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ARTICLE OPEN

Observable quantum entanglement due to gravity
Tanjung Krisnanda 1*, Guo Yao Tham1, Mauro Paternostro2 and Tomasz Paterek1,3,4*

No experiment to date has provided evidence for quantum features of the gravitational interaction. Recently proposed tests
suggest looking for the generation of quantum entanglement between massive objects as a possible route towards the observation
of such features. Motivated by advances in optical cooling of mirrors, here we provide a systematic study of entanglement between
two masses that are coupled gravitationally. We first consider the masses trapped at all times in harmonic potentials
(optomechanics) and then the masses released from the traps. This leads to the estimate of the experimental parameters required
for the observation of gravitationally induced entanglement. The optomechanical setup demands LIGO-like mirrors and squeezing
or long coherence times, but the released masses can be light and accumulate detectable entanglement in a timescale shorter than
their coherence times. No macroscopic quantum superposition develops during the evolution. We discuss the implications from
such thought experiments regarding the nature of the gravitational coupling.

npj Quantum Information            (2020) 6:12 ; https://doi.org/10.1038/s41534-020-0243-y

INTRODUCTION
The successful unification of electromagnetic, weak and strong
interactions within the quantum framework strongly suggests that
gravity should also be quantised. Up to date, however, there is no
experimental evidence of quantum features of gravity. In
numerous experiments, gravity is key to the interpretation of
the observed data, but it is sufficient to use Newtonian theory
(quantum particle moving in a background classical field) or
general relativity (quantum particle moving in a fixed spacetime)
to gather a meaningful understanding of such data. Milestone
experiments described within Newtonian framework include
gravity-induced quantum phase shift in a vertical neutron
interferometer,1 precise measurement of gravitational acceleration
by dropping atoms,2 or quantum bound states of neutrons in a
confining potential created by the gravitational field and a
horizontal mirror.3 Quantum experiments that require general
relativity include gravitational redshift of electromagnetic radia-
tion4 or time dilation of atomic clocks at different heights.5

A number of theoretical proposals discussed scenarios capable
of revealing quantumness of gravity. For example, refs. 6–14

proposed the observation of a probe mass interacting with the
gravitational field generated by another mass. More recent
proposals put gravity in a role of mediator of quantum
correlations and are based on the fact that quantum entangle-
ment between otherwise non-interacting objects can only
increase via a quantum mediator.15–17 Motivated by these
proposals and by advances in optomechanics,18 in particular the
cooling of massive mechanical (macroscopic) oscillators close to
their quantum ground state19–21 and the measurement of
quantum entanglement of a two-mode system,22–24 we study
two nearby cooled masses interacting gravitationally.
We propose two scenarios capable of increasing gravitational

entanglement between the masses. In the first scenario, we
consider the masses trapped at all times in 1D harmonic potentials
(optomechanics). In the second one, the masses are released from
the optical traps. For both settings, we derive an analytic figure of

merit characterising the amount of gravitationally induced
entanglement and the time it takes to observe it. The derivation
includes various initial states and shows that the objects have to
be cooled down very close to their ground states and that
squeezing of their initial state significantly enhances the amount
of generated entanglement. We then formulate a numerical
approach, which accounts for all the relevant sources of noise
affecting the settings that we propose, to identify a set of
parameters required for the observation of such entanglement.
Finally, we discuss the conclusions that can be drawn from this
experiment with emphasis on the need for independent
laboratory verification that the gravitational interaction between
nearby objects is indeed mediated.

