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Abstract. We present a framework for computing averages of various observ-
ables of Macdonald processes. This leads to new contour–integral formulas for
averages of a large class of multilevel observables, as well as Fredholm deter-
minants for averages of two different single level observables.

Contents

1. Introduction 1517
2. General definitions 1521
3. Formal Macdonald processes and observables 1526
4. Ascending Macdonald processes 1538
5. Appendix: E. Rains’ proof of Proposition 4.10 1552
6. Appendix: On a formal version of Theorem 4.5 1554
Acknowledgements 1556
References 1556

1. Introduction

The last decade saw great success surrounding the applications of Schur pro-
cesses [O1], [OR] to probability (cf. [BG]). Starting with the 2011 work of [BC] (see
also [F1], [FR]), more general Macdonald processes have proved useful in solving
a number of problems in probability, including: computing exact Fredholm deter-
minant formulas and associated asymptotics for one–point marginal distributions
of the O’Connell–Yor semi–discrete directed polymer [BC], [BCF] (see also [OCY],
[OC]), log–gamma discrete directed polymer [BC], [BCR] (see also [COSZ], [Se]),
Kardar–Parisi–Zhang / stochastic heat equation [BCF] (see also [ACQ], [SS]), q–
TASEP [BC], [BCS], [BC2] and q–PushASEP [BP], [CP]; showing Gaussian free
field fluctuations for the general β Jacobi corners process [BG2]; and constructing
a multilevel extension of the general β Dyson Brownian Motion [GS].

These probabilistic systems and formulas describing them arise under various
choices and limits of parameters (sometimes called degenerations) for Macdonald
processes (as well as natural dynamics which behave well with respect to Mac-
donald processes). There are other important degenerations including the study
of measures on plane partitions [V], random unitriangular matrices over finite
fields [B], [F2], [GKV, Section 4], Kingman and Ewens–Pitman partition structures
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Figure 1. Macdonald processes unify the study of a diverse array
of probabilistic systems.

[Ki], [Ke1], [Ke2, Chapter I], [P], z–measures as well as other distributions origi-
nating from the representation theory of “big” groups [BO], [OO], [KOO]. Many
more examples are known for the degeneration related to the Schur processes, e.g.
domino/lozenge tilings and shufflings, totally asymmetric simple exclusion process,
polynuclear growth model, last passage percolation, longest increasing subsequences
in random permutations (see the review [BG]). Figure 1 indicates how these systems
relate to Macdonald processes.

The integrable properties of the Macdonald symmetric functions (i.e., the fam-
ily of Macdonald difference operators diagonalized by them) through which the
Macdonald processes are defined naturally lead to a family of observables whose
expectations can be concisely written via contour–integral formulas. This approach
to studying observables of Macdonald processes was initiated in [BC], and the pur-
pose of this paper is to develop this direction in its full generality. The family
of observables (for whose expectation we have contour–integral formulas) is suf-
ficiently rich so as to completely characterize the distribution of the Macdonald
process. Thus, one could call this an integrable probabilistic system (cf. [BG]). We
expect that these new results will prove useful for many of the degenerations of
Macdonald processes indicated in Figure 1.

This should be compared to the fact that Schur processes of [OR] (degenerations
of Macdonald processes when q = t; see Figure 1) are known to be determinantal,
meaning that all of their correlation functions are given by determinants made of
a single correlation kernel. Marginal distributions of determinantal point processes
are known to be expressible in terms of Fredholm determinants. Macdonald pro-
cesses do not appear to be determinantal and the family of (non-local) observables
which we study at the Macdonald processes level is different from those related to
correlation functions (and do not degenerate to those when q = t).1 Nevertheless we
introduce two single-level observables of Macdonald processes whose expectations

1It is possible at q = t to use the Macdonald process observables to recover the Schur process
correlation kernel; cf. [BC, Remark 2.2.15] and [A].
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are given by Fredholm determinants. The first relies upon an operator of [NS] (see
also [FHHSY]), which is diagonalized by the Macdonald symmetric polynomials,
while the second (more elementary) result relies upon the Macdonald difference
operators.

Besides providing a unified framework through which to study (and discover)
a variety of probabilistic systems, Macdonald processes exist at a sufficiently high
algebraic level so that they may be treated as formal algebraic objects. This formal
perspective, which is introduced in Section 2 and applied in detail in Section 3,
enables us to deal with a more general case of Macdonald processes than just the
ascending Macdonald processes, which was the primary interest of [BC]. Already
in [BCFV] this formal perspective has proved useful in justifying identities for
which a direct analytic proof is unjustifiable due to divergences. In Section 4 we do
specialize to ascending Macdonald processes and find new formulas for expectations
of multilevel observables, some of which have already been applied in work on q–
TASEP [BCS] and general β random matrix theory [BG].

We briefly introduce Macdonald processes and then highlight two of the results
which we prove in subsequent sections. The notation and exact definitions related
to symmetric functions and formal power series are introduced and explained in
Section 2. As given in Definition 3.2, the formal Macdonald process MPf

N,A,B is

a formal probability measure (of total weight 1) on YN (here Y is the set of all
partitions) such that

MPf
N,A,B(λ

1, . . . , λN )

=
Pλ1(A1)Ψλ2,λ1(A2;B1)Ψλ3,λ2(A3;B2) · · ·ΨλN ,λN−1(AN ;BN−1)QλN (BN )∏

1≤α≤β≤N Π(Aα;Bβ)
,

where

Ψλ,μ(A;B) =
∑
ν∈Y

Pλ/ν(A)Qμ/ν(B),

and the factors Π(Aα;Bβ) are defined via

Π(X;Y ) =
∑
λ∈Y

Pλ(X)Qλ(Y ).

Here P• and Q• are (skew) Macdonald symmetric functions (cf. Definition 2.1),
and they depend on two auxiliary (Macdonald) parameters traditionally denoted
by q, t. Though in the definition of these symmetric functions q, t can be taken as
formal variables, we will assume henceforth that q, t ∈ [0, 1), as this is necessary
for some of the more analytic statements later in this paper.

This is called a formal probability measure since it does not assign a non–negative
real probability to a given choice of λ1, . . . , λN , but rather assigns a formal power
series in the symmetric functions of the 2N sets of variables A = (A1, . . . , AN ),
B = (B1, . . . , BN ) (each of these sets of variables is, itself, an infinite collection of
indeterminates, so that e.g. A1 = (a11, a

1
2, . . .)). Alternatively, this can be thought

of as formal power series in the Newton power sums pk(A
i) and pk(B

j), where
pk(X) =

∑
i(xi)

k.
Define the observable Er : Y → C as (cf. Definition 3.7)

Er(λ) = lim
N→∞

er(q
−λ1 , q−λ2t, . . . , q−λN tN−1), r ≥ 1,

where er is the rth elementary symmetric polynomial, and E0(λ) = 1.
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For sets of indeterminates X = (x1, x2, . . .) and Y = (y1, y2, . . .), define also

(1.1) H(X;Y ) =
∏
i,j

1− txiyj
1− xiyj

and W(X;Y ) =
∏
i,j

(1− txiyj)(1− qxiyj)

(1− xiyj)(1− qtxiyj)
.

These can be viewed as formal power series via (1− u)−1 =
∑

j≥0 u
j .

The statement of Theorem 1.1 below (Theorem 3.10 in the main text) should be
understood formally as an identity of symmetric power series.

Theorem 1.1. Take N ≥ 1 and r1, . . . , rN ≥ 0. For 1 ≤ m ≤ N , set V m =
{vm1 , . . . , vmrm} and define

DV m =
1

(rm)!(2πi)rm
det

[
1

vmi − tvmj

]rm

i,j=1

rm∏
i=1

dvmi .

We have∑
λ1,...,λN∈Y

Er1(λ1) · · · ErN (λN )MPf
N,A,B(λ

1, . . . , λN )

=

∮
· · ·

∮ N∏
m=1

(DV m)
∏

1≤α≤β≤N

H
(
(qV α)−1;Bβ

)
H
(
Aα;V β

)
W

(
(qV α)−1;V β

)
.

Here for a set of variables V = {v1, . . . , vr}, (qV )−1 means the set {(qv1)−1, . . . ,
(qvr)

−1}. The contours of integration are a collection of positively oriented circles
γ1, . . . , γm of radii R1, . . . , Rm around the origin such that vαi is integrated over γα,
and the radii are such that Rβ < qRα for 1 ≤ α < β ≤ N .

In what follows we call a homomorphism of an algebra into C a specialization.
One example of a specialization of the algebra of symmetric functions in variables
x1, x2, . . . , is obtained by substituting complex numbers (subject to certain conver-
gence conditions) in place of xi, i = 1, 2, . . . .

Applying appropriate specializations to the identity of Theorem 1.1 we get an
analytic statement. However, the only proof of the analytic identity we know of
proceeds through the formal setting (when restricted to ascending Macdonald pro-
cesses as discussed below, a direct analytic proof is known).

The ascending Macdonald process MPa
N ;{ai};ρ (cf. Definition 4.1) is the result

of specializing the 2N sets of variables A = (A1, . . . , AN ), B = (B1, . . . , BN ) in
a certain way. This is now a (possibly complex-valued) measure on sequences of
interlacing partitions λ1, . . . , λN so that λi, 1 ≤ i ≤ N , has at most i non-zero
parts, and λi � λi−1 which means that

λi
1 ≥ λi−1

2 ≥ λi
2 ≥ · · · ≥ λi−1

i−1 ≥ λi
i

for 2 ≤ i ≤ N . If the specializations are assumed to have certain positivity proper-
ties, then the ascending Macdonald process becomes a bona fide probability mea-
sure; cf. [BC, Section 2.2]. In Section 4.1 we provide contour–integral formulas
for expectations of observables of the ascending Macdonald process of the form (in
Theorem 4.5 and Theorem 4.6, respectively)

m∏
i=1

eri(q
λ
ni
1 tni−1, qλ

ni
2 tni−2, . . . , qλ

ni
ni ) and

m∏
i=1

eri(q
−λ

ni
1 t1−ni , . . . , q−λ

ni
ni ),
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OBSERVABLES OF MACDONALD PROCESSES 1521

where N ≥ n1 ≥ n2 ≥ · · · ≥ nm ≥ 1 and r1, . . . , rm are such that 0 ≤ ri ≤ ni for
i = 1, . . . ,m.

