δ2
2	  

N-‐1	  

y	  =	  δ2
1	  

N-‐2	  

y	  =	  δ2
1	  

5	  

y	  =	  δ2
1	  

FIG. 1. Digraph corresponding to the BN of Example 1.

By Proposition 2 , the BN is observable. In order to deter-

mine x(0), consider the sequence y(0),y(1), . . . ,y(N − 2).
If all such vectors are equal to δ12 , then x(0) = δ1N , otherwise

if y(t) = δ22 for some t ∈ [0, N − 2], then x(t) = δN
N and

hence x(0) = δN−t
N . Note that, in general, it would not be

possible to determine the initial state by stopping the output

observation before time t = N − 2. Finally, the observability

matrix in N − 1 steps is
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ON−1 =









H

HL

HL2

...

HLN−2









=












δ12 δ12 . . . δ12 δ12 δ22

δ12 δ12 . . . δ12 δ22 δ12

δ12 δ12 . . . δ22 δ12 δ12
...

... . .
. ...

...
...

δ12 δ22 . . . δ12 δ12 δ12












.

Proposition 3: Consider a BN (3), with

L = blockdiag{D1, D2, . . . , Dr} ∈ LN×N ,(6)

and Dν =

[
Wν 0
Tν Cν

]

∈ Lnν×nν
, (7)

where Wν is a (nν − kν) × (nν − kν) nilpotent matrix, and

Cν is a kν × kν cyclic matrix. The BN is observable if and

only if

i) [distinguishability of states before state merging] if i 6= j,

condition Lδi
N = Lδ

j
N implies Hδi

N 6= Hδ
j
N ;

ii) [distinguishability of states belonging to a cycle] for

every ℓ ∈ [1, r], the ordered kℓ-tuple (Hδi+1
N , Hδi+2

N ,

. . . , Hδi+kℓ

N ), with2 i := (n1+n2+. . .+nℓ−1)+(nℓ−kℓ),
is irreducible;

iii) [distinguishability of states belonging to different cycles]

if ℓ, d ∈ [1, r], ℓ 6= d, and kℓ = kd =: k, the two ordered

k-tuples

(Hδi+1
N , Hδi+2

N , . . . ,Hδi+k
N ), (Hδj+1

N , Hδ
j+2
N , . . . ,Hδ

j+k
N ),

with i = (n1 + n2 + . . . + nℓ−1) + (nℓ − kℓ) and j =
(n1 +n2 + . . .+nd−1)+ (nd − kd), neither coincide nor

can be obtained one from the other by means of cyclic

permutations.

Proof: [Necessity] The necessity of conditions i) and ii)

follows immediately from Proposition 2. On the other hand, if

condition iii) was not satisfied, there would be two initial states

corresponding to two distinct cycles and generating the same

periodic output trajectory, thus contradicting observability.

[Sufficiency] We want to prove that if conditions i), ii) and

iii) hold, then the BN is observable. Suppose it is not. Then

two distinct states x1(0) = x1 and x2(0) = x2 could be

found that produce the same output trajectory. If x1 and x2

correspond to the same block Dν then, by the same reasoning

adopted in the proof of Proposition 2, either i) or ii) would

be contradicted. So, assume that such indistinguishable states

correspond to different blocks, say Dℓ and Dd, ℓ 6= d.

Since both state trajectories eventually become periodic of

periods kℓ and kd, respectively, the corresponding output

trajectories become periodic, too, and since condition ii) holds,

the minimal periods of the outputs coincide with the minimal

periods of the state trajectories. Since the output trajectories

coincide, by the indistinguishability of the states, it follows

that kℓ = kd. Set k := kℓ = kd and let tm ∈ Z+ be the

smallest time t such that x1(t) = δi+1
N for i = (n1+n2+. . .+

nℓ−1) + (nℓ − kℓ), and assume that x2(tm) = δh+1
N for some

2We assume n0 := 0.

h ∈ [(n1+n2+. . .+nd−1)+(nd−kd), n1+n2+. . .+nd−1].
Then the two sequences

(Hδi+1
N , HLδi+1

N , . . . ,HLk−1δi+1
N ), (Hδh+1

N , HLδh+1
N , . . . ,HLk−1δ

coincide, thus contradicting iii).

Remark 2: Conditions i), ii) and iii) of Proposition 3 can

be expressed in a rather compact form if we block-partition

the matrix H , according to the block partition of L. Indeed,

if we assume that

H = [H1n H1c | H2n H2c | . . . | Hrn Hrc ] ,

where each block [Hνn Hνc ] has size P × nν , while Hνc

has size P × kν , then the BN (3) is observable if and only if

i) each block





Wν 0
Tν Cν

Hνn Hνc



 has all distinct columns;

ii) each block Hνc cannot be seen as the juxtaposition of two

or more copies of the same block (say Φν), i.e. Hνc 6=
[ Φν Φν . . . Φν ];

iii) if ℓ 6= d, the blocks Hℓc and Hdc are distinct and

cannot be obtained one from the other by means of cyclic

permutations of the columns, i.e. 6 ∃ a cyclic matrix C and

h ∈ Z+ such that Hdc = Hℓc C
h.

Proposition 3 provides a general characterization of observ-

ability for Boolean networks. This is due to the fact that the

matrix L of every BN can be reduced to the block diagonal

form (6)-(7), by means of a suitable permutation matrix.

Indeed, every state trajectory of a BN takes only a finite

number of distinct values and hence it eventually becomes

periodic (possibly constant). The fact that all columns of L are

canonical vectors implies that the set of all states of the BN can

be partitioned into say r (disjoint) domains of attraction, each

of them consisting of an elementary cycle (called equilibrium

point, in case it consists of a single state) and a number of

states that eventually converge to it.

Proposition 4: Given a BN (3), there exists r ∈ N and a

permutation matrix Π such that

Π⊤LΠ = blockdiag{D1, D2, . . . , Dr} ∈ LN×N ,(8)

with Dν =

[
Wν 0
Tν Cν

]

∈ Lnν×nν
, (9)

where Wν is a (nν − kν) × (nν − kν) nilpotent matrix, and

Cν is a kν × kν cyclic matrix.