RESULTS
Proposed setup
Consider two particles, separated by a distance L, as depicted in
Fig. 1. In what follows, we study the setting where the massive
particles are either held or released from unidimensional harmonic
traps. In the former case, one can treat the particles as identical
harmonic oscillators, with the same shape, mass m, and vibrational
frequency ω. The two oscillators and the gravitational interaction
between them give rise to the total Hamiltonian H= H0+ Hg,
where

H0 ¼ p2A
2m

þ 1
2
mω2x2A þ

p2B
2m

þ 1
2
mω2x2B (1)

and Hg describes the gravitational term. If the harmonic traps are
removed, the corresponding Hamiltonian simplifies to
H0 ¼ ðp2A þ p2BÞ=2m. Before we proceed with detailed calculations,
we shall discuss generic features of the gravitational term and the
conditions required for the creation of entanglement.
In general, the gravitational term Hg depends on the geometry

of the objects. Various configurations have been analysed in the
Supplementary Information accompanying this paper. The results
of such analysis suggest that spherical masses give rise to the
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highest amount of generated entanglement. The Newtonian
gravitational energy of this setting is the same as if the two
objects were point-like masses, that is Hg=−Gm2 / (L+ xB− xA),
where L is the distance between the objects at equilibrium and xA
(xB) is the displacement of mass A (B) from equilibrium. By
expanding the energy in the limit xA− xB ≪ L, which is well
justified for oscillators that are cooled down close to their ground
state, one gets

Hg ¼ �Gm2

L
1þ ðxA � xBÞ

L
þ ðxA � xBÞ2

L2
þ � � �

 !
: (2)

The first term is a rigid energy offset, while the second is a bi-local
term and cannot thus give rise to quantum entanglement. The
third term, which is proportional to ðxA � xBÞ2, is the first that
couples the masses. When written in second quantisation, it
becomes apparent that this term includes contributions respon-
sible for the correlated creation of excitations in both oscillators. In
the quantum optics language, this is commonly referred to as a
“two-mode squeezing” operation, which can in principle entangle
the masses provided a sufficient strength of their mutual coupling.
Based on this observation, we provide an intuitive argument
setting the scales of experimentally relevant parameters, which
will then be proven rigorously.

Calculations of entanglement: oscillators
In order to achieve considerable entanglement, we should ensure
that the coupling (third term) in Eq. (2) is comparable to the
energy �hω of each oscillator, that is Gm2ðxA � xBÞ2=L3 � _ω. As we
assume that the oscillators are near their ground state, we
estimate their displacements by the ground state extension,
ðxA � xBÞ2 � 2_=mω. We thus introduce the (dimensionless) figure
of merit

η � 2Gm

ω2L3
: (3)

We should have η ~ 1 in order for the oscillators to be significantly
entangled. This sets the requested values of the experimentally
relevant parameters m, ω, and L.
In what follows, we will demonstrate the following results,

which embody the key findings of our investigation: (i) Starting
from the ground state of each oscillator and assuming (for the
sake of argument) only negligible environmental noise, the
maximum entanglement (as quantified by the logarithmic
negativity25,26) generated during the dynamics is given by
Emax
th � η=ln2. Moreover, the time taken for entanglement to

reach such maximum value is tmax
th ¼ π=2ð1� ηÞω. (ii) Single-mode

squeezing of the initial ground state of each oscillator substan-
tially enhances the gravity-induced entanglement. The corre-
sponding maximum entanglement becomes Emax

sq � jsA þ sBj=ln2,
where sj (j= A, B) is the degree of squeezing of the jth oscillator,
and we assume η≪ sA, sB. In this case, the maximum

entanglement is reached in a time tmax
sq ¼ π=2ηω. (iii) Weaker

entanglement is generated with increasing temperature of the
masses or coupling to the environment.
As the third term in Eq. (2) is already very small under usual

experimental conditions, we neglect all terms of order higher than
the second in the displacement from equilibrium. Note that the
ratio between any two consecutive terms in Eq. (2) is given by
ðxA � xBÞ=L �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=mωL2

p
. For instance, taking m= 100 μg, ω =

100 kHz, and L= 0.1 mm gives this ratio ~10−12, and for
macroscopic values m = 1 kg, ω= 0.1 Hz, and L = 1 cm the ratio
is ~10−15. We note ref. 27 for similar treatment of linearised
central-potential interactions. By taking the total Hamiltonian with
a suitably truncated gravitational term Hg, one gets a set of
Langevin equations in Heisenberg picture