The projection of the ascending Macdonald process to λN is the Macdonald
measure MMa

N ;{ai};ρ, which is a complex-valued measure on Y which sums (over

λ ∈ Y) to 1 such that (replacing λN by λ)

MMa
N ;{ai};ρ(λ) =

Pλ(a1, . . . , aN )Qλ(ρ)

Π(a1, . . . , aN ; ρ)
.

Here a1, . . . , aN are complex numbers and Qλ(ρ) is the specialization of Qλ (cf.
Section 2.3). Given some assumptions on the {ai} and ρ, the normalizing term

Π(a1, . . . , aN ; ρ) :=
∑
λ∈Y

Pλ(a1, . . . , aN )Qλ(ρ)

is finite and the measure is well–defined.
The t = 0 degeneration of Theorem 1.2 below (Theorem 4.8 in the main text)

was previously discovered in [BC, Corollary 3.2.10 and Theorem 3.2.11] and served
as the basis for computing exact Fredholm determinant formulas and associated
asymptotics for one–point marginal distributions of the O’Connell–Yor semi–
discrete directed polymer, Kardar–Parisi–Zhang / stochastic heat equation and
q–TASEP. The proof in [BC] relied on the first Macdonald difference operator and
its powers. Our present result uses a different operator diagonalized by the Mac-
donald polynomials.

Theorem 1.2. Fix N non–zero complex numbers a1,. . . , aN and a specialization
ρ. Then, under certain assumptions (cf. Theorem 4.8) on these parameters, as well
as the contour γ, we have that the following equality holds as an identity of power
series in u:∑

λ∈Y

N∏
i=1

(
qλitN−i+1u; q

)
∞(

qλitN−iu; q
)
∞

MM
a
N,{ai},ρ(λ) = det

(
I +Ku,N,{ai},ρ

)
L2(γ)

,

where the Fredholm determinant is defined in (4.10) and

Ku,N,{ai},ρ(w,w
′) =

∞∑
v=1

uv

qvw − w′
GN,{ai},ρ(w)

GN,{ai},ρ(q
vw)

,

GN,{ai},ρ(w) =
1

Π(w; ρ)

N∏
j=1

(tw/aj ; q)∞
(w/aj ; q)∞

.

For the degeneration related to directed polymers (i.e., Whittaker processes;
see Figure 1), this (somewhat surprisingly) converges as N → ∞ to the GUE
Tracy-Widom distribution [BC], [BCF], [BCR]. We look forward to investigating the
asymptotics of the above Fredholm determinant in other degenerations indicated
in Figure 1.

2. General definitions

2.1. Symmetric functions. A partition λ is a weakly decreasing sequence of non–
negative integers λ1 ≥ λ2 ≥ · · · ≥ 0, such that

∑
i λi < ∞. The last sum is called
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the size of a partition and is denoted |λ|. Let Yn denote the set of all partitions of
size n and set

Y =
∞⋃

n=0

Yn,

where we assume Y0 to be a singleton consisting of ∅. The number of non-zero
coordinates (parts) in λ is called the length of λ and denoted �(λ).

In what follows we denote by capital letters X,Y,A,B sets of variables (i.e.
alphabets) and by lowercase letters x, y, . . . , single variables. Let ΛX denote the Z≥0

graded algebra (over C) of symmetric functions in variables X = (x1, x2, . . . ), which
can be viewed as the algebra of symmetric polynomials in infinitely many variables
x1, x2, . . . of bounded degree, see e.g. [M, Chapter 1] for general information on Λ.
One way to view Λ is as an algebra of polynomials in Newton power sums

pk(X) =
∑
i

(xi)
k, k = 1, 2, . . . .

For any partition λ we set

pλ(X) =

�(λ)∏
i=1

pλi
(X).

Elements pλ(X), λ ∈ Y form a linear basis in ΛX .
An alternative set of algebraically independent generators of ΛX is given by the

elementary symmetric functions

ek(X) =
∑

i1<i2<···<ik

xi1xi2 · · ·xik , k = 1, 2, . . . .

We usually write ΛX , ΛY , etc., for (isomorphic) algebras of symmetric functions in
variables X = (x1, x2, . . . ), Y = (y1, y2, . . . ) and so on. When the set of variables
is irrelevant, we omit it from the notation and write simply Λ.

For a symmetric function f let φ0(f) be its free (constant, degree 0) term. Clearly
φ : Λ → C is an algebra homomorphism, and φ0(pk) = 0, k = 1, 2, . . . .

In what follows we fix two parameters q, t and assume that they are real numbers
satisfying 0 < q, t < 1. Alternatively, in many places below we could have instead
assumed that q and t are formal variables, replacing C in the definition of Λ and
all the following definitions with the algebra C(q, t) of rational function in q and t.
Since q and t never change throughout the paper, we omit the dependence on them
from the notation.

The Macdonald scalar product
〈
·, ·

〉
on Λ is defined via

(2.1)
〈
pλ, pμ

〉
= δλ,μ

⎛⎝�(λ)∏
i=1

1− qλi

1− tλi

⎞⎠(
λ1∏
i=1

imi(λ)mi(λ)!

)
,

where mi(λ) is the number of parts in λ equal to i.
The following definition can be found in [M, Chapter VI].

Definition 2.1. Macdonald symmetric functions Pλ, λ ∈ Y, are a unique linear
basis in Λ such that

(1)
〈
Pλ, Pμ

〉
= 0 unless λ = μ.

(2) The leading (with respect to the reverse lexicographic order; i.e. xn
1 is the

largest monomial of degree n) monomial in Pλ is
∏�(λ)

i=1 xλi
i .
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Remark 1. The Macdonald symmetric function Pλ is a homogeneous symmetric
function of degree |λ|.

Remark 2. If we set xN+1 = xN+2 = · · · = 0 in Pλ(X), then we arrive at sym-
metric polynomials Pλ(x1, . . . , xN ) in N variables, which are called the Macdonald
polynomials.

Macdonald symmetric functions Qλ, λ ∈ Y, are dual to Pλ with respect to the
Macdonald scalar product:

Qλ =
〈
Pλ, Pλ

〉−1

Pλ,
〈
Pλ, Qλ

〉
= δλ,μ, λ, μ ∈ Y.

We also need skew Macdonald symmetric functions (see [M, Chapter VI] for
details). Take two sets of variables X = (x1, x2, . . . ) and Y = (y1, y2, . . . ) and a
symmetric function f ∈ Λ. Let (X,Y ) be the union of sets of variables X and
Y . Then we can view f(X,Y ) ∈ Λ(X,Y ) as a symmetric function in xi and also a
symmetric function in yi; more precisely, f(X,Y ) is a sum of products of symmetric
functions of xi and symmetric functions of yi. More formally, this operation defines
a comultiplication Δ : Λ → Λ⊗ Λ, which turns Λ into a bi–algebra (see e.g. [Z]).

Skew Macdonald symmetric functions Pλ/μ, Qλ/μ are defined as the coefficients
in the expansions
(2.2)

Pλ(X,Y ) =
∑
μ

Pλ(X)Pλ/μ(Y ) and Qλ(X,Y ) =
∑
μ

Qλ(X)Qλ/μ(Y ).

Both Pλ/μ and Qλ/μ are homogeneous symmetric functions of degree |λ| − |μ|;
moreover Pλ/μ = Qλ/μ = 0 unless μ ⊂ λ (which means that μi ≤ λi for i = 1, 2, . . . ).

Remark. We do not employ the standard notation for operations on alphabets
(used by many practitioners in algebraic combinatorics) in this work. We do this
for two reasons. The first is that Macdonald [M] does not use this notation, and
since we rely on certain formulas from his work, we have maintained his notation.
The second is that we attempt to keep our formulas as explicit as possible since
they may be of interest outside combinatorics to a probabilistic / mathematical
physics audience. That said, let us here briefly review how some of the formulas
we record below can be elegantly rewritten in terms of alphabets. We appreciate
these observations, which were provided to us by the referee.

For two alphabets X and Y , X + Y represents their union, XY their Cartesian
product, and X/(1− q) is the product of X and the infinite alphabet {1, q, q2, · · · }.
By using this notation we can reduce the number of functions we define later. Let

H(X) :=
∏
x∈X

1− tx

1− x
.

Then the notation Π(X;Y ), H(X;Y ) and W (X;Y ) introduced in (1.1) and later
in (3.1) can be written as

Π(X;Y ) = H
(
XY/(1− q)

)
, H(X;Y ) = H(XY ),

W (X;Y ) = H(XY )/H(qXY ).
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2.2. Topology. Given a Z≥0–graded algebra A, its topological completion A is
defined as the algebra of all formal series

(2.3) a =

∞∑
k=0

ak, ak ∈ A, deg(ak) = k.

For any element a ∈ A, its lower degree ldeg(a) is defined as a maximal K such
that ak = 0 in (2.3) for all k < K. We equip A with a graded topology in which a
sequence bn converges to b ∈ A if and only if

lim
n→∞

ldeg(b− bn) = +∞.

In this topology A is a dense subalgebra of A. A completed graded algebra is defined
as a topological completion of some Z≥0–graded algebra.

Given two graded algebras A and B, we equip their tensor product A⊗ B with
a unique grading such that

deg(a⊗ b) = deg(a) + deg(b)

for any homogeneous a ∈ A, b ∈ B. Given two completed graded algebras A and
B, their tensor product is defined as

A⊗B = A⊗B.

Given a completed graded algebra A and a graded algebra B, their tensor product
is defined as

A⊗B = A⊗1 B,

where A ⊗1 B is the tensor product A ⊗ B equipped with a unique grading such
that

deg(a⊗ b) = deg(a),

for any homogeneous a ∈ A, b ∈ B. B ⊗ A is defined similarly (and is canonically
isomorphic to A⊗B).