Proof: Let Z1,Z2, . . . ,Zr be the distinct elementary

cycles (possibly equilibrium points) of the system, and let

D1,D2, . . . ,Dr be the corresponding disjoint domains of

attraction. Clearly, a permutation matrix Π can be found such

that Π⊤LΠ is block diagonal as in (8). Even more, we can

order the states of each domain Dν so that those belonging

to Zν are the last ones. So, it entails no loss of generality

assuming that each diagonal block is as in (9), where Cν is

the cyclic matrix associated with Zν . All the states of Dν \Zν
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produce trajectories that belong to Zν after a finite number of

steps, which means that, for a sufficiently high k,

Dk
ν =

[
W k

ν 0
∗ Ck

ν

]

=

[
0 0
∗ Ck

ν

]

,

and hence Wν is nilpotent.

Propositions 3 and 4 have mainly a theoretical value, as

they connect the topological structure of the digraph D(L)
to the observability property. However, the evaluation of the

permutation matrix Π is computationally demanding, as it

requires to determine the limit cycles and the corresponding

domains of attraction. As a matter of fact, observability of

a BN can be characterized in a much simpler way, whose

practical feasibility will be addressed in Remark 4. To this

goal it is sufficient to notice that every elementary cycle of

length k corresponds to k distinct periodic state trajectories,

depending on the specific choice of the initial state. On the

other hand, each of these k periodic trajectories is uniquely

associated with the ordered k-tuple (x(0),x(1), . . . ,x(k−1)).
By taking this perspective, we can merge the distinguishability

conditions ii) and iii) into a single one.

Theorem 1: A BN (3) is observable if and only if

i) [distinguishability of states before state merging] for

every x1,x2 ∈ LN , with x1 6= x2, condition Lx1 = Lx2

implies Hx1 6= Hx2;

ii) [distinguishability of states belonging to (the same or

different) cycles] for every pair of distinct periodic state

trajectories of the same minimal period k, described by

the two ordered k-tuples

(x1,x2, . . . ,xk) 6= (x̄1, x̄2, . . . , x̄k),

the corresponding output trajectories are periodic with

(minimal) period k and described by two different ordered

k-tuples, i.e.

(Hx1, Hx2, . . . ,Hxk) 6= (Hx̄1, Hx̄2, . . . ,Hx̄k).

III. RECONSTRUCTIBILITY OF BOOLEAN NETWORKS

In the previous section we have seen that, as for linear state-

space models, observability corresponds to the possibility of

uniquely determining the system initial condition x(0) from

the observation of the corresponding output evolution in some

interval [0, T ]. Reconstructibility property may be introduced

along the same perspective, as the possibility of determining

the system final state x(T ) from the corresponding output

evolution in [0, T ].

Definition 2: A BN (3) is said to be reconstructible if there

exists T ∈ Z+ such that the knowledge of the output trajectory

y(t), t ∈ [0, T ], allows to uniquely determine x(T ) (and hence

x(t) for every t ≥ T ). If this is the case, the smallest such T

will be denoted by Tmin.

It is clear that observability implies reconstructibility. On

the other hand, it is also obvious that if all the states of a BN

belong to some cycle (or, in particular, are equilibrium points),

then once the state x(T ) has been uniquely identified, the state

x(0) can be determined by moving backward. This means

that, for a BN whose digraph D(L) is the union of cycles,

observability and reconstructibility are equivalent properties.

In the general case, it turns out that reconstructibility is

equivalent to the fact that all states that belong to the cycles

are distinguishable one from the other.

Theorem 2: Given a BN (3), the following facts are equiv-

alent:

i) the BN is reconstructible;

ii) the reduced BN, obtained from (3) by considering only

the states that belong to some cycle3, is observable;

iii) for every pair of distinct periodic state trajectories of the

same minimal period k, described by the two ordered

k-tuples

(x1,x2, . . . ,xk) 6= (x̄1, x̄2, . . . , x̄k),

the corresponding output trajectories are periodic of (min-

imal) period k and described by two different k-tuples,

i.e.

(Hx1, Hx2, . . . ,Hxk) 6= (Hx̄1, Hx̄2, . . . ,Hx̄k).

Moreover, when the BN is reconstructible, Tmin ≤ Tr +N̄−1,

where Tr is the minimum number of steps after which the state

of the BN surely belongs to a cycle, while N̄ is the number

of states of the BN that belong to a cycle, i.e.

Tr := min{t ∈ Z+ : Lt
x ∈ ∪r

i=1Zi,∀ x ∈ LN}|,

N̄ := |{x ∈ LN : x ∈ Zi,∃ i ∈ [1, r]}|,

Zi, i ∈ [1, r], being the distinct cycles of the BN.

Proof: i) ⇒ iii) If iii) were not satisfied, there would be

two distinct initial states, x1 and x̄1, that produce two distinct

periodic state trajectories of the same minimal period and the

same output trajectory. Hence at every time t, we would not

be able to distinguish x(t) from x̄(t), the states reached at

time t starting from x1 and from x̄1, respectively. So, for

every choice of T , from the output in [0, T ], we could not

determine the state at time T .

iii) ⇒ ii) Follows from Theorem 1.

ii) ⇒ i) Set T := Tr + N̄ −1. Every state trajectory x(t) is

surely periodic for t ≥ Tr, which amounts to saying that x(Tr)
belongs to some cycle Zi, i ∈ [1, r]. If N̄ = 1, namely the

reduced BN is one-dimensional, then clearly reconstructibility

holds for T = Tr. So, assume now that N̄ > 1 (and hence

ρ, the number of nonzero rows of H , is not smaller than 2).

By the observability of the reduced BN and Lemma 1, we can

claim that upon observing y(t), t ∈ [Tr, Tr + N̄ − 2], we can

identify the state x(Tr). So, in particular, we can determine

x(Tr + N̄ − 1). This ensures that the BN is reconstructible

and that Tmin ≤ Tr + N̄ − 1.

3Note that the definition is well posed, since cycles are invariant sets, and
indeed each state belonging to a cycle can only access one and only one state
belonging to the same cycle.
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Remark 3: By referring to the notation adopted in Propo-

sition 3, it is easy to see that Tr is the largest of the nilpotency

indices of the matrices Wν , ν ∈ [1, r], and hence

Tr + N̄ − 1 ≤
(

max
i∈[1,r]

(ni − ki)
)

+

r∑

i=1

ki − 1.