_Xj ¼ ω Pj ðj ¼ A; BÞ;
_PA ¼ �ω 1� ηð ÞXA � ωη XB � γ PA þ ξA þ ν;

_PB ¼ �ω 1� ηð ÞXB � ωη XA � γ PB þ ξB � ν;

(4)

where we have introduced the constant frequency ν ¼
Gm2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_mωL4

p
and the dimensionless quadratures Xj ¼ffiffiffiffiffiffiffiffiffiffiffiffi

mω=_
p

xj and Pj ¼ pj=
ffiffiffiffiffiffiffiffiffiffi
_mω

p
. These equations incorporate

Brownian-like noise—described by the noise operators ξj—and
damping (at rate γ) affecting the dynamics of the mechanical
oscillators, due to their interactions with their respective environ-
ment. We assume the (high mechanical quality) conditions
Q ¼ ω=γ � 1, as it is the case experimentally, so that the
Brownian noise operators can de facto be treated as uncoloured
noise and we can write hξ jðtÞξ jðt0Þ þ ξ jðt0Þξ jðtÞi=2 ’ γð2nþ 1Þ
δðt � t0Þ for j = A, B.28,29 Here, n ¼ ðeβ � 1Þ�1

is the thermal
phonon number with β ¼ �hω=kBT and T the temperature of the
environment with which the oscillators are in contact.
The linearity of Eqs. (4) and the Gaussian nature of the noise make

the theory of continuous variable Gaussian systems very well suited
to the description of the dynamics and properties of the oscillators
under scrutiny. In this respect, the key tool to use is embodied by
the covariance matrix V(t) associated with the state of the system,
whose elements Vij(t)= 〈ui(t)uj(t)+ uj(t)ui(t)〉∕2− 〈ui(t)〉〈uj(t)〉 encom-
pass the variances and correlations of the elements of the
quadrature vector uðtÞ ¼ ðXAðtÞ; PAðtÞ; XBðtÞ; PBðtÞÞT . The temporal
behaviour of physically relevant quantities for our system of
mechanical oscillators can be drawn from V(t) by making use of
the approach for the solution of the dynamics that is illustrated in
Methods.
Due to weakness of the gravitational coupling, we have η≪ 1 in

practically any realistic experimental situation, and we thus
assume such condition throughout. In the case of no damping
(i.e., γ= 0) and assuming an initial (uncorrelated) thermal state of
the oscillators, a tedious but otherwise straightforward analytical
derivation shows that the entanglement between the mechanical
systems, as quantified by the logarithmic negativity, oscillates in
time with an amplitude of η=ln2� log2ð2nþ 1Þ. At low operating
temperature, a condition achieved through a combination of
passive and radiation-pressure cooling,18 n � 0 and the maximum
entanglement between the oscillators is Emax

th � η=ln2, a value
reached at a time tmax

th such that ωtmax
th ¼ π=2ð1� ηÞ.

An analytic solution is also possible for the case of mechanical
systems initially prepared in squeezed thermal states, a situation
that can be arranged by suitable optical driving.30,31 Each mass is
prepared in a state SρthS

†, where ρth is a thermal state and S ¼
expð�i sðX2 � P2Þ=2Þ is the squeezing operator with strength s.
This operator corresponds to anti-squeezing (squeezing) the
position quadrature for s > 0 (s < 0). By writing individual-
oscillator squeezing as sj and assuming sj ≫ η, the entanglement
is again observed to oscillate, but with amplitude
jsA þ sBj=ln2� log2ð2nþ 1Þ. Note that it is irrelevant whether