Note the difference between A⊗B and A⊗1 B. For instance, if A = C[x] and
B = C[y] with grading by degree of the polynomials, then (1−xy)−1 =

∑∞
n=0 x

nyn

belongs both to A⊗ B and A⊗1 B. Moreover, (1− x)−1 =
∑∞

n=0 x
n also belongs

to both tensor products. However, (1 − y)−1 =
∑∞

n=0 y
n belongs only to A⊗B,

but not to A⊗1 B.
Now take three algebras A, B, C such that C 
 Λ, while A and B are either

graded or completed graded algebras.

Definition 2.2. The Macdonald pairing
〈
·, ·

〉
C
is a unique (continuous) bilinear

map

(A⊗ C)× (C ⊗ B) → A⊗B,
such that 〈

a⊗ c1, c2 ⊗ b
〉
C
=

〈
c1, c2

〉
a⊗ b.

Remark. When C is the algebra ΛX of symmetric functions in variables X =

(x1, x2, . . . ), we will also use the notation
〈
·, ·

〉
X

for
〈
·, ·

〉
C
.
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Note that our definitions imply an alternative definition of skew Macdonald
symmetric functions:

Pλ/μ(X) =
〈
Pλ(X,Y ), Qμ(Y )

〉
Y
.

The following property of the Macdonald pairing is crucial for us.

Proposition 2.3. Let pk be the Newton power sums in Λ and let ak, bk be two
sequences of elements of graded algebras A and B with lim

k→∞
ldeg(ak) = lim

k→∞
ldeg(bk)

= ∞, so that

(2.4)

∞∑
k=1

akpk
k

∈ A⊗ Λ,

∞∑
k=1

bkpk
k

∈ B ⊗ Λ.

Then〈
exp

( ∞∑
k=1

akpk
k

)
, exp

( ∞∑
k=1

pkbk
k

)〉
Λ

= exp

( ∞∑
k=1

(
1− qk

1− tk
· akbk

k

))
,

where the right–hand side is an element of A⊗B.

Remark. The condition (2.4) is satisfied, in particular, if ak, bk are two sequences
of homogeneous elements of graded algebras A and B, respectively, such that
deg(ak) = deg(bk) = k.

Proof of Proposition 2.3. Take three copies ΛX , ΛY , ΛZ of the algebra of symmetric
functions. Definitions imply that

(2.5)
〈∑

λ∈Y

Pλ(X)Qλ(Y ),
∑
λ∈Y

Pλ(Y )Qλ(Z)
〉
ΛY

=
∑
λ∈Y

Pλ(X)Qλ(Z).

The Cauchy–type identity for Macdonald symmetric functions (see [M, Chapter VI,
(2.7)]) yields

(2.6)
∑
λ∈Y

Pλ(X)Qλ(Y ) = exp

( ∞∑
k=1

(
1− tk

1− qk
· pk(X)pk(Y )

k

))
and similarly for the sets of variables Y and Z. Then (2.5) implies that

〈
exp

( ∞∑
k=1

(
1− tk

1− qk
· pk(X)pk(Y )

k

))
, exp

( ∞∑
k=1

(
1− tk

1− qk
· pk(Y )pk(Z)

k

))〉
ΛY

(2.7)

= exp

( ∞∑
k=1

(
1− tk

1− qk
· pk(X)pk(Z)

k

))
.

Now let ϕX,A be a (continuous, algebra–) homomorphism from ΛX to A such that

ϕX,A : ΛX → A, ϕX,A(pk(X)) =
1− qk

1− tk
ak.

Also let ϕZ,B be a (continuous, algebra–) homomorphism from ΛZ to B such that

ϕZ,B : ΛZ → B, ϕZ,B(pk(Z)) =
1− qk

1− tk
bk.

Applying ϕX,A and ϕZ,B to the identity (2.7) we are done. �
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2.3. Formal measures. LetN be a countable set and let A be a completed graded
algebra.

Definition 2.4. A formal probability measure P on N taking values in A is a map
P : N → A such that ∑

η∈N
P (η) = 1.

The following procedure constructs a conventional probability measure on N
from a formal one. Take a graded algebra A. A specialization ρ is an (algebra–)
homomorphism ρ : A → C.

An arbitrary element g of A can be uniquely represented as
∞∑
k=0

gk, deg(gi) = i, i ∈ Z≥0.

Define the ρ–seminorm on (a subset of) A through

‖g‖ρ =
∞∑
k=0

|ρ(gk)|.

Let Aρ ⊂ A denote the subset of elements with finite ρ–seminorm in A. Clearly, Aρ

is a subalgebra of A and ρ is uniquely extended to a continuous (in ρ–seminorm)
homomorphism from Aρ to C, that we denote by the same letter ρ.

Definition 2.5. Let P be a formal probability measure on N taking values in A. A
specialization ρ of A is called P–positive if for any η ∈ N , P (η) ∈ Aρ, ρ(P (η)) ≥ 0,
and also the series

∑
η∈N P (η) converges (to 1) in ρ–seminorm.

Clearly, any P–positive specialization ρ defines a probability measure on N
through the formula

Prob(η) = ρ(P (η)).

3. Formal Macdonald processes and observables

3.1. Formal Macdonald process. For two (finite or countable) sets of variables
X = (x1, x2, . . . ) and Y = (y1, y2, . . . ), define Π(X;Y ) through

(3.1) Π(X;Y ) =
∏
i,j

(txiyj ; q)∞
(xiyj ; q)∞

,

where we used the q–Pochhammer symbol notation:

(a; q)∞ = (1− a)(1− aq)(1− aq2) · · · .
If the sets X and Y are countable, then Π(X;Y ) is an element of ΛX ⊗ ΛY ; one
easily checks that it is related to the generators pk(X), pk(Y ) through the following
formula:

Π(X;Y ) = exp

( ∞∑
k=1

1− tk

1− qk
· pk(X)pk(Y )

k

)
.

Note that Π(X;Y ) can be inverted, and Π(X;Y )−1 is also an element of ΛX ⊗ΛY .
Π(X;Y ) can also be related to the Macdonald symmetric functions (see [M,

Chapter VI, (2.7)] and (2.6) above):

(3.2) Π(X;Y ) =
∑
λ∈Y

Pλ(X)Qλ(Y ).
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The definition also implies that for more than two sets of variables we have

(3.3) Π(X1, . . .Xk;Y 1, . . . , Y m) =
k∏

i=1

m∏
j=1

Π(Xi;Y j).

Definition 3.1. Take two countable sets of variables A and B. The formal Mac-
donald measure MMf

A,B is a formal probability measure on Y taking values in

ΛA ⊗ ΛB such that

MMf
A,B(λ) =

Pλ(A)Qλ(B)

Π(A;B)
, λ ∈ Y.

Definition 3.2. Fix an integer N > 0 and 2N sets of variables A = (A1, . . . , AN ),

B = (B1, . . . , BN ). The formal Macdonald processMPf
N,A,B is a formal probability

measure on YN taking values in

ΛA1 ⊗ · · · ⊗ ΛAN ⊗ ΛB1 ⊗ · · · ⊗ ΛBN

such that

MPf
N,A,B(λ

1, . . . , λN )

(3.4)

=
Pλ1(A1)Ψλ2,λ1(A2;B1)Ψλ3,λ2(A3;B2) · · ·ΨλN ,λN−1(AN ;BN−1)QλN (BN )∏

1≤α≤β≤N Π(Aα;Bβ)
,

where

Ψλ,μ(A;B) =
∑
ν∈Y

Pλ/ν(A)Qμ/ν(B).

Remark. Definition 3.2 is a generalization of the definition of the Schur process of
[OR] which arises when q = t.

The fact that the formal Macdonald measure is a formal probability measure
on Y is immediate from (3.2). For the formal Macdonald process this fact is a bit
more involved to see, and so we provide a proof in Lemma 3.4. In what follows we
will actually use an equivalent definition of the Macdonald process which we now
present.

Lemma 3.3. In the settings of Definition 3.2 we have

MPf
N,A,B(λ

1, . . . , λN ) =
1∏

1≤α≤β≤N Π(Ai;Bj)

×QλN (BN )
〈
PλN (AN , Y N−1), QλN−1(Y N−1, BN−1)

〉
Y N−1

(3.5)

×
〈
PλN−1(AN−1, Y N−2), QλN−2(Y N−2, BN−2)

〉
Y N−2

× · · · ×
〈
Pλ2(A2, Y 1), Qλ1(Y 1, B1)

〉
Y 1

Pλ1(A1).
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Proof. This follows from the identity (we use (2.2))〈
Pλk(Ak, Y k−1), Qλk−1(Y k−1, Bk−1)

〉
Y k−1

=
〈∑

ν∈Y

Pλk/ν(A
k)Pν(Y

k−1),
∑
ν′

Qλk−1/ν′(Bk−1)Qν′(Y k−1)
〉
Y k−1

(3.6)

=
∑
ν∈Y

Pλk/ν(A
k)Qλk−1/ν(B

k−1) = Ψλk,λk−1(Ak;Bk−1). �

Lemma 3.4. We have ∑
λ1,...,λN∈Y

MPf
N,A,B(λ

1, . . . , λN ) = 1.

Proof. Summing (3.5) over λ1, . . . , λN and using (3.2) we get

1∏
α≤β Π(Aα;Bβ)

〈
Π

(
BN ;AN , Y N−1

)
,
〈
Π

(
Y N−1, BN−1;AN−1, Y N−2

)
,

· · ·
〈
Π(B2, Y 2;A2, Y 1),Π(Y 1, B1;A1)

〉
Y 1

. . .
〉
Y N−1

.

It remains to use Proposition 2.3 in the form〈
Π(U ;Y k),Π(Y k;V )

〉
Y k

= Π(U ;V )

for k = 1, . . . , N −1 and appropriate sets of variables U and V , as well as (3.3). �

Two simple yet important properties of formal Macdonald processes are summa-
rized in the following lemmas.

Lemma 3.5. In the notation of Definition 3.2, let φi
0 denote the map

φi
0 : ΛAi+1 ⊗ ΛBi → C, φi

0(f ⊗ g) = φ0(f)φ0(g),

where φ0 is the constant term map, as above. Further, let A(j), B(j) denote the
sets of variables A \ Aj and B \ Bj, respectively. For 1 ≤ i ≤ N − 1 consider the
formal measure

M i = φi
0

(
MPf

N,A,B(λ
1, . . . , λN )

)
.