Also, if we assume again that H is block-partitioned as in

Remark 2, the BN (3) is reconstructible if and only if

i) each block Hνc cannot be seen as the juxtaposition of

two or more copies of the same block, i.e. Hνc 6=
[ Φν Φν . . . Φν ];

ii) if ℓ 6= d, the blocks Hℓc and Hdc are distinct and

cannot be obtained one from the other by means of cyclic

permutations of the columns, i.e. 6 ∃ a cyclic matrix C and

h ∈ Z+ such that Hdc = Hℓc C
h.

Remark 4: To conclude the section, we want to comment

on the feasibility of the observability and reconstructibility

tests provided by Theorems 1 and 2. To test reconstructibility,

we can proceed as follows: we first determine Tr as4

Tr = min{t ∈ Z+ : rankLt = rankLt+1},

and let I be the set of indices of the nonzero rows in LTr .

Such indices correspond to the states that belong to some cycle

or are equilibrium points. If |I| = 1, the BN is obviously

reconstructible. If |I| > 1, the BN is reconstructible if and

only if the output trajectories corresponding to the initial states

δi
N , i ∈ I , are distinct. This amounts to checking that all the

columns of

ON̄−1 =







H

HL
...

HLN̄−2






, with N̄ := |I|,

corresponding to the indices in I are distinct.

On the other hand, by Theorem 1, a BN is observable if

and only if it is reconstructible and the matrix

[
L

H

]

has all

distinct columns.

The following example shows that the bound Tmin ≤ Tr +
N̄ − 1 is tight.

Example 2: Consider the BN (3) with

L = [ δ28 δ38 δ48 δ48 δ68 δ78 δ88 δ48 ] ,

H = [ δ12 δ12 δ12 δ12 δ12 δ12 δ12 δ12 ] .

4For Boolean matrices three notions of rank have been defined: column
rank, row rank and Schein rank [15], however for the semigroup of Boolean
matrices LN×N these three concepts coincide and they can be simply
regarded as the maximum number of distinct rows (or columns) in the matrix.

1	  

y	  =	  δ2
1	  

2	  

y	  =	  δ2
1	  

3	  

y	  =	  δ2
1	  

4	  

y	  =	  δ2
1	  

5	   6	  

y	  =	  δ2
1	  

7	  

y	  =	  δ2
1	  

8	  

y	  =	  δ2
1	  y	  =	  δ2

1	  

FIG. 2. Digraph corresponding to the BN of Example 2.

It is easy to see that the BN is reconstructible, since there

is only one vertex (vertex 4) belonging to a cycle (N̄ = 1).

Also, we easily see that Tr = 4 (the distance from 5 to 4).

We want to prove that the smallest time instant T at which we

are able to identify the state x(T ) from the output evolution

y(t), t ∈ [0, T ], is just Tr + N̄ − 1 = 4. This follows trivially

from the fact that there is no chance to identify the current

state from the output evolution up to that time, unless it is

clear that we have reached the state δ48 .

Remark 5: Reconstructibility may be related to the indis-

tinguishability classes C∼,k, k ∈ N, that we introduced in

the previous section. Indeed, it is easy to see that a BN is

reconstructible if and only if there exists T̄ ∈ Z+ such that in

every indistinguishability class Ki of C∼,T̄ there is only one

state that belongs to a cycle. This is also equivalent to saying

that there exists T ∈ Z+ such that, for every class Ki of C∼,T ,

the set LTKi consists of a single state. Clearly, T̄ is related

to the observability index of the reduced BN, while T to the

reconstructibility index of the BN.

IV. OBSERVABILITY OF BOOLEAN CONTROL NETWORKS

A Boolean Control Network (BCN) is described by the

following equations

X(t+ 1) = f(X(t), U(t)),
Y (t) = h(X(t)), t ∈ Z+,

(10)

where X(t), U(t) and Y (t) denote the n-dimensional state

variable, the m-dimensional input and the p-dimensional out-

put at time t, taking values in Bn,Bm and Bp, respectively.

f and h are logic functions, i.e. f : Bn × Bm → Bn and

h : Bn → Bp. By resorting to the semi-tensor product ⋉, the

BCN (10) can be described [8] as

x(t+ 1) = L⋉ u(t) ⋉ x(t),
y(t) = H ⋉ x(t) = Hx(t), t ∈ Z+,

(11)
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where x(t) ∈ LN ,u(t) ∈ LM and y(t) ∈ LP , with N :=
2n,M := 2m and P := 2p. L ∈ LN×NM and H ∈ LP×N

are matrices whose columns are canonical vectors of size N

and P , respectively. For every choice of the input variable at

t, namely for every u(t) = δ
j
M , L ⋉ u(t) =: Lj is a matrix

in LN×N . So, we can think of the state equation of the BCN

(11) as a Boolean switched system,

x(t+ 1) = Lσ(t)x(t), t ∈ Z+, (12)

where σ(t), t ∈ Z+, is a switching sequence taking values in

[1,M ]. For every j ∈ [1,M ], the BN

x(t+ 1) = Ljx(t), t ∈ Z+, (13)

represents the jth subsystem of (12).

Definition 3: A BCN (3) is observable if for any two initial

states x1 = δi
2n and x2 = δ

j
2n , i 6= j, and any input sequence

u(t), t ∈ Z+, the output evolutions y1(t) and y2(t), t ∈ Z+,

are distinct.

In [8], Chapter 16, a different notion of observability has

been introduced, stating that a BCN is observable if for any

two states x1 = δi
2n and x2 = δ

j
2n , i 6= j, there exists an

input sequence uij(t), t ∈ Z+, such that the corresponding

output evolutions y1(t) and y2(t), t ∈ Z+, are distinct. In

[13] (page 177), these two notions are referred to as “initial-

state determinability in the strong sense” and “initial-state

determinability in the wide sense”, respectively. For linear

state-space models these two notions are equivalent, since

the observability problem can always be reduced to that of

determining the initial condition that generated the free state

evolution. This is not the case when dealing BCNs. Indeed,

observability given in Definition 3 implies the notion of

observability given in [8], while the converse is not true, due

to the fact that it is not possible to express the (state and)

output dynamics as the sum of a free and a forced evolution,

and hence remove the forced component.