Fig. 1 Proposed experimental setup. Two masses, placed at a
distance L, are either trapped with harmonic potentials at all times
or released after cooling has been achieved. The particles are
assumed to be cooled down near the ground state of their trapping
potentials. We study entanglement generated in both scenarios and
note that it can be probed with weak light fields. Our model
includes gravitational coupling (dominant), noise, damping, deco-
herence and Casimir forces.
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the quadratures of both masses are squeezed or anti-squeezed.
We provide an explanation in the Supplementary Information.
Therefore, only the degree of pre-available single-oscillator
squeezing and the environmental temperature set a limit to the
amount of entanglement that can be generated between the
mechanical systems through the gravitational interaction. In the
low temperature limit, where Emax

sq � jsA þ sBj=ln2, which is in
principle arbitrarily larger than the case without squeezing, a time
tmax
sq ¼ π=ð2ηωÞ � tmax

th would be required for such entanglement
to accumulate. Needless to say, long accumulation times are far
from the possibilities offered by state-of-the-art optomechamical
experiments, which prompts an assessment that includes ab initio
the effects of environmental interactions.
In the case of noisy dynamics, however, an analytical solution is

no longer available and we have to resort to a numerical analysis.
Let us therefore consider the figure of merit η in order to set the
parameters for numerical investigation. We consider two oscilla-
tors of spherical shape with uniform density ρ and radius R, which
are separated by a distance L= 2.1R. This might be a situation
matching current experiments in levitated optomechanics,32,33

which are rapidly evolving towards the possibility of trapping
multiple dielectric nano-spheres in common optical traps and
controlling their relative positions. However, low-frequency
oscillators, which are favourable for the figure of merit and
typically associated with large masses, are unsuited to such
platforms and would require a different arrangement, such as
LIGO-like ones.21

In terms of the density ρ, we have η= 8πGρ / 3(2.1)3ω2, which
does not depend on the dimensions of the oscillators nor their
mass. As the density of materials currently available for such
experiments varies within a range of only two orders of
magnitude, the linear dependence on ρ sets a considerable
restriction on the values that η can take. The densest naturally
available material is Osmium, which has ρ= 22.59 g/cm3 and, in
order to provide an upper bound to the generated entanglement
that would be attainable using other materials, we shall use this
density in our numerical simulations. Accordingly, η = 1.36 ×
10−6 /ω2, where ω is in Hertz.
Figure 2 shows exemplary entanglement dynamics for different

values of the thermal phonon number n and mechanical quality
factor Q. The frequency has been fixed to ω= 0.1 Hz (cf.
Discussion section). As expected, higher damping (lower Q)
results in the decay of entanglement, and the higher the

temperature of the mirror (higher n), the higher the mechanical
quality factor needed to maintain entanglement. The setup allows
for high entanglement, even with low coupling strength η ~ 10−4.
However, this comes at the expense of the time for which the
dynamics of the oscillators should be kept coherent. It is also
evident that cooling down the masses close to their ground state,
n � 0, is crucial for the reduction of the required coherence time.
The oscillations of entanglement for unsqueezed initial state are
still present in this dynamics, showing repeating pattern with a
period of π / [(1− η)ω] ≈ 31 s.

Calculations of entanglement: released masses
As seen, the experimental parameters required for detectable
gravitational entanglement of masses in harmonic traps are
demanding. We therefore study one more feasible system, where
the traps are switched off after cooling the masses. Similar to the
treatment of two oscillators, one starts with the total Hamiltonian
for free masses and truncated gravitational term, and obtains the
following equations of motion:

_Xj ¼ ω Pj ðj ¼ A; BÞ;
_PA ¼ ωηXA � ωη XB þ ν;

_PB ¼ ωηXB � ωη XA � ν:

(5)

Note that ω here just sets the conversion between xj, pj and their
dimensionless counterparts Xj, Pj. In what follows, we will consider
starting the dynamics with thermal state for each mass. For
example, the ground state is a Gaussian state with width
Δxð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_=2mω
p