Then for all sequences (λ1, . . . , λN ) ∈ YN in the support of M i, we have λi = λi+1.
Furthermore, the restriction of M i to (λ1, . . . , λi−1, λi+1, . . . , λN ) is the formal

Macdonald process MP
f
N−1,A(i+1),B(i) .

Proof. This readily follows from the identities

φi
0

(
Ψλ,μ(A

i+1, Bi)
)
= δλ,μ and φi

0

(
Π(Ai+1;Bj)

)
= φi

0

(
Π(Aj ;Bi)

)
= 1. �

Lemma 3.6. In the notation of Definition 3.2, let Ai∪i+1 denote N−1 sets of vari-
ables {A1, A2, . . . , Ai−1, (Ai, Ai+1), Ai+2, . . . , AN}; i.e. we unite Ai and Ai+1 into

a single set. Similarly define Bi∪i+1. Then the restriction of MP
f
N,A,B(λ

1, . . . , λN )

to (λ1, . . . , λi−1, λi+1, . . . , λN ), 1 ≤ i ≤ N , is the formal Macdonald measure

MP
f
N−1,Ai∪i+1,Bi−1∪i .
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Proof. For 1 < i < N this follows from the following identity, which is a combination
of [M, Exercise 6, Section 7, Chapter VI] and (2.2):∑

λi∈Y

Ψλi+1,λi(Ai+1;Bi)Ψλi,λi−1(Ai;Bi−1)

=
∑

λi,μ,ν∈Y

Pλi+1/μ(A
i+1)Qλi/μ(B

i)Pλi/ν(A
i)Qλi−1/ν(B

i−1)

= Π(Ai;Bi)
∑

κ,μ,ν∈Y

Pλi+1/μ(A
i+1)Pμ/κ(A

i)Qν/κ(B
i)Qλi−1/ν(B

i−1)

= Π(Ai;Bi)
∑
κ∈Y

Pλi+1/μ(A
i+1, Ai)Qλi−1/κ(B

i, Bi−1)

= Π(Ai;Bi)Ψλi+1,λi−1

(
(Ai+1, Ai); (Bi, Bi−1)

)
.

For i = 1 and i = N the argument is similar. �

3.2. Single level observables. For two sets of variables X = (x1, x2, . . . ) and
Y = (y1, y2, . . . ), define

(3.7) H(X;Y ) =
∏
i,j

1− txiyj
1− xiyj

= exp

( ∞∑
k=1

(1− tk)
pk(X)pk(Y )

k

)
.

Definition 3.7. The function Er : Y → C is defined through

Er(λ) = lim
N→∞

er(q
−λ1 , q−λ2t, . . . , q−λN tN−1), r ≥ 1,

where er is the elementary symmetric polynomial and E0(λ) = 1.

For example,

E1(λ) = lim
N→∞

N∑
i=1

q−λiti−1 =

�(λ)∑
i=1

q−λiti−1 +
t�(λ)

1− t
.

Our first result is the computation of the expectation of the observables Er(λ)
with respect to a formal Macdonald measure.

Proposition 3.8. For two sets of variables X and Y we have

∑
λ∈Y

Er(λ)MM
f
X,Y (λ)

(3.8)

=
1

(2πi)rr!

∮
|w1|=1

. . .

∮
|wr|=1

det

[
1

wk − tw�

] r∏
j=1

H
(
wj ;X

)
H
(
(qwj)

−1;Y
)
dwj .

Let us explain how Proposition 3.8 should be understood. Clearly, the left side
of (3.8) is an element of ΛX ⊗ ΛY . The integrand on the right–hand side of (3.8)
can be (uniquely) written as a sum

(3.9)

∞∑
k=0

fk(w1, . . . , wr)gk,

where fk is a certain function of w1, . . . , wr and gk is an element of ΛX ⊗ ΛY of
degree k. When we integrate (3.9) termwise (with wj integrated over the unit circle
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|wj | = 1), we are left with an element of ΛX ⊗ ΛY . Now Proposition 3.8 claims
that this element is the same as the one in the left side of (3.8).

The integrals over wj can be understood analytically (as complex integrals over
contours) or, equivalently, they have a purely algebraic meaning. Indeed, expand
det( 1

wk−tw�
) in the integrand in a power series using (recall that 0 < t < 1)

(3.10)
1

wk − tw�
=

1

wk
· 1

1− tw�/wk
=

1

wk

∞∑
i=0

ti(w�)
i

(wk)i
.

Note that multiplication of series (3.10) for various indices k and � might involve
summing geometric progressions with ratio t. After this procedure the functions fk
in (3.9) become power series (in wi and w−1

i ). The contour integral of such power
series over the unit circle is (2πi)r times the coefficient of (w1 · · ·wr)

−1.

Remark 1. Both left and right sides of (3.8) are symmetric under interchanging X
and Y (a change of integration variables is needed to see the symmetry in the right
side).

Remark 2. The formula is also valid for e0 = 1 if we understand the empty integral
as 1.

Remark 3. If the integral is understood analytically, then the contours of integration
can be chosen along the circles |wj | = R > 0, j = 1, . . . , r. The actual value of R
does not matter, as we can deform all the contours together without changing the
value of the integral.

Remark 4. An integral representation similar to (3.8) can be found in [Sh, Section
9] and [FHHSY, Proposition 3.6] under the name of Heisenberg Representation of
the Macdonald Difference Operators.

The proof of Proposition 3.8 relies upon the following lemma.

Lemma 3.9. Take two sets of N complex numbers X = {xi}Ni=1 and Y = {yi}Ni=1

such that |xiyj | < 1, 1 ≤ i, j ≤ N . Assume that there exist r closed complex
contours γ1,. . . , γr such that the integral

(3.11)
1

(2πi)rr!

∮
γ1

. . .

∮
γr

det

[
1

wk − tw�

] r∏
j=1

H
(
wj ;X

)
H
(
(qwj)

−1;Y
)
dwj

is equal to the sum of the residues of the integrand at wj = (xi)
−1 for j = 1, . . . , r,

i = 1, . . . , N . Then the integral (3.11) also equals∑
λ∈Y:�(λ)≤N

er(q
−λ1t0, . . . , q−λN tN−1)

Pλ(X)Qλ(Y )

Π(X;Y )
.

Proof. This fact can be found in [BC, Remark 2.2.11]. The proof is based on the
application of the rth Macdonald difference operator in variablesX (see [M, Chapter
VI]) to the identity ∑

λ∈Y:�(λ)≤N

Pλ(X)Qλ(Y ) = Π(X;Y ).

See also Section 4.1 for more details. �
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Proof of Proposition 3.8. Fix three reals 0 < R1 < R2 < R3 such that tR3 < R1.
Take N complex numbers X = {xi}Ni=1 and N complex numbers Y = {yi}Ni=1 such
that R2 < |xj |−1 < R3 and |yj | � R1 for all i. In what follows we assume that the
xi’s are distinct, but all the formulas are readily extended to the case of equal xi’s
by continuity.

Consider the integral

(3.12)
1

(2πi)rr!

∮
. . .

∮
det

[
1

wk − tw�

] r∏
j=1

H
(
wj ;X

)
H
(
(qwj)

−1;Y
)
dwj

with each wj being integrated over the union of circles |wj | = R1 and |wj | = R3

with the integral over R1 being positively orientated and over R3 begin negatively
oriented. The restrictions on the variables imply that the integral is equal to the
sum of the residues at wi = (xj)

−1 for i = 1, . . . , r, j = 1, . . . , N . Thus we can
apply Lemma 3.9 to see that the above integral equals

(3.13)
∑

λ∈YN

er(q
−λ1 , q−λ2t, . . . , q−λN tN−1)

Pλ(X)Qλ(Y )

Π(X;Y )
.

Our aim is to convert the analytic identity (3.12)= (3.13) into the formal identity
in completed graded algebras, which constitutes Proposition 3.8.

Note that (3.13) has a unique expansion as a (symmetric) power series in xj ’s
and yj ’s. Any such symmetric power series can be written as a power series in
pk(X), pk(Y ). As N → ∞, each coefficient of the expansion for (3.13) converges to
those of the left–hand side of (3.8). Therefore, it remains to show similarly that the
coefficients of the expansion in power series in pk(X), pk(Y ) of (3.12) converge to
the corresponding ones on the right side of (3.8). The rest of the proof is devoted
to showing this.

The first step is to replace the portion of the contour of integration in which
wj is integrated along the circle of radius R3 by a circle of radius R4  1. We
claim that the integral does not change value under this transformation. To see
this fact, recall that before the deformation, the integral was equal to the sum of
the residues of the integrand at points wi = (xj)

−1, i = 1, . . . , r, j = 1, . . . , N . Let
us also compute the integral (via residues) after the deformation of the contours
and show it matches. First, we integrate over w1, getting the residues from the
N +2r− 2 choices of poles of the integrand at w1 = (xj)

−1, j = 1, . . . , N , and also
at w1 = twi, i = 2, . . . , r, and w1 = t−1wi, i = 2, . . . , r. For each choice of pole,
we further integrate over w2, picking residues in a similar manner, and so on up to
wr. From this we see that the integral is expanded into a sum of residues of the
integrand in (3.12) over points of the form

(3.14) w1 = (xj1)
−1tp1 , w2 = (xj2)

−1tp2 , . . . , wr = (xjr)
−1tpr

where the summation is restricted to a certain subset (which we will determine in
a moment) of j1, j2, . . . , jr ∈ {1, . . . , N} and p1, p2, . . . , pr ∈ Z.