Observability property considered in this paper allows to

determine the initial condition of a BCN when it evolves under

the effect of an arbitrary input. This is consistent with the nat-

ural requirement of estimating the initial (or the current) state

of a BCN, driven by an arbitrary control sequence, and hence

under regular working conditions, and not by means of an ad

hoc experiment. On the other hand, the observability property

introduced in [8] allows to identify the initial condition of

the BN only by carrying on multiple parallel experiments, as

clarified in [13], and not by making use of the observation of

a single pair of corresponding input/output evolutions.

To address observability, we introduce some new notation.

Since for BCNs the state evolution depends on both the state

and the input we will consider instead of just state trajectories,

state-input trajectories, described by the pairs (x(t),u(t)), t ∈
Z+. Also, we say that a state-input trajectory is periodic of

(minimal) period k ∈ N if (x(t),u(t)) = (x(t + k),u(t +
k)), ∀ t ∈ Z+, (and there is no smaller k for which this

is true). A periodic state-input trajectory of period k ∈ N is

described by an ordered k-tuple of pairs
(

(x1,u1), (x2,u2), . . . , (xk,uk)
)

,

where by this notation we mean that

xℓ+1 = L⋉uℓ ⋉xℓ, ∀ ℓ ∈ [1, k−1], and x1 = L⋉uk ⋉xk,

and, as before, we say that such a k-tuple is irreducible if it

cannot be expressed as the repetition of shorter tuples. This

amounts to saying that k is the minimal period.

Theorem 3: A BCN (11) is observable if and only if

i) [distinguishability of states before state merging] for

every x1,x2 ∈ LN and for every u ∈ LM , conditions

(x1,u) 6= (x2,u) and L⋉ u ⋉ x1 = L⋉ u ⋉ x2 imply

Hx1 6= Hx2;

ii) [distinguishability of states belonging to (the same or

different) cycles] for every pair of distinct periodic state-

input trajectories of the same minimal period k and

described by the two distinct ordered k-tuples

(

(x1,u1), (x2,u2), . . . , (xk,uk)
)

6=
(

(x̄1,u1), (x̄2,u2), . . . , (x̄k,uk

(14)

the corresponding output trajectories are periodic of (min-

imal) period k and described by two different k-tuples,

i.e.

(Hx1, Hx2, . . . ,Hxk) 6= (Hx̄1, Hx̄2, . . . ,Hx̄k).

Proof: [Necessity] If condition i) was not satisfied for

two initial states x1(0) = x1 6= x2(0) = x2 and some u ∈
LM , any input sequence u(t), t ∈ Z+, with u(0) = u, would

produce two state trajectories satisfying x1(t) = x2(t) for

t ≥ 1, and the corresponding output trajectories, y1(t) and

y2(t), would coincide for every t ∈ Z+. Hence the two states

would be indistinguishable, a contradiction.

On the other hand, if condition ii) was not satisfied, there

would be two distinct initial states, x1 and x̄1, that generate the

same periodic output trajectory, corresponding to the periodic

input

u(t) =

{
ut+1, for t ∈ [0, k − 1],
u(t− k), for t ≥ k,

where the vectors u1,u2, . . . ,uk have been introduced in

equation (14). So, again, observability would be contradicted.

[Sufficiency] We want to prove that if conditions i) and ii)

hold, then the BCN is observable. Suppose it is not. Then

two distinct states x(0) and x̄(0) and some input sequence

u(t), t ∈ Z+, could be found such that the corresponding

output trajectories, y(t) and ȳ(t), coincide for every t ∈ Z+.

Let x(t) and x̄(t), t ∈ Z+, be the state trajectories corre-

sponding to the given initial states and input. If there would

be t′ ∈ Z+ such that the two state trajectories coincide at t′+1,

i.e. x(t′ + 1) = x̄(t′ + 1), this would contradict assumption i)

for the two state-input pairs (x(t′),u(t′)) and (x̄(t′),u(t′)).
So, we now assume that, at every time t ∈ Z+, x(t) 6= x̄(t).
Consider the sequence of triples (x(t), x̄(t),u(t)), t ∈ Z+.

Since all such triples take values in the finite set LN ×
LN × LM , there exist tm, k ∈ Z+, k > 0, such that

(x(tm), x̄(tm),u(tm)) = (x(tm + k), x̄(tm + k),u(tm + k)),
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and we may always select the smallest such k. Clearly if we

replace the original sequence u(t) with the sequence

ũ(t) :=

{
u(t), 0 ≤ t ≤ tm + k − 1;

ũ(t− k), t ≥ tm + k;

we still get two output trajectories completely identical (and

identical to the original ones till t = tm + k − 1). But this

means that the two distinct irreducible k-tuples

(

(x(tm),u(tm)), . . . , (x(tm + k − 1),u(tm + k − 1))
)

(

(x̄(tm),u(tm)), . . . , (x̄(tm + k − 1),u(tm + k − 1))
)

,

generate the same output k-tuple, as

(y(tm), . . . ,y(tm + k − 1)) = (ȳ(tm), . . . , ȳ(tm + k − 1)).

This contradicts condition ii).

We illustrate the previous conditions by means of an exam-

ple.

Example 3: Consider a BCN (11) and suppose that 5

L1 := L⋉ δ12 =








1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 1 0 0 1
0 0 0 1 0








= [ δ15 δ45 δ35 δ55 δ45 ] ,

L2 := L⋉ δ22 =








0 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 0 0








= [ δ25 δ35 δ35 δ45 δ45 ] ,

H =

[
1 1 0 1 0
0 0 1 0 1

]

= [ δ12 δ12 δ22 δ12 δ22 ]

The BCN can be represented by the following digraph,

obtained by overlapping the two digraphs D(L1) and D(L2).
(Blue) arcs labelled by u = δ1 belong to D(L1), while

(red) arcs labelled by u = δ2 belong to D(L2). As for

BNs, the outgoing (dashed) arrows indicate for each state the

corresponding output value (y = δ1 or y = δ2).

5Note that the size of the system matrices Li is N = 5 which is not a
power of 2, but the analysis is not affected by this fact.

1	   2	   3	  

5	  4	  

y	  =	  δ2
1	   y	  =	  δ2

1	  
y	  =	  δ2

2	  

y	  =	  δ2
1	   y	  =	  δ2

2	  

u=δ2
1	   u=δ2

1	  

u=δ2
1	  

u=δ2
1	  

u=δ2
2	  

u=δ2
1	  

u=δ2
2	   u=δ2

2	  

u=δ2
2	  

u=δ2
2	  

FIG. 3. Digraph corresponding to the BCN of Example 3.