. This way, one can think of ω as a parameter
characterising the initial spread of the wave function.
One can obtain the covariance matrix V(t) from Eqs. (5) and

consequently derive the entanglement dynamics using the
approach discussed in Methods section. After imposing the limits
η ≪ 1 and

ffiffiffi
η

p
ωt � 1, which apply in typical experimental

situations, one obtains an analytical expression for the entangle-
ment dynamics as follows:

EthðtÞ ¼ maxf0; EgndðtÞ � log2ð2nþ 1Þg; (6)

EgndðtÞ ¼ �log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2σðtÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðtÞ2 þ σðtÞ

qr !
;

where EgndðtÞ is the entanglement with initial ground state for
each mass and σ(t)= 4G2m2ω2t6 / 9L6. Since entanglement is an
increasing function of σ(t), the latter is a figure of merit for
entanglement gain relevant in the case of released masses. We
present exemplary entanglement dynamics in Fig. 3 for which
entanglement ~10−2 is achieved within seconds. The parameters
used here are m = 100 μg, ω= 100 kHz, and L= 3R. We will show
later that with these values gravity is the dominant interaction and
coherence times are much longer than 1 s. Note that this setup
does not require any squeezing.
These improvements over the scheme with trapped masses are

the result of unlimited expansion of the wave functions. For
example, for initial ground state, the evolution of the width of
each sphere closely follows ΔxðtÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_=2mω
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω2t2
p

, which is
an exact solution to a free non-interacting mass. The effect of
gravity is stronger attraction of parts of the spatial superposition
that are closer, and hence generation of position and momentum
correlations, leading to the growth of quantum entanglement; see
inset in Fig. 3.
In order to understand the effect of squeezing in this setup, let

us suppose, for simplicity, the squeezing strengths sA,B = s. It is as
if one initially prepared each mass in a Gaussian state with a new
initial spread Δx0ð0Þ ¼ Δxð0Þ expðsÞ. One can then calculate the
entanglement dynamics using Eq. (6) with a new frequency
ω0 ¼ ω expð�2sÞ. This means that anti-squeezing the initial

Fig. 2 Entanglement threshold and coherence time. Different
curves correspond to different pairs of parameters ðn;QÞ, where n is
the mean phonon number and Q the mechanical quality factor. The
frequency of both mirrors is taken to be ω= 0.1 Hz and the
squeezing strength is sA,B= 1.73. The degree of entanglement is
quantified using the logarithmic negativity.
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position quadrature (s > 0) would decrease entanglement gain, a
situation opposite to the oscillators setup. This is because a
Gaussian state with smaller Δx(0) spreads faster, such that during
the majority of the evolution, the width is larger than that if one
started with larger Δx(0). In principle, one obtains higher
entanglement gain by squeezing the position quadrature (s < 0).
However, this will result in higher final width, making it more
susceptible to decoherence by environmental particles (see
Discussion).
From numerical simulations, one confirms that, within t= [0,

10] s, the displacements of the two masses follow xA− xB≪ L.
Furthermore, the trajectories coincide for both quantum treat-
ment with truncated gravitational energy and classical treatment
with full Hg (see Supplementary Information). This justifies the
approximations used.

Discussion
We have shown that two nearby masses—both trapped and
released—can become entangled via gravitational interaction. Let
us now discuss the conditions required to observe this entangle-
ment in light of recent experimental achievements.
Logarithmic negativity in the order 10−2 has already been

observed between mechanical motion and microwave cavity
field.22 Extrapolating the same entanglement resolution to the
case of two massive oscillators sets the required frequency to ω ~
10−2 Hz, see Eq. (3) and its expression in terms of ω. Interestingly,
kilogram-scale mirrors of similar frequency (ω ~ 10−1 Hz) were
recently cooled down near their quantum ground state.21