In order to determine which subset of points of the form of (3.14) should be
summed over, note the following properties: If at least one of the pairs coincide,
i.e., (jm, pm) = (jn, pn) for m �= n, then the residue is zero, since the integrand has
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no singularity at such a point. This is because the Cauchy determinant (see e.g.
[K])

(3.15) det

[
1

wk − tw�

]r
k,�=1

=
tr(r−1)/2

(1− t)rw1 . . . wr

∏
k 	=�

wk − w�

wk − tw�

vanishes when some of the variables coincide. Further, all pi should be non–positive.
Indeed, no point of the kind (xj)

−1t−k, k > 0, is inside our contours. We may
further observe that the summation of residue need only be taken over points in
(3.14) which are a union of strings of the form

wi1 = (xj)
−1, wi2 = (xj)

−1t−1, . . . , wim = (xj)
−1t1−m

(i.e., each string has the above form, but with possibly different length m, possibly
different j and disjoint variables i1, i2, . . . , im). Note that if the length of any given
string (i.e., m in the above formula) is at least 2, then the residue at such point
vanishes. Indeed, the pole arising from the determinant in the integrand cancels
out with corresponding zero of H(w;xj). On the other hand, if all the strings are
of length 1, then we get the same sum as before the deformation of the contours,
thus proving our claim.

The integral in (3.12) with R3 replaced now by R4 can be written as a sum
of 2r contour–integrals over circular contours with some variables integrated over
the circle of radius R1 and others over the circle of radius R4  1. Our aim is
to analyze each term and ultimately show that as N → ∞ only the term with
all integrations over the R1 circle survives. Since the integrand is symmetric in
wj , it is enough to consider the case when |w1| = |w2| = · · · = |wm| = R4 and
|wm+1| = · · · = |wr| = R1, i.e., the integral

(3.16)
1

(2πi)rr!

∮
|wm+1|=R1

. . .

∮
|wr |=R1

r∏
j=m+1

H
(
wj ;X

)
H
(
(qwj)

−1;Y
)

×
∮

|w1|=R4

. . .

∮
|wm|=R4

det

[
1

wk − tw�

]r
k,�=1

m∏
j=1

H
(
wj ;X

)
H
(
(qwj)

−1;Y
) r∏
j=1

dwj .

Using the Cauchy determinant formula (3.15) we write:

det

[
1

wk − tw�

]r
k,�=1

=
tr(r−1)/2

(1− t)rw1 . . . wr

∏
k 	=�

wk − w�

wk − tw�

=
1

(1− t)rw1 . . . wr

∏
k<�

1− w�/wk

1− t−1w�/wk

∏
k<�

1− w�/wk

1− tw�/wk
.

Note that |w�/wk| equals either 1 or R1/R4 � 1 on our contours for k < �. There-
fore,

det

[
1

wk − tw�

]r
k,�=1

= det

[
1

wk − tw�

]r
k,�=m+1

det

[
1

wk − tw�

]m
k,�=1

(
1 +O

(
(R4)

−1
))

tm(r−m),
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where the remainder O(·) is uniform over integration variables wj on our contours.
For j = 1, . . . ,m note that

H(wj ;X) =

N∏
k=1

1− twjxk

1− wjxk
= tN

N∏
k=1

1− t−1(wj)
−1(xk)

−1

1− (wj)−1(xk)−1
= tN

(
1 +O

(
(R4)

−1
))

and also

H
(
(qwj)

−1;Y
)
= 1 +O

(
(R4)

−1
)
.

Thus, integrating over wj , j = 1, . . . ,m, in (3.16) and then sending R4 → ∞ we
get

(3.17) C(m) · t
m(N+r−m)

(2πi)r−mr!

∮
|wm+1|=R1

. . .

∮
|wr |=R1

det

[
1

wk − tw�

]r
k,�=m+1

×
r∏

j=m+1

H
(
wj ;X

)
H
(
(qwj)

−1;Y
)
dwj ,

where C(m) is the constant computed via

C(m) =
1

(2πi)m

∮
|w1|=R

. . .

∮
|wm|=R

det

[
1

wk − tw�

]m
k,�=1

dw1 · · · dwm

(note that the exact value of R > 0 is irrelevant in the last integral).
Further, for j = m+1, . . . , r we expand the functions H(wj ;X) into series using

H(wj ;X) = exp

( ∞∑
k=1

(1− tk)
(wj)

kpk(X)

k

)

and the power series expansion of the exponential; similarly expand H
(
(qwj)

−1;Y
)
.

We get

(3.18)
r∏

j=m+1

H
(
wj ;X

)
H
(
(qwj)

−1;Y
)
=

∞∑
n=0

fn(wm+1, . . . , wr)gn,

where fn, n ≥ 0, is an analytic function on the torus wj = R1, j = m+1, . . . , r, and
gn, n ≥ 0, is a homogeneous symmetric polynomial in x1, . . . , xN and y1, . . . , yN
of degree n; more precisely, gn is a polynomial in pk(X), pk(Y ) whose coefficients
do not depend on N or any choices we made. Note that the convergence of expan-
sions of H(wj ;X), H((qwj)

−1;Y ) is uniform with respect to varying the {wj} on
their contours, the {xj} in the annulus R2 < |xj |−1 < R3 and the {yj} in some
neighborhood of zero. Therefore, the order of integration in (3.17) and summation
in (3.18) can be interchanged. Hence, evaluating the integrals over wm+1, . . . , wr

transforms (3.17) into the sum

tm(N+r−m)
∞∑

n=0

f̂ngn,
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where gn are as above, while f̂n are certain coefficients which do not depend on N
and are given by

f̂n =
C(m)

(2πi)r−mr!

∮
|wm+1|=R1

. . .

∮
|wr|=R1

det

[
1

wk − tw�

]r
k,�=m+1

× fn(wm+1, . . . , wr)
r∏

j=m+1

dwj .

If now m ≥ 1, then the coefficients tm(N+r−m)f̂n vanish as N → ∞. On the other
hand, for m = 0 we arrive at the right side of (3.8). �

3.3. Multilevel observable. The combination of Proposition 3.8 and Proposi-
tion 2.3 gives a way to compute the expectations of very general observables
of formal Macdonald processes. For two sets of variables U = (u1, u2, . . . ) and
V = (v1, v2, . . . ) set
(3.19)

W(U ;V ) =
∏
i,j

(1− tuivj)(1− quivj)

(1− uivj)(1− qtuivj)
= exp

( ∞∑
k=1

(1− tk)(1− qk)

k
pk (U) pk (V )

)
.

Theorem 3.10. Take N ≥ 1 and r1, . . . , rN ≥ 0. For 1 ≤ m ≤ N , set V m =
{vm1 , . . . , vmrm} and define

DV m =
1

(rm)!(2πi)rm
det

[
1

vmi − tvmj

]rm

i,j=1

rm∏
i=1

dvmi .

We have

(3.20)
∑

λ1,...,λN∈Y

Er1(λ1) · · · ErN (λN )MP
f
N,A,B(λ

1, . . . , λN )

=

∮
· · ·

∮ N∏
α=1

(DV α)
∏

1≤α≤β≤N

H
(
(qV α)−1;Bβ

)
H
(
Aα;V β

)
W

(
(qV α)−1;V β

)
,

where Er(λ) is as in Definition 3.7. Note that for a set of variables V = {v1, . . . , vr},
(qV )−1 means the set {(qv1)−1, . . . , (qvr)

−1}. The contours of integration are a
collection of positively oriented circles γ1, . . . , γm of radii R1, . . . , Rm around the
origin such that vαi is integrated over γα, and the radii are such that Rβ < qRα for
1 ≤ α < β ≤ N .

Similarly to Proposition 3.8, (3.20) should be understood as an identity of ele-
ments of ΛA1 ⊗ · · · ⊗ΛAN ⊗ΛB1 ⊗ · · · ⊗ΛBN . Such an element in the right side of
(3.20) is obtained by expanding all H

(
(qV α)−1;Bβ

)
and H

(
Aα;V β

)
into symmetric

series and then evaluating the integrals term–wise. This evaluation can be done
either analytically (i.e., computing complex contour–integrals) or algebraically by
expanding the integrals in series in variables vmi and (vmi )−1 using:

1

vmi − tvmj
=

1

vmi
· 1

1− tvmi /vmj
=

1

vmi

∞∑
k=0

tk(vmj )k

(vmi )k
,
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and for α < β,

W
(
(qvαi )

−1; vβj
)
=

(1− tvβj /(qv
β
i ))(1− qvβj /(qv

α
i ))

(1− vβj /(qv
α
i ))(1− qtvβj /(qv

α
i ))

=

(
1− t

vβj
qvαi

)(
1−

vβj
vαi

)⎛⎝ ∞∑
k=0

(
vβj
qvαi

)k
⎞⎠ ·

⎛⎝ ∞∑
k=0

(
t
vβj
vαi

)k
⎞⎠ ,

and then evaluating the coefficient of
(∏N

m=1

∏rm
i=1 v

m
i

)−1

.

Proof of Theorem 3.10. Using Lemma 3.3, write the left–hand side of (3.20) as

1∏
1≤α≤β≤N Π(Aα;Bβ)

·
〈 ∑

λN∈Y

ErN (λN )QλN (BN )PλN (AN , Y N−1),〈 ∑
λN−1∈Y

ErN−1
(λN−1)QλN−1(Y N−1, BN−1)PλN−1(AN−1, Y N−2),

...〈 ∑
λ2∈Y

Er2(λ2)Qλ2(Y 2, B2)Pλ2(A2, Y 1),

∑
λ1∈Y

Er1(λ1)Qλ1(Y 1, B1)Pλ1(A1)
〉
Y 1

. . .
〉
Y N−2

〉
Y N−1

.

Applying Proposition 3.8 one time for each of the summations over λ1, . . . , λN , we
find that the above expression equals

(3.21)
1∏

1≤i≤j≤N Π(Ai;Bj)
·
〈∮

DV NH
(
V N ;AN , Y N−1

)
H
(
(qV N )−1;BN

)
×Π

(
BN ;AN , Y N−1

)
,〈∮

DV N−1H
(
V N−1;AN−1, Y N−2

)
H
(
(qV N−1)−1;BN−1, Y N−1

)
×Π

(
BN−1, Y N−1;AN−1, Y N−2

)
,

...〈∮
DV 2H

(
V 2;A2, Y 1

)
H
(
(qV 2)−1;B2, Y 2

)
Π
(
B2, Y 2;A2, Y 1

)
,∮

DV 1H
(
V 1;A1

)
H
(
(qV 1)−1;B1, Y 1

)
Π
(
B1, Y 1;A1

)〉
Y 1

. . .
〉
Y N−2

〉
Y N−1

.