It is a matter of simple computation to verify that both

conditions of Theorem 3 are verified. Specifically:

i) L1δ
2
5 = L1δ

5
5 = δ45 but Hδ25 6= Hδ55 ;

L2δ
2
5 = L2δ

3
5 = δ35 but Hδ25 6= Hδ35 ;

L2δ
4
5 = L2δ

5
5 = δ45 but Hδ45 6= Hδ55 ;

ii) there are two cycles of length 1 corresponding to the input

δ12 , namely self loops, but they correspond to two states

that generate different outputs; similarly, there are two

cycles of length 1 corresponding to the input δ22 , but they

generate different output trajectories. Finally, there are

two distinct ordered 2-tuples that correspond to 2 periodic

input-state trajectories, namely

((δ45 , δ
1
2), (δ55 , δ

1
2)) 6= ((δ55 , δ

1
2), (δ45 , δ

1
2)),

and they generate two different periodic output trajecto-

ries

(δ12 , δ
2
2) 6= (δ22 , δ

1
2).

Consequently, the BCN is observable.

Remark 6: Observability corresponds to the possibility of

uniquely determining the initial state of the BCN, once the

input sequence u(t), t ∈ Z+, and the corresponding output

y(t), t ∈ Z+, are known. As we have seen in section II,

the initial state of an observable BN can be retrieved from

the output samples y(t), t ∈ [0, N − 2]. Something similar

happens with observable BCNs, as indeed, the knowledge

of u(t) and y(t) for t ∈ [0, N2] is sufficient to uniquely

determine x(0). To show this, it is sufficient to prove that

if there exist an input sequence u(t), t ∈ Z+, and two states,

say x1 and x2, such that y1(t) = y2(t) for every t ∈ [0, N2],
then there exists an input ũ(t), t ∈ Z+, that makes the states

x1 and x2 indistinguishable (i.e. ỹ1(t) = ỹ2(t) for every

t ∈ Z+). Indeed, consider the sequence of pairs (x1(t),x2(t))
generated from (x1(0),x2(0)) = (x1,x2) corresponding to

u(t). Clearly, since at each time t the pair (x1(t),x2(t))



9

belongs to the finite set LN × LN , a cardinality argument

ensures that there exist tm and k, with 0 ≤ tm < tm+k ≤ N2,

such that (x1(tm),x2(tm)) = (x1(tm + k),x2(tm + k)). So,

as in the proof of Theorem 3, the input sequence

ũ(t) :=

{
u(t), 0 ≤ t ≤ tm + k − 1;

ũ(t− k), t ≥ tm + k;
(15)

would produce two identical output sequences.

As a matter of fact, the upper bound of N2 can be

significantly improved. To this end, we may ask how large the

parameter T can be chosen, so that two distinct initial states

x1 and x2 generate two output sequences y1(t) and y2(t) that

coincide for every t ∈ [0, T ], without contradicting observabil-

ity. We have already noticed that all pairs (x1(t),x2(t)), t ∈
[0, T ], must be distinct. On the other hand, if at some time

instant t′, x1(t
′) = x2(t

′), then the output trajectories y1(t)
and y2(t) would necessarily coincide from t′ onward. Finally,

if there exist tm and k, with 0 ≤ tm < tm + k ≤ T , such

that x1(tm) = x2(tm + k) and x2(tm) = x1(tm + k), then

it is clear that the input sequence (15) would again produce

two identical output sequences. So, in the time interval [0, T ]
all pairs (x1(t),x2(t)), t ∈ Z+, must be distinct, cannot have

two entries of same value and cannot appear in one order and

in the reversed one. This implies that

T + 1 ≤ N2 −N −
N−1∑

i=1

i =

N−1∑

i=1

i =
N(N − 1)

2
=: N∗,

and hence

T ≤
(N + 1)(N − 2)

2
.

Remark 7: To conclude we want to compare the character-

ization of the observability property given in [8] (see Theorem

9.4, pages 228-229) with a similar one that can be obtained

for the observability notion used in this paper. To this end we

denote by

Ou,h :=









H

HLi0

HLi1Li0
...

HLih−2
. . . Li1









the observability matrix in h steps corresponding to the input

sequence

u(0) = δi0
M , u(1) = δi1

M , . . . ,u(h− 2) = δ
ih−2

M .

Clearly, the ith column of Ou,h provides the output sequence

y(t), t ∈ [0, h−1], corresponding to the aforementioned input

and the initial condition x(0) = δi
N . By the previous remark,

observability here addressed is equivalent to the fact that all the

matrices Ou,N∗ , for every choice of the input sequence, have

distinct columns. The characterization given in Theorem 9.4

of [8] can be equivalently restated by saying that the BCN is

observable in the sense of [8] if and only if the matrix obtained

by piling up all the matrices Ou,N∗ has distinct columns.

V. RECONSTRUCTIBILITY OF BOOLEAN CONTROL

NETWORKS

Definition 4: A BCN (11) is said to be reconstructible if

there exists T ∈ Z+ such that, for every input sequence,

the simultaneous knowledge6 of the input and the output

trajectories, u(t) and y(t), t ∈ [0, T ], allows to uniquely

determine x(T ).

The characterization of reconstructibility is similar to the

one obtained for BNs, even if its proof is more challenging.

Theorem 4: A BCN (11) is reconstructible if and only if

for every pair of distinct periodic state-input trajectories of

the same minimal period k and described by the two ordered

k-tuples
(

(x1,u1), . . . , (xk,uk)
)

6=
(

(x̄1,u1), . . . , (x̄k,uk)
)

,

the corresponding output trajectories are periodic of (minimal)

period k and described by two different k-tuples, i.e.

(Hx1, Hx2, . . . ,Hxk) 6= (Hx̄1, Hx̄2, . . . ,Hx̄k).

Proof: [Necessity] If the condition would not be satisfied,

the two distinct periodic state trajectories generated from x1

and x̄1, corresponding to the periodic input sequence

u(t) =

{
ut+1, for t ∈ [0, k − 1],
u(t− k), for t ≥ k,

would produce to the same periodic output trajectory. So,

all pairs of states along the two state trajectories would be

distinct and indistinguishable, and reconstructibility would be

contradicted.