Furthermore, recent experiments on squeezed light have reported
high squeezing strength34,35 (see also a review in this context36),
up to 15 dB, which corresponds to s ≈ 1.73. Advances in the state
transfer between light and optomechanical mirrors18 make this
high squeezing promising also for mechanical systems.
For released masses, the experimental requirements are more

relaxed. Their mass can be considerably smaller while the
frequency for initial trapping considerably higher, which is close
to common experimental parameters used for optomechanical
system.18–20 Note that higher frequency (lower Δx(0)) improves
entanglement gain, unlike in the oscillators case where small ω is
preferable. However, one has to be cautious of decoherence

mechanisms as a result of faster spreading rate of the wavefunc-
tions. For future experiments, an improvement in the sensitivity of
entanglement detection will also be beneficial.
In light of their proximity, apart from gravitational interaction,

the two masses can also interact via Casimir force. It has been
shown that the Casimir energy between two nearby spheres is
given by a fraction of the “proximity force approximation”
E ¼ �f 0ðπ3=1440Þ_cR=ðL� 2Rþ xB � xAÞ2, with the factor 0 ≤
f0 ≤ 1.37,38 As typically xA− xB≪ L− 2R, we expand such expres-
sion to find a quadratic term in xA− xB that can produce
entanglement between the masses. The strength of this term,
however, is much weaker than the strength of the corresponding
entangling term of gravitational origin: for Osmium oscillators
with mass ~1 kg separated by L= 2.1R, the ratio between the
Casimir and gravitational term is rcg ~ 10−12. Similar calculations
made for released masses of the same material with m= 100 μg
and L= 3R, give rcg ~ 10−2. It is thus legitimate to ignore Casimir
interaction in both schemes.
Let us also discuss common decoherence mechanisms, i.e., due to

interactions with thermal photons and air molecules;39 see
Supplementary Information for details. We take the average width
of the wave function as an estimate for the superposition that is
subjected to decoherence. All the situations we consider follow the
limit Δx≪ λ, i.e., the “size” of superposition is much smaller than the
wavelength of the particles causing the decoherence. For oscillators
made of Osmium, we usem ~ 1 kg and frequency ω ~ 0.1 Hz. Taking
L= 2.1R and starting with ground state give Δx ≈ 8 × 10−17 m. From
interactions with thermal photons at environmental temperature of
4 K (liquid Helium), the coherence time for the oscillators is τph ~ 5 s.
The coherence time due to collisions with air molecules can be
improved by evacuating the chamber with the oscillators—for
about 1012 molecules/m3 (ultrahigh vacuum), the coherence time is
τam ~ 5 s. One could also consider performing these experiments in
space. Taking the temperature as 2.7 K (cosmic microwave back-
ground) and assuming 107molecules/m3 (space pressure ~ 10−15

Pa) we obtain τph ~ 170 s and τam ~ 106 s.
By making similar calculations for released masses, with

parameters considered in Fig. 3, one obtains τph ~ 105 s and τam
~ 10−4 s for the experiment on Earth with liquid Helium
temperature and ultrahigh vacuum. For the space experiment,
the coherence times improve to τph ~ 107 s and τam ~ 41 s,
respectively.
Other schemes have been proposed for gravitationally induced

entanglement.16,17 They are based on Newtonian interaction
between spatially superposed microspheres with embedded
spins. In those proposals, entanglement is reached faster and
the small size of the experiment is the main advantage. However,
in order to separate gravitational and Casimir contributions in that
setup, each diamond sphere with mass m= 10−14 kg has to be
superposed across 250 μm. Decoherence due to scattering of
molecules then becomes the main limiting factor. The schemes
we discussed here are complementary in a sense that vibrations of
each oscillator are minute (no macroscopic superposition) but
larger mass, 100 μg, is required for observable entanglement.
We conclude with analysis of implications on the nature of the

gravitational coupling that one can draw from such experiments
and future research directions. In laboratory, we deal with two
nearby masses which are experimentally shown to become
entangled. These setups can be theoretically treated in different
ways depending on the assumptions one makes about gravity. In
a “conservative approach”, the two masses are coupled via
Newtonian potential. As seen from our calculations and those in
refs. 16,17 this indeed leads to gravitationally induced entangle-
ment. In this picture, gravity is a direct interaction and hence it is
difficult to draw conclusions about the form of quantumness of
the gravitational field. We note that even in this conservative
approach such an experiment has considerable value as it would