Note that if we view the integrations as algebraic operations (as is explained after
Proposition 3.8), then in (3.21) using the continuity of the Macdonald pairing and
of the constant term evaluation in the topology of completed graded algebras, we
can interchange the order of integration and evaluating scalar products. Then we
can use Proposition 2.3. For the variables Y 1 we get (omitting all the factors
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independent of Y 1 which do not change in the scalar product evaluation)〈
H
(
V 2;Y 1

)
Π
(
B2, Y 2;Y 1

)
,H

(
(qV 1)−1;Y 1

)
Π
(
Y 1;A1

)〉
Y 1

= H
(
V 2;A1

)
H
(
(qV 1)−1;B2, Y 2

)
Π
(
B2, Y 2;A1

)
× exp

( ∞∑
k=1

(1− tk)(1− qk)

k
pk

(
V 2

)
pk

(
(qV 1)−1

))
.

Note that by (3.19)

exp

( ∞∑
k=1

(1− tk)(1− qk)

k
pk

(
V 2

)
pk

(
(qV 1)−1

))
= W

(
V 2; (qV 1)−1

)
if we assume |v2i /(qv1j )| < 1 when expanding W (V 2; (qV 1)−1) in power series. This
gives the same restriction on the contours as the one in Theorem 3.10. In the next
step we evaluate the scalar product for the variables Y 2 and find (again omitting
factors independent of Y 2)〈

H
(
V 3;Y 2

)
Π
(
B3, Y 3;Y 2

)
,H

(
(qV 2)−1, (qV 1)−1;Y 2

)
Π
(
Y 2;A1, A2

)〉
Y 2

= H
(
V 3;A1, A2

)
H
(
(qV 2)−1, (qV 1)−1;B3, Y 3

)
Π
(
B3, Y 3;A1, A2

)
×W

(
V 3; (qV 2)−1, (qV 1)−1

)
.

Further evaluating scalar products for variables Y 3, . . . , Y N−1 we arrive at the
claimed formula. �
3.4. Simple corollaries. Let us give two corollaries of Theorem 3.10.

Corollary 3.11. Take any M integers 1 ≤ k1 ≤ k2 ≤ · · · ≤ kM ≤ N and M
positive integers r1, . . . , rM . With the notation and contours as in Theorem 3.10
we have

(3.22)
∑

λ1,...,λN

Er1(λk1) · · · ErM (λkM )MP
f
N,A,B(λ

1, . . . , λN )

=

∮
· · ·

∮ M∏
m=1

(DV m)
∏

1≤α,β≤M : kα≤β

H
(
(qV α)−1;Bβ

)
×

∏
1≤α,β≤M :α≤kβ

H
(
Aα;V β

) ∏
1≤α<β≤M

W
(
(qV α)−1;V β

)
.

Remark. The difference from Theorem 3.10 is that now we compute expectations
of various products and powers of Er(λm); thus (3.22) is more general than (3.20).

Proof of Corollary 3.11. The proof is a combination of Theorem 3.10 with Lemma
3.5.

Take 2(N + M) auxiliary sets of variables C = (C1, . . . , CN+M ) and D =

(D1, . . . , DN+M ). Let λ1, . . . , λN+M be distributed according to MPf
M,C,D and

apply Theorem 3.10 to it with the sequence of numbers r′i, i = 1, . . . , N +M (they
were called ri in Theorem 3.10, but we use r′i here to avoid confusion with numbers
ri of Corollary 3.11), obtained as follows: we set the first k1 r′i’s to equal 0, the
next one (i.e., r′k1+1)) is r1, then we take k2 − k1 zeroes, then r2, . . . , and so on

until rM and finally N −kM zeroes. Applying to the result φi−1
0 (as in Lemma 3.5)
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for all indices 1 ≤ i ≤ N +M such that ri �= 0 and renaming the remaining sets of
variables Cj , Dj into Ai and Bi, we get (3.22).

For example, if N = 1, M = 2, and k1 = k2 = 1, r1 = r2 = 1, then we start from
C = (C1, C2, C3), D = (D1, D2, D3) and the corresponding Macdonald process.
Application of Theorem 3.10 with r′ = (0, 1, 1) gives the contour–integral formula
for

(3.23)
∑

λ1,λ2,λ3∈Y

E1(λ2)E1(λ3)MP
f
3;C,D(λ1, λ2, λ3).

When we apply φ2
0 and φ1

0 to (3.23), the summation becomes restricted to λ1 =
λ2 = λ3, and after renaming the sets of variables we arrive at the desired contour–
integral formula for ∑

λ1∈Y

(
E1(λ1)

)2
MP

f
1;A,B(λ

1). �

Corollary 3.12. In the notation of Theorem 3.10, let c1, . . . , cN be any numbers
(or formal variables) and set

di =

N∏
j=i

ci, dN+1 = 1.

We have

(3.24)
∑

λ1,...,λN

(
(c1)

|λ1|Er1(λ1)
)
· · ·

(
(cN )|λ

N |ErN (λN )
)
MPf

N,A,B(λ
1, . . . , λN )

=
∏

1≤α≤β≤N

Π(dαA
α; (dβ+1)

−1Bβ)

Π(Aα;Bβ)

∮
· · ·

∮ N∏
m=1

(DV m)

×
∏

1≤α≤β≤N

H
(
(qV α)−1; (dβ+1)

−1Bβ
)
H
(
dαA

α;V β
)
W

(
(qV α)−1;V β

)
.

Proof. The homogeneity of (skew) Macdonald symmetric functions implies that

d
|λ1|
1 d

|λ2|−|λ1|
2 · · · d|λ

N |−|λN−1|
N∏

α≤β Π(Aα;Bβ)
Pλ1(A1)Ψλ2,λ1(A2;B1)

· · ·ΨλN ,λN−1(AN ;BN−1)QλN (BN )

=
1∏

α≤β Π(Aα;Bβ)
Pλ1(d1A

1)Ψλ2,λ1(d2A
2; (d2)

−1B1)

· · ·ΨλN ,λN−1(dNAN ; (dN )−1BN−1)QλN (BN ).

Thus, we can use Lemma 3.3 and (3.20) to compute the sum in the left side of
(3.24) and we reach the desired result. �

Of course, one can also combine Corollaries 3.11 and 3.12. We leave the resulting
statement to an interested reader.
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4. Ascending Macdonald processes

Let us focus on a special case of Macdonald processes, which is very useful in
applications; cf. [BC].

For any complex number a, let φa be an algebra homomorphism φa : Λ → C (i.e.,
a specialization) such that φa(pk) = ak. In other words, φa is the substitution x1 =
a, x2 = x3 = · · · = 0 into a symmetric function f(X) in variables X = (x1, x2, . . . ).
In particular, φ0 is the evaluation of the free term of a symmetric polynomial,
as before. Let us also fix an arbitrary specialization ρ : Λ → C. As explained in
Section 2.3, φa and ρ can be naturally extended so as to act on elements of Λφa

⊂ Λ

and Λρ ⊂ Λ, respectively. In what follows (and where it leads to no confusion) we
write f(a) and f(ρ) for φa(f) and ρ(f), respectively.

Recall that values MPf
N,A,B(λ

1, . . . , λN ) of a formal Macdonald process belong
to the completed tensor product

ΛA1 ⊗ · · · ⊗ ΛAN ⊗ ΛB1 ⊗ · · · ⊗ ΛBN .

Definition 4.1. Take N non–zero complex numbers a1,. . . , aN and a specialization
ρ such that for some 0 < R < 1 we have

|pk(ρ)| < Rk, k = 1, 2, . . . , |ai|R < 1, i = 1, . . . , N.

The ascending Macdonald process MP
a
N ;{ai};ρ is defined as a composition of the

formal Macdonald process MPf
N,A,B and the map Θ:

Θ = φa1
⊗ φa2

⊗ · · · ⊗ φaN
⊗ φ0 ⊗ · · · ⊗ φ0 ⊗ ρ.

In other words, MMa
N ;{ai};ρ is a complex–valued measure on YN which sums to 1

and such that

MPa
N ;{ai};ρ(λ

1, . . . , λN ) =
Pλ1

(a1)Pλ2/λ1(a2) · · ·PλN/λN−1(aN )QλN (ρ)

Π(a1, . . . , aN ; ρ)
,

where

(4.1) Π(a1, . . . , aN ; ρ) =
N∏
i=1

Π(ai; ρ) =
N∏
i=1

exp

( ∞∑
k=1

1− tk

1− qk
·
∑N

i=1(ai)
kpk(ρ)

k

)
.

Remark 1. Our restrictions on ρ and ai ensure the absolute convergence of the
series ∑

λ1,...,λN∈Y

Pλ1
(a1)Pλ2/λ1(a2) · · ·PλN/λN−1(aN )QλN (ρ).

Indeed, this series is a permutation of the absolutely convergent series obtained
by expanding the right–hand side of (4.1) in power series in ai, pk; thus it is also
absolutely convergent.

Remark 2. If ai are non–negative reals and ρ takes non–negative values on Mac-
donald symmetric functions, then MP

a
N ;{ai};ρ is a probability measure, i.e., it is

positive; cf. [BC, Definition 2.2.7].

Remark 3. MPa
N ;{ai};ρ(λ

1, . . . , λN ) is an analytic function of the complex numbers
ai, i = 1, . . . , N .

Lemma 4.2. The support of the ascending Macdonald process MPa
N ;{ai};ρ is (a

subset of) the set of partition λ1, . . . , λN such that �(λi) ≤ i for i = 1, . . . , N and
λi � λi−1 for i = 2, . . . , N (thus the term “ascending”).
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Proof. This follows from the fact that for any a ∈ C\{0}, Pλ/μ(a) = 0 unless λ � μ
[M, Section 7, Chapter VI]. �

Note that the projection of the ascending Macdonald process MPa
N ;{ai};ρ to λN

is a Macdonald measure (cf. Lemma 3.6, [BG, Proposition 6.3], [BC, Section 2.2.2]),
which we now define.

Definition 4.3. Take N non–zero complex numbers a1,. . . , aN and a specialization
ρ such that for some 0 < R < 1 we have

|pk(ρ)| < Rk, k = 1, 2, . . . , |ai|R < 1, i = 1, . . . , N.