[Sufficiency] Suppose, by contradiction, that the BCN is not

reconstructible. This means that there exists a pair of corre-

sponding input and output trajectories u(t) and y(t), t ∈ Z+,

such that for every T ∈ Z+ the set XT of all states that are

compatible at time T with the given input and output has

cardinality greater than 1. It is clear that

|X0| ≥ |X1| ≥ . . . ≥ |Xt| ≥ ....,

and there exists T̄ such that C := |XT̄ | = |XT̄+t| for every

t ≥ 0, and C > 1. Again, by a cardinality argument, we

can claim that there exist two states x1, x̄1 and two integers

tm ≥ T̄ and k > 0 such that

x1, x̄1 ∈ Xtm
∩ Xtm+k,

and the two distinct periodic sequences corresponding to the

two irreducible k-tuples

((x1(tm),u(tm)), . . . , (x1(tm + k − 1),u(tm + k − 1)),

((x̄1(tm),u(tm)), . . . , (x̄1(tm + k − 1),u(tm + k − 1)),

with x1(tm) = x1 and x̄1(tm) = x̄1, generate the same

periodic output, since

(Hx1(tm), Hx1(tm + 1), . . . ,Hx1(tm + k − 1) =

6Due to the structure of the equations (11), in order to reconstruct the
final state at t = T the input value at t = T is unnecessary. We chose this
definition just for the sake of simplicity.
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(y(tm),y(tm + 1), . . . ,y(tm + k − 1)) =

(Hx̄1(tm), Hx̄1(tm + 1), . . . ,Hx̄1(tm + k − 1)).

Remark 8: It is worthwhile noticing that the same reason-

ing adopted at the end of the previous section for observability

applies to reconstructibility. This ensures that, independently

of u(t), t ∈ Z+, if the BCN is reconstructible, the final state

can be identified within
N(N−1)

2 steps.

Example 4: Consider a BCN (11) and suppose that

L1 := L⋉ δ12 =






0 0 0 0
0 0 0 0
1 1 1 0
0 0 0 1




 = [ δ34 δ34 δ34 δ44 ] ,

L2 := L⋉ δ22 =






0 0 0 0
0 0 0 0
0 0 1 0
1 1 0 1




 = [ δ44 δ44 δ34 δ44 ] ,

H =

[
1 1 0 1
0 0 1 0

]

= [ δ12 δ12 δ22 δ12 ] .

The BCN can be represented as in the following digraph:

1	   2	  

4	  3	  

y	  =	  δ2
1	   y	  =	  δ2

1	  

y	  =	  δ2
2	  

u=δ2
1	  

u=δ2
1	  u=δ2

1	  

u=δ2
2	  

u=δ2
1	  u=δ2

2	  

u=δ2
2	  

y	  =	  δ2
1	  

u=δ2
2	  

FIG. 4. Digraph corresponding to the BCN of Example 4.

It is a matter of simple computation to verify that both

conditions of Theorem 4 are verified. More easily, it is imme-

diate to verify that, independently of the input and of the initial

condition, the output evolution from T = 1 onward is either δ12
or δ22 . In the former case it means that x(T ) = x(t) = δ44 for

every t ≥ T , and in the latter case we have x(T ) = x(t) = δ34
for every t ≥ T . Consequently, the BCN is reconstructible.

VI. STATE OBSERVERS

The aim of this section is that of designing a state observer

for a BCN, by this meaning a Boolean system that receives,

as its inputs, the BCN input and output, and produces as its

output an estimate of the current BCN state. We propose two

different solutions. Both of them can be described by means

of Boolean control networks. However, they will be derived

as linear Boolean systems whose describing vectors consist

of blocks of canonical vectors, and hence we will introduce

them by making use of this more intuitive set-up. Clearly, a

necessary condition for the existence of a state observer is that

the BCN is reconstructible in some interval [0, T ].

A. Shift-register observer

We first notice that, due to the time-invariance of the BCN,

reconstructibility implies that the simultaneous knowledge of

the input and the output trajectories, u(τ) and y(τ), τ ∈ [t−
T, t], allows7 to uniquely determine x(t). This ensures that the

vector

z(t) :=











u(t− T )
y(t− T )

...

u(t)
y(t)











∈ (LM × LP ) × . . .× (LM × LP )
︸ ︷︷ ︸

T+1

,

(16)

corresponding to an input/output trajectory, uniquely identi-

fies the final state x(t) of the BCN. We let R denote the

reconstructibility map that associates every such “admissible”8

vector z(t) to the final state x(t) ∈ LN . We want to implement

the map R by means of a linear Boolean system. To this

end, set Z := MT+1PT+1 and introduce the (bijective) map

ψ : (LM × LP ) × . . . × (LM × LP ) → LZ , mapping each

vector z(t) into the corresponding canonical vector

z(t) := u(t− T ) ⋉ y(t− T ) ⋉ . . .⋉ u(t) ⋉ y(t) ∈ LZ .

Clearly, the set of admissible vectors z(t) biuniquely corre-

sponds to the subset of “admissible” canonical vectors in LZ .

The static map

Ĥ : LZ → LN : δj
Z 7→

{

R(ψ−1(δj
Z)), if δ

j
Z is admissible;

δ1N , otherwise;

associates every admissible vector δ
j
Z in LZ with the unique

state that is reconstructible at time t from z(t) = ψ−1(δj
Z). If

δ
j
Z is not admissible, Ĥ associates it with an arbitrary state in

7It is worthwhile to remark that even when T is the smallest time instant
such that reconstructibility in [0, T ] is possible, nonetheless, for sufficiently

large values of t, the minimum value of T̃ such that from u(τ) and y(τ), τ ∈

[t − T̃ , t], one can determine x(t) can be significantly smaller than T .

8In the following, an input/output trajectory

»
u(t)
y(t)

–

: t ∈ Z+

ff

will be

called “admissible” if there exists an initial state x(0) such that when the input
sequence at time t is u(t), then the corresponding output is y(t). Accordingly,
the vector z(t) in (16) will be called “admissible” if it coincides with the
restriction of an admissible trajectory to the time window [t − T, t].
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LZ (e.g. δ1N ). Consequently, the following Boolean system9

z(t+ 1) =









0 IM+P 0 . . . 0
0 0 IM+P . . . 0
...

...
. . .