Fig. 3 Entanglement dynamics between two released Osmium
spheres. Each mass has m= 100 μg and is initially prepared in a
Gaussian thermal state from a harmonic trap with ω= 100 kHz. The
two masses are separated by L= 3R ≈ 0.3 mm. With these para-
meters, gravity dominates Casimir interactions and observable
entanglement is generated in seconds, which is shorter than the
coherence times. In particular, entanglement in the order 0.01 is
achieved within 0.8 s with initial ground state, and in 4.5 (7.5) s when
starting with thermal states of n ¼ 1 (5).
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show the necessity of at least the quadratic term in the expansion
of the Newtonian potential for generating entanglement.
The objection to the conservative approach is instantaneity of

gravitational interaction: Newtonian potential directly couples
masses independently of their separation. On the other hand, it
has been shown that gravitational waves travel with finite speed.40

For nearby masses, this retardation is hardly measurable and
Newtonian potential is dominant and expected to correctly
describe the amount of generated entanglement. A more
consistent option in our opinion, motivated by quantum
formalism and comparison with other fundamental interactions,
is to treat gravitational field as a separate physical object. In this
picture, the masses are not directly coupled, but each of them
individually interacts with the field. It has been argued within this
mass–field–mass setting that entanglement gain between the
masses implies non-classical features of the field.15–17

This discussion shows that it would be useful to provide
methods for independent verification of the presence or
absence of a physical object mediating the interaction. We
finish with a toy example of a condition capable of revealing
that there was no mediator. To this end, we consider two
scenarios: (i) evolving a bipartite system described at time t by a
density matrix ρ12(t); (ii) two objects interacting via a mediator
M, i.e., with Hamiltonian H1M + HM2, described by a tripartite
state ρ1M2(t). We ask whether there exists bipartite quantum
dynamics ρ12(t) that cannot be obtained by tracing out the
mediator in scenario (ii). Indeed, if ρ12(t) is a pure state at all
times and entanglement increases, the dynamics could not have
been mediated. The purity assumption requires the mediator to
be uncorrelated from ρ12(t), and uncorrelated mediator is not
capable of entangling the principal system, composed of
particles 1 and 2.15 It would be valuable to generalise this
argument to mixed states measured at finite number of time
instances.
For example, in an experimental situation, the state of particles

1 and 2 might only be close to a pure state (with purity 1− ε,
where ε is a small positive parameter) and therefore they could be
weakly entangled to the mediator M (with entanglement � OðεÞ).
One would naturally expect that entanglement gain between
particles 1 and 2 is bounded, e.g., as a function of ε. An
observation of higher entanglement gain therefore excludes the
possibility of mediated dynamics.

METHODS
Langevin equations and covariance matrix
Let us first consider the setup with oscillators. One can rewrite the
equations in (4) as a single matrix equation _uðtÞ ¼ KuðtÞ þ lðtÞ, with the
vector uðtÞ ¼ ðXAðtÞ; PAðtÞ; XBðtÞ; PBðtÞÞT and a drift matrix

K ¼

0 ω 0 0

�ωð1� ηÞ �γ �ωη 0

0 0 0 ω

�ωη 0 �ωð1� ηÞ �γ

0
BBB@

1
CCCA: (7)

We split the last term in the matrix equation into two parts, representing
the noise and constant term, respectively, i.e., l(t)= υ(t)+ κ, where υðtÞ ¼
ð0; ξAðtÞ; 0; ξBðtÞÞT and the constant κ ¼ νð0; 1; 0;�1ÞT with

ν ¼ Gm2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_mωL4

p
.