The Macdonald measure MMa
N ;{ai};ρ is a complex–valued measure on Y which sums

to 1 such that

MMa
N ;{ai};ρ(λ) =

Pλ(a1, . . . , aN )Qλ(ρ)

Π(a1, . . . , aN ; ρ)
.

The projection of the ascending Macdonald process MP
a
N ;{ai};ρ to λ1, . . . , λk is

again an ascending Macdonald process MPa
k;{ai};ρ; cf. Lemma 3.6 and [BC, Section

2.2.2].
The rest of this section is devoted to computing expectations of observables

of ascending Macdonald processes (and measures). First, we present analogues of
Theorem 3.10 and Corollary 3.11, which in this case can be proved in a much simpler
way that does not require the formal approach. Then we show how the expectation
of another (much smaller) family of observables can be written in terms of Fredholm
determinants.

4.1. Multilevel moments. Let us introduce certain difference operators which act
on analytic functions in x1, . . . , xN invariant (symmetric) under the permutations
of arguments.

For any subset I ⊂ {1, . . . , N} define

AI(x1, . . . , xN ; t) =
∏
i∈I

∏
j 	∈I

xi − txj

xi − xj
.

Define the shift operator Tq,i through

[Tq,if ](x1, . . . , xN ) = f(x1, . . . , xi−1, qxi, xi+1, . . . , xN ).

For any 1 ≤ r ≤ N define the rth Macdonald difference operator Mr
N through

M
r
N =

∑
I⊂{1,...,N}: |I|=k

AI(x1, . . . , xN ; t)
∏
i∈I

Tq,i.

One of the important properties of the Macdonald difference operators is the fact
that the Macdonald polynomials are their eigenfunctions; see [M, Section 4, Chapter
VI]:

(4.2) M
r
kPλ(x1, . . . , xk; q, t) = er(q

λ1tk−1, qλ2tk−2, . . . , qλk)Pλ(x1, . . . , xk; q, t).

The following proposition is a key in evaluating expectations of observables of
ascending Macdonald processes.
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Proposition 4.4. Fix sequences of integers N ≥ n1 ≥ n2 ≥ · · · ≥ nm ≥ 1 and
r1, . . . , rm, such that 0 ≤ ri ≤ ni for i = 1, . . . ,m. Then

(4.3)
∑

λ1,...,λN∈Y

m∏
i=1

eri(q
λ
ni
1 tni−1, qλ

ni
2 tni−2, . . . , qλ

ni
ni )MPa

N ;{ai};ρ(λ
1, . . . , λN )

=
Mrm

nm
· · ·Mr1

n1
Π(x1, . . . , xN ; ρ)

Π(x1, . . . , xN ; ρ)

∣∣∣∣∣
x1=a1,...,xN=aN

.

Remark. The operators Mr
n do not commute for different values of n. Thus the

order of operators in the right side of (4.3) is important.

Proof of Proposition 4.4. We may immediately replace N on the right–hand side of
(4.3) with n1 since Π is multiplicative in the x variables and the difference operators
act only on x1, . . . , xn1

. We expand Π(x1, . . . , xn1
; ρ) in a sum using a specialized

version of (3.2):

(4.4) Π(x1, . . . , xn1
; ρ) =

∑
λ∈Y:�(λ)≤n1

Pλ(x1, . . . , xn1
)Qλ(ρ).

Apply
∏k−1

i=1 Mri
ni

to the sum, where k is a maximal number such that n1 = n2 =
· · · = nk−1. Using (4.2) we get

(4.5)
k−1∏
i=1

Mri
ni
Π(x1, . . . , xn1

; ρ)

=
∑

λn1∈Y:�(λ)≤n1

(
k−1∏
i=1

eri

(
qλ

n1
1 tn1−1, . . . , qλ

n1
n1

))
Pλn1 (x1, . . . , xn1

)Qλn1 (ρ).

Note that since 0 < q, t < 1,∣∣∣er (
qλ

n1
1 tn1−1, . . . , qλn1

)∣∣∣ ≤ (n1)
r.

Therefore, the series in (4.5) is absolutely convergent. Now substitute in (4.5) the
decomposition (which is a specialized version of Definition 2.2)

Pλn1 (x1, . . . , xn1
) =

∑
λnk∈Y:�(λnk )≤nk

Pλnk (x1, . . . , xnk
)Pλn1/λnk (xnk+1, . . . , xn1

)

and apply (again using (4.2))
∏h−1

i=k Mri
ni

to the resulting sum, where h is a maximal
number such that nk = nk+1 = · · · = nh−1. Iterating this procedure we arrive at
the desired statement. �

The next two theorems express averages of a class of observables of ascending
Macdonald processes through contour–integrals.

Theorem 4.5. Take N ≥ 1, non–zero complex numbers a1,. . . , aN , and a special-
ization ρ such that for some 0 < R < 1 we have

|pk(ρ)| < Rk, k = 1, 2, . . . , |ai|R < 1, i = 1, . . . , N.

Fix sequences of integers N ≥ n1 ≥ n2 ≥ · · · ≥ nm ≥ 1 and r1, . . . , rm, such that
0 ≤ ri ≤ ni for i = 1, . . . ,m. Suppose that there exist closed positively oriented
contours γα

i , α = 1, . . . ,m, i = 1, . . . , rα, in the complex plane such that:

(I) All contours lie inside DR−1 = {z ∈ C | |z| < R−1}.
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(II) All contours enclose the points a1, . . . , aN , but not 0.
(III) The contour γα

i does not enclose points t−1qka1, . . . , t
−1qkaN , k = 0, . . . ,

m− α.
(IV) The contour γα

i intersects neither the interior of the image of γβ
j multiplied

by q nor the interior of the image of γβ
j multiplied by t−1 for i = 1, . . . , rα,

j = 1, . . . , rβ and β > α.

Then we have∑
λ1,...,λN

m∏
i=1

eri(q
λ
ni
1 tni−1, . . . , qλ

ni
ni )MP

a
N ;{ai};ρ(λ

1, . . . , λN )

=

m∏
α=1

1

(2πi)rαrα!

∮
. . .

∮ ∏
1≤α<β≤m

(
rα∏
i=1

rβ∏
i=1

(tzαi − qzβj )(z
α
i − zβj )

(zαi − qzβj )(tz
α
i − zβj )

)
(4.6)

×
m∏

α=1

⎛⎝det

[
1

tzαi − zβj

]rα

i,j=1

rα∏
i=1

⎛⎝⎛⎝ nα∏
j=1

tzαi − aj
zαi − aj

⎞⎠ Π(qzαi ; ρ)

Π(zαi ; ρ)
dzαi

⎞⎠⎞⎠
where zαi is integrated over γα

i .

Remark 1. When all ai are equal, t � 1 and q is close to 1, then the required
contours do exist; see e.g. [BC, Figure 3.1]. However, for some specific choices of
ai, t and q the desired contours may fail to exist; see [BG2] for the study of one
such case.

Remark 2. In the case n1 = n2 = · · · = nm this theorem is equivalent to [BC,
Proposition 2.2.15].

Proof of Theorem 4.5. The proof is similar to that of [BC, Proposition 2.2.15].
We use Proposition 4.4 and sequentially apply the operators Mri

ni
. At the first

step we need the following identity:

(4.7) M
r1
n1
Π(x1, . . . , xN ; ρ)

=
Π(x1, . . . , xN ; ρ)

(2πi)(r1)!

∮
. . .

∮
det

[
1

tz1i − z1j

]r

i,j=1

×
r1∏
i=1

⎛⎝⎛⎝ n1∏
j=1

tz1i − xj

z1i − xj

⎞⎠ Π(qz1i ; ρ)

Π(z1i ; ρ)
dz1i

⎞⎠
with z1i integrated over γ1

i and with x1, . . . , xN being arbitrary complex numbers
inside γ1

i such that t−1xi, i = 1, . . . , N , are outside γ1
i (note that we will later need

xi to be equal to q
kai, for various k ≥ 0, hence restriction III on the contours). The

formula (4.7) is proved by expanding the right side of (4.7) as a sum of residues; for
that we need Π(qz; ρ)/Π(z; ρ) to be analytic inside the contour, hence restriction I
on the contours.

We claim that the only poles of the integrand inside the contour are at the points
z1i = xj , i = 1, . . . , r, j = 1, . . . , n (our choice of {xj} and restriction II on the
contours guarantee that these points will always be inside, while 0 is outside). To
see this observe that the only other possible singularities of the integrand arise
when z1i1 = xj , z

1
i2

= txj , z
1
i3

= t2xj , . . . or z1i1 = xj , zi2 = t−1xj , zi3 = t−2xj , . . .
(here i1, i2, . . . are unique elements of {1, . . . , r} and j ∈ {1, . . . , n1}). The first
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possibility actually does not produce a pole because of the factor (tz1i − xj) in the
integrand, and the second possibility is outside the contour because of our choice
of {xj}. These considerations imply the claim.

The residues of the integrand at the points z1i = xj , i = 1, . . . , r, j = 1, . . . , n,
give the same summands as in the definition of the operator Mr1

n1
(note the factor

r1! which appears because we sum over subsets in the definition of Mr1
n1

and over
ordered subsets when expanding the integral as a sum of residues).

Next, we apply Mr2
n2

to the right side of (4.7). Note that by linearity we can
apply the difference operator under the integral. The part of the right–hand side
of (4.7) which is dependent on the {xj}n2

j=1 is

Π(x1, . . . , xn2
; ρ)

⎛⎝ r1∏
i=1

n2∏
j=1

tz1i − xj

z1i − xj

⎞⎠=

n2∏
j=1

(
Π(xj ; ρ)

r1∏
i=1

tz1i − xj

z1i − xj

)
=:

n2∏
j=1

Π′(xj , ρ).