...

0 0 . . . . . . IM+P

0 0 . . . . . . 0









z(t) +











0 0
0 0
...

...

0 0
IM 0
0 IP











[
u(t+ 1)
y(t+ 1)

]

,(17)

z(t) = ψ(z(t)),
x̂(t) = Ĥz(t), (18)

once initialized with an arbitrary z(0) ∈ (LM × LP ) × . . .×
(LM × LP ), produces an estimate x̂(t) of the BCN state

satisfying

x̂(t) = x(t), ∀ t ≥ T.

The previous observer may be described as a modified version

of a BCN (11), namely as

z(t+ 1) = M ⋉ u(t+ 1) ⋉ y(t+ 1) ⋉ z(t),

x̂(t) = Ĥz(t),

for a suitable choice of the matrix10 M ∈ LZ×MPZ . The

substitution of u with the pair (u,y) is rather natural, since

this pair represents the observer input. However, differently

from a standard BCN (11), the values of the pair we need

to update the state vector at t + 1 is not (u(t),y(t)), but

(u(t+1),y(t+1)). This is unavoidable, since the state estimate

at time t naturally requires the information on the output at

the same time instant.

Clearly, the proposed solution finds an immediate adaptation

to the case of BNs. In that case, it is sufficient to replace

the pair (u,y) with the output y alone, thus getting a state

observer that takes the following form

z(t+ 1) = M ⋉ y(t+ 1) ⋉ z(t),

x̂(t) = Ĥz(t),

with

z(t) := y(t−T )⋉y(t−T+1)⋉. . .⋉y(t) ∈ LZ , Z := PT+1.

We illustrate the previous method by means of a simple

example.

Example 5: Consider the reconstructible BCN of Example

4. In this case T = 1,

z(t) =






u(t− 1)
y(t− 1)

u(t)
y(t)




 ,

9The symbol + in the following equation denotes the Boolean sum, but one
may notice that, since the nonzero entries in the two vectors are necessarily
located in different positions, this can be seen also as a standard sum.

10If we introduce the block matrix (also called “dummy operator” in [8])
Φk,h := [ Ik Ik . . . Ik ]

| {z }

h times

, then it is not hard to prove that

M = ΦMT P T ,P ⋉ ΦMT P T+1,M ⋉ W,

where W is the product of suitable swap matrices (see [8], page 63), that
perform the variable permutation W ⋉u(t +1) ⋉y(t +1) ⋉z(t) = z(t) ⋉

u(t + 1) ⋉y(t + 1).

and

z(t) = u(t− 1) ⋉ y(t− 1) ⋉ u(t) ⋉ y(t).

The “admissible” vectors z(t) are the following ones:












δ12
δ12

u(t)
δ22




 ,






δ12
δ22

u(t)
δ22




 ,






δ22
δ22

u(t)
δ22




 ,






δ12
δ12

u(t)
δ12




 ,






δ22
δ12

u(t)
δ12




 ;u(t) ∈ {δ12 , δ

2
2}







.

R is the map that associates δ34 to all admissible vectors z(t)
whose last block is δ22 , and δ44 to all admissible vectors z(t)
whose last block is δ12 . The admissible vectors z(t) are

{δ116, δ
2
16, δ

3
16, δ

4
16, δ

6
16, δ

8
16, δ

9
16, δ

11
16 , δ

14
16 , δ

16
16}.

While δ116, δ
3
16, δ

9
16, and δ1116 correspond to the final state x̂(t) =

δ44 , all the other admissible vectors correspond to x̂(t) = δ34 .

This implies that the matrix Ĥ takes the following form:

Ĥ = [ δ44 δ34 δ44 δ34 ∗ δ34 ∗ δ34 δ44 ∗ δ44 ∗ ∗ δ34 ∗ δ34 ]

where the symbol ∗ denotes an arbitrary canonical vector in

L4 (for instance δ14).

B. Multiple states observers

We now propose an alternative solution for the state recon-

struction of the BCN (11). To this end, we consider the set

C∼,1 of all the indistinguishability classes in 1 step, namely

all classes of state vectors that produce the same output value:
{
i ∈ [1, N ] : Hδi

N = δh
P

}
, h ∈ [1, P ]. We denote by ν the

largest of the cardinalities of such classes

ν := max
h∈[1,P ]

∣
∣{i ∈ [1, N ] : Hδi

N = δh
P }

∣
∣ .

The state of the observer is a vector z(t) ∈ LN × . . .× LN
︸ ︷︷ ︸

ν times
with ν blocks, denoted by zi(t), i ∈ [1, ν], each of them

belonging to LN .

We first describe the algorithm, whose purpose is that of

updating the (multiple, i.e. ν) estimates of the BCN state at

time t+ 1 (the ν blocks of z(t+ 1)), based on the estimates

we had at time t (the ν blocks of z(t)) and on the current

input sample u(t). At each time t, the ith state estimate

zi(t) is consistent with a number of input and output samples

not smaller than those any estimate zj(t), with j > i, is

compatible with. We will further comment on the rationale

underlying the algorithm after having described it. We denote

by arr and dep the indices of the current block of the “arrival

state” z(t+1) and of the current block of the “departure state”

z(t), respectively, considered by the algorithm. Once we have

considered all ν blocks of z(t), dep takes values greater than

ν. On the other hand, when we have updated all the ν blocks

of z(t+ 1) the algorithm iteration is completed, and the time

variable is updated. Also, we introduce two sets: Dt and At+1.

We initialize the set Dt with all the indices of the states that

are compatible with the output sample y(t), while At+1 is

initially empty. As the algorithm proceeds, all these indices

are moved from Dt to At+1.
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In detail, the observer state updates according to the follow-

ing algorithm:

Inizialization: Set t := 0, arr := 1, dep := 1, Dt := {i ∈ [1, N ] :
Hδi

N = y(t)} and At+1 := ∅.

Step 1: Until arr ≤ ν, dep ≤ ν and Dt 6= ∅,

if zdep(t) = δ
j
N with j ∈ Dt,

then

zarr(t+ 1) = L⋉ u(t) ⋉ zdep(t)
arr := arr + 1;

dep := dep+ 1;

Dt := Dt \ {j};

At+1 := At+1 ∪ {j};

otherwise

dep := dep+ 1.