The solution to the Langevin equations is given by

uðtÞ ¼ WþðtÞuð0Þ þWþðtÞ
Z t

0
dt0W�ðt0Þlðt0Þ; (8)

where W ± ðtÞ ¼ expð±KtÞ. This allows one to calculate the expectation
value of the ith quadrature 〈ui(t)〉 numerically, which is given by the ith

element of

WþðtÞhuð0Þi þWþðtÞ
Z t

0
dt0W�ðt0Þκ; (9)

where we have used the fact that the noises have zero mean, i.e., 〈υi(t)〉=
0 and that 〈κ〉= tr(κρ)= κ. From Eq. (8), one can also calculate other
important quantities via the covariance matrix as shown below.
Covariance matrix of our system is defined as Vij(t)≡ 〈{Δui(t), Δuj(t)}〉∕2=

〈ui(t)uj(t)+ uj(t)ui(t)〉∕2− 〈ui(t)〉〈uj(t)〉, where we have used Δui(t)= ui(t)−
〈ui(t)〉. This means that κ does not contribute to Δui(t) (and hence the
covariance matrix) since 〈κ〉= κ. We can then construct the covariance
matrix at time t from Eq. (8) without considering κ as follows

VijðtÞ ¼ hUiðtÞujðtÞ þ ujðtÞuiðtÞi=2� huiðtÞihujðtÞi

VðtÞ ¼ WþðtÞVð0ÞWT
þðTÞ þ WþðtÞ

Z t

0
dt0W�ðt0ÞDWT

�ðt0ÞDWT
þðtÞ; (10)

where D ¼ Diag ½0; γð2nþ 1Þ; 0; γð2nþ 1Þ	 and we have assumed that the
initial quadratures are not correlated with the noise quadratures such that
the mean value of the cross terms are zero. A more explicit solution of the
covariance matrix, after integration in Eq. (10), is given by

KVðtÞ þ VðtÞKT ¼ �Dþ KWþðtÞVð0ÞWT
þðtÞ þ WþðtÞVð0ÞWT

þðtÞKT

þWþðtÞDWT
þðtÞ;

(11)

which is linear and can be solved numerically.
Consider a special case, in which the damping term γ is negligible,

giving D= 0. In this case, Eq. (11) simplifies to

VðtÞ ¼ WþðtÞVð0ÞWT
þðtÞ: (12)

In this regime, we have obtained analytical results.
For free masses, one can follow similar treatments as above, keeping in

mind γ= 0 and υ(t)= (0, 0, 0, 0)T such that the solution to quadrature
dynamics and covariance matrix is given by Eqs. (9) and (12), respectively,
with a new drift matrix

K ¼

0 ω 0 0

ωη 0 �ωη 0

0 0 0 ω

�ωη 0 ωη 0

0
BBB@

1
CCCA: (13)

Entanglement from covariance matrix
The covariance matrix V(t) describing our two-mode system can be written
in a block form

VðtÞ ¼ IA L

LT IB

� �
; (14)

where the component IA (IB) is a 2 × 2 matrix describing local mode
correlation for A (B) while L is a 2 × 2 matrix characterising the intermodal
correlation. A two-mode covariance matrix has two symplectic eigenvalues
fν1; ν2g. A physical system has ν1; ν2 
 1=2.41

For entangled modes, the covariance matrix will not be physical after
partial transposition with respect to mode B (this is equivalent to flipping
the sign of the oscillator’s momentum operator PB in V(t)). This unphysical
VðtÞTB is shown by the minimum symplectic eigenvalue ~νmin<1=2. The

explicit expression is given by ~νmin ¼ ðΣ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2 � 4det V

p
Þ1=2= ffiffiffi

2
p

, where
Σ= det IA + det IB− 2 det L. Entanglement between modes A and B is then
quantified by logarithmic negativity as E ¼ maxf0;�log2ð2~νminÞg.25,26
Note that the separability condition, when VðtÞTB has ~νmin 
 1=2, is
sufficient and necessary for two-mode systems.42
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