Step 2: If arr ≤ ν and Dt 6= ∅ then

set j := min{i ∈ [1, N ] : i ∈ Dt};

zarr(t+ 1) = L⋉ u(t) ⋉ δ
j
N ;

arr := arr + 1;

dep := dep+ 1;

Dt := Dt \ {j};

At+1 := At+1 ∪ {j};

go back to Step 2;

otherwise

go to Step 3;

Step 3: If arr ≤ ν and Dt = ∅ then

set j := min{i ∈ [1, N ] : i ∈ At+1};

zarr(t+ 1) = L⋉ u(t) ⋉ δ
j
N ;

arr := arr + 1;

dep := dep+ 1;

go back to Step 3;

otherwise

go to Step 4;

Step 4: Set t := t + 1, arr := 1, dep := 1, Dt := {i ∈ [1, N ] :
Hδi

N = y(t)} and At+1 := ∅, and

go back to Step 1.

The idea underlying the algorithm is

(a) first, all distinct blocks zdep(t) of z(t) are ordinately

considered: if they are compatible with the output sample y(t)
they are used to determine the current block zarr(t + 1) by

means of the formula zarr(t+1) = L⋉u(t)⋉zdep(t). If not,

they are simply neglected;

(b) if the number dt of such distinct blocks in z(t) is smaller

than the cardinality νt of the class {i ∈ [1, N ] : Hδi
N = y(t)},

then νt − dt blocks of the vector z(t + 1) are evaluated by

making use of the remaining νt − dt canonical vectors δ
j
N of

{i ∈ [1, N ] : Hδi
N = y(t)}, through the formula zarr(t+1) =

L⋉ u(t) ⋉ δ
j
N ;

(c) if νt < ν, the remaining blocks in z(t+1) are evaluated

by making use of δi
N , where i is the smallest index in {i ∈

[1, N ] : Hδi
N = y(t)}.

It is clear that the first block of z(t), t > 0, is the state

that has proved to be compatible with the largest number of

output and input samples. In particular, at time T + 1 the

state z1(T + 1) is compatible with the input-output trajectory

(u(t),y(t)), t ∈ [0, T ]. So, independently of the initial state of

the observer, the state updating algorithm is conceived in such

a way that, if the original BCN is reconstructible in [0, T ], then

z1(T + 1) = x(T + 1).

Example 6: We illustrate also this algorithm by referring to

Example 4. We notice that C∼,1 consists of two classes:

{i ∈ [1, 4] : Hδi
4 = δ12} = {1, 2, 4},

{i ∈ [1, 4] : Hδi
4 = δ22} = {3}.

The index ν coincides with the cardinality of the largest class

and hence it is 3. Suppose that we have the input trajectory

u(0) = δ22 ,u(1) = δ12 ,u(2) = δ22 , ..., and the corresponding

output trajectory y(0) = δ12 ,y(1) = δ12 ,y(2) = δ12 , .... We

can initialize the observer state, for instance, with z(0) =
[ δ14 δ34 δ24 ]⊤.

We set t := 0, D0 := {1, 2, 4} and A1 := ∅. By applying

the previous algorithm, we easily find

z1(1) := L⋉ u(0) ⋉ z1(0) = δ44 ,

z2(1) := L⋉ u(0) ⋉ z3(0) = δ44 ,

z3(1) := L⋉ u(0) ⋉ δ44 = δ44 .

At t = 1, we have D1 := {1, 2, 4} and A2 := ∅, and the

algorithm gives

z1(2) := L⋉ u(1) ⋉ z1(1) = δ44 ,

z2(2) := L⋉ u(1) ⋉ δ14 = δ44 ,

z3(2) := L⋉ u(1) ⋉ δ24 = δ44 .

Clearly, z1(2) = δ44 = x(2).

Also, in this case, the state observer could be described by

means of a BCN, upon replacing each vector z(t) with the

corresponding “canonical” representation ξ(t), thus getting a

system of the following kind

ξ(t+ 1) = M ⋉ u(t) ⋉ y(t) ⋉ ξ(t),

x̂(t) = Ĥξ(t),

for suitable matrices11 M and Ĥ .

To conclude the section, we want to compare the different

philosophies underlying the two proposed observers. The shift-

register observer is essentially the dynamic implementation of

the static map R. Under the reconstructibility assumption, the

map R allows to reconstruct the state of the BCN at time t

from the input and output values in the window [t−T, t]. Such

input and output samples, ordered from the oldest to the most

recent, constitute the blocks of the observer state at time t,

whose updating consists in removing the oldest samples and

acquiring the new ones. The key ingredient of the BCN state

11It is difficult to find a general expression for the matrix M , whose
existence is however ensured by the fact that every triple (u(t),y(t), z(t)) is
mapped into a single vector z(t+1) and, consequently, each canonical vector
u(t)⋉y(t)⋉ξ(t) is mapped into a unique canonical vector ξ(t+1). On the

other hand, the matrix Ĥ can be easily determined along the lines we used
for the previous observer. Indeed, as x̂(t) = z1(t), we can first determine
the swap matrix W such that

W ⋉ξ(t) = W ⋉z1(t)⋉z2(t)⋉. . .⋉zν(t) = z2(t)⋉. . .⋉zν(t)⋉z1(t),

and then apply a finite sequence of dummy operators, to delete the variables
z2(t) ⋉ . . . ⋉ zν(t). This implies that

Ĥ = ΦN,N ⋉ ΦN2,N ⋉ . . . ⋉ φNν−1,N ⋉ W.
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estimation is represented by the static map Ĥ , that acts on

the “canonical representation” z(t) of the observer state and

realizes the map R.

On the other hand, the multiple states observer proceeds

according to a different rationale. It memorizes all the current

state estimates, and it updates only those that are compatible

with the current output sample, by making use of the system

laws and the knowledge of the current input value. So, the

observer state consists of ν possible estimates of the BCN

state. The blocks with lower index in the observer state are

those that have proved to be compatible with a larger number

of input/output samples, and for this reason once they prove to

be compatible with the input and output for T +1 consecutive

time instants, they provide the real value of the BCN state. It

is worth noticing that the key ingredient of this observer is the

state updating law, while the static output map, that provides

the BCN state estimate, simply consists in selecting the first

block of the observer state vector.
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