We can use an analogue of (4.7) to express

Mr2
n2

⎛⎝ n2∏
j=1

Π′(xj ; ρ)

⎞⎠
using the contours γ2

i , i = 1, . . . , r2. We have

Π′(qz; ρ)

Π′(z; ρ)
=

Π(qz; ρ)

Π(z; ρ)
· tz

1
i − qz

z1i − qz
· z1i − z

tz1i − z
,

hence the beginning of the appearance of the product
∏

1≤α<β≤m in (4.6). Further,

Π′(qz; ρ)/Π′(z; ρ) must be analytic inside the contours γ2
i , hence the restriction IV

on contours.
Further iterating this procedure for Mr3

n3
, . . . , Mrm

nm
leads to integrals over the

contours γ3
i , . . . γ

m
i and ultimately (4.6). �

The next statement is a version of Theorem 4.5 with a different set of observables.

Theorem 4.6. Take N non–zero complex numbers a1,. . . , aN and a specialization
ρ such that for some 0 < R < 1 and m ≥ 1 we have

|pk(ρ)| < Rk, k = 1, 2, . . . , |ai|R < qm, i = 1, . . . , N.

Fix two sequences of integers N ≥ n1 ≥ n2 ≥ · · · ≥ nm ≥ 1 and r1, . . . , rm such
that 0 ≤ ri ≤ ni for i = 1, . . . ,m. Suppose that there exist closed positively oriented
contours γα

i , α = 1, . . . ,m, i = 1, . . . , rα, such that:

(I) All contours lie inside DqR−1 = {z ∈ C | |z| < qR−1}.
(II) All contours enclose the points a1, . . . , aN , but not 0.
(III) The contour γα

i does not enclose points tq−ka1, . . . , tq
−kaN , k = 0, . . . ,m−α.

(IV) The contour γα
i intersects neither the interior of the image of γβ

j multiplied

by q−1 nor the interior of the image of γβ
j multiplied by t for i = 1, . . . , rα,

j = 1, . . . , rβ and β > α.
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Then we have∑
λ1,...,λN∈Y

m∏
i=1

eri(q
−λ

ni
1 t1−ni , . . . , q−λ

ni
ni )MPa

N ;{ai};ρ(λ
1, . . . , λN )

=
m∏

α=1

1

(2πi)rαrα!

∮
. . .

∮ ∏
1≤α<β≤m

(
rα∏
i=1

rβ∏
i=1

(zαi − tq−1zβj )(z
α
i − zβj )

(zαi − q−1zβj )(z
α
i − tzβj )

)(4.8)

×
m∏

α=1

⎛⎝det

[
1

t−1zαi − zαj

]rα

i,j=1

rα∏
j=1

((
nα∏
i=1

t−1zαj − ai

zαj − ai

)
Π(q−1zαj ; ρ)

Π(zαj ; ρ)
dzαj

)⎞⎠ ,

where zαi is integrated over γα
i .

Proof. First, note that since 0 < q, t < 1,

|er
(
q−λ1t1−n, . . . , q−λn

)
| ≤ q−|λ|t−rnr.

Therefore, the sum in the left side of (4.8) is absolutely bounded by

const ·
∑

λ1,...,λN∈Y

q−m|λN |
∣∣∣MPa

N ;{ai};ρ(λ
1, . . . , λN )

∣∣∣
= const ·

∑
λ1,...,λN∈Y

∣∣∣MPa
N ;{ai};q−mρ(λ

1, . . . , λN )
∣∣∣ ,

where q−mρ is the specialization defined by

pk(q
−mρ) = q−kmpk(ρ),

which, by the hypothesis of the theorem (that |pk(ρ)| < Rk) implies that |pk(q−mρ)|
< (q−mR)k. Therefore

|(ai)kpk(q−mρ)| < rk

for some r < 1. Now the absolute convergence of the series in the Definition 4.1
implies that the series in the left side of (4.8) is absolutely convergent.

The definition of Macdonald symmetric functions Pλ implies that they are in-
variant under the change of parameters (q, t) ↔ (q−1, t−1) (see [M, Section VI.4,
(4.14),(iv)]). In other words, restoring the notational dependence of Pλ on (q, t),
we have

Pλ( · ; q, t) = Pλ( · ; q−1, t−1).

Therefore, if we replace all instances of q and t in the definition of the operator Mr
k

by q−1 and t−1, respectively, and denote the resulting operator through M̂r
k, then

M̂r
kPλ(x1, . . . , xk; q, t) = er(q

−λ1t1−k, . . . , q−λk)Pλ(x1, . . . , xk; q, t).

It follows that an analogue of Proposition 4.4 holds for M̂r
k and we can repeat the

proof of Theorem 4.5 (as long as all the series involved converge). The final formula
(4.8) is obtained from the result of Theorem 4.5 through the formal inversion of q
and t. �

One interesting limit of the above formulas can be obtained by sending t → 0.
The limits of Macdonald symmetric functions themselves as t → 0 are known as
q–Whittaker functions; cf. [GLO]. Denote

QWPa
N ;{ai};ρ = lim

t→0
MPa

N ;{ai};ρ.
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A straightforward limit of (the case ri = 1, i = 1, . . . ,m, of) Theorem 4.5 gives
the following statement.

Corollary 4.7. Take N non–zero complex numbers a1,. . . , aN and a specialization
ρ such that for some 0 < R < 1 we have

|pk(ρ)| < Rk, k = 1, 2, . . . , |ai|R < 1, i = 1, . . . , N.

Fix a sequence of integers N ≥ n1 ≥ n2 ≥ · · · ≥ n1 ≥ 1. Suppose that there exist
complex closed positively oriented contours γα, α = 1, . . . ,m, such that:

(I) All contours lie inside DR−1 = {z ∈ C | |z| < R−1}.
(II) All contours enclose the points a1, . . . , aN , but not 0.
(III) γα contour does not intersect the interior of the image of γβ multiplied by q

for β > α.

Then we have

(4.9)
∑

λ1,...,λN∈Y

m∏
i=1

qλ
ni
niQWPa

N ;{ai};ρ(λ
1, . . . , λN )

=
(−1)mqm(m−1)/2

(2πi)m

∮
. . .

∮ ∏
1≤α<β≤m

zα − zβ
zα − qzβ

m∏
α=1

(
nα∏
i=1

ai
ai − zα

)
Π̃(qzα; ρ)

Π̃(zα; ρ)

dzα
zα

,

where zα is integrated over γα and

Π̃(z; ρ) = lim
t→0

Π(z; ρ) = exp

( ∞∑
k=1

zkpk(ρ)

k(1− qk)

)
.

Remark. For the choice of ρ such that Π(z, ρ) = exp(τz) for a parameter τ > 0,
and a1 = · · · = aN = 1, the formula (4.9) was guessed at and checked in [BCS].
The formulas of [BC2] are also related to some particular choices of ρ in (4.9).

4.2. Comparison with formal setting. Let us compare the statements of The-
orems 4.5 and 4.6 with formal statements of Section 3.

The statement of Theorem 4.6 can be obtained from Theorem 3.10 by first
specializing algebras ΛAi , ΛBi (see Definition 4.1), then changing the variables
z = 1/w and further suitably deforming the contours of integration. Note that the
contours in Theorem 4.6 do not enclose 0, while in Theorem 3.10 they do. Thus,
we would pick certain residues while deforming the contours, and these residues are
responsible for the change in the observable. In fact, for m = 1 we performed a
similar deformation in the proof of Proposition 3.8.

A formal version of Theorem 4.5 is more delicate. The difficulty lies in the fact
that our observable er(q

λ1tk−1, . . . , qλk) does not have a straightforward limit as
k → ∞. In the appendix (Section 6) we give a formal version of Theorem 4.5 for
the case ri = 1 for all i. Finding such a formal version for general ri involves finding
a suitable form of stable Macdonald operators and we do not pursue this here.

4.3. Fredholm determinants. The aim of this subsection is to present two ob-
servables of the Macdonald measure whose expectations can be written as Fredholm
determinants. For the case q = t (corresponding to Schur polynomials) the emer-
gence of Fredholm determinants is well–understood, due to the identification of the
Schur measure with a determinantal point process (see [O1] and also [BG] for a
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recent review). No such structure predicting the appearance of Fredholm determi-
nants is known for general parameters (q, t). The t = 0 and general q degeneration
of the first Fredholm determinant we present in Theorem 4.8 was discovered in
[BC, Corollary 3.2.10 and Theorem 3.2.11] by utilizing the first Macdonald differ-
ence operator and its powers. Our present result uses a different operator diago-
nalized by the Macdonald polynomials (that however degenerates to a generating
series of powers of the first Macdonald operator at t = 0).

We will write Fredholm determinant formulas for the (ascending) Macdonald
measure MMa

N,{ai};ρ. We do not approach the question of generalizing the formulas

below to the formal settings of Section 3 (again this is known to be possible for the
q = t case).

Theorem 4.8. Fix N non–zero complex numbers a1,. . . , aN and a specialization
ρ such that for some 0 < R < 1 we have

|pk(ρ)| < Rk, k = 1, 2, . . . , |ai|R < 1, i = 1, . . . , N.

Define the function

GN,{ai},ρ(w) =
1

Π(w; ρ)

N∏
j=1

(tw/aj ; q)∞
(w/aj ; q)∞

.

Further, let u be a formal variable and set

Ku,N,{ai},ρ(w,w
′) =

∞∑
v=1

uv

qvw − w′
GN,{ai},ρ(w)

GN,{ai},ρ(q
vw)

.

Suppose that there exists a positively oriented contour γ such that:

(I) γ lies inside DR−1 = {z ∈ C | |z| < R−1}.
(II) γ encloses all points ai, i = 1, . . . , N , but not qstai, s = 1, 2, . . . , i =

1, . . . , N .
(III) the contour qkγ is outside γ for k = 1, 2, . . . .

(Note that when a1 = · · · = aN , a small circle around a1 satisfies all the above
assumptions.)

Then the following equality holds as an identity of power series in u:∑
λ∈Y

N∏
i=1

(
qλitN−i+1u; q

)
∞(

qλitN−iu; q
)
∞

MM
a
N,{ai},ρ(λ) = det(I +Ku,N,{ai},ρ)L2(γ).

Remark 1. In the theorem we define the Fredholm determinant

det(I +Ku,N,{ai},ρ)L2(γ)

through its Fredholm series expansion

det(I +Ku,N,{ai},ρ)L2(γ)(4.10)

= 1 +

∞∑
k=1

1

k!

∫
γ

dw1 · · ·
∫
γ

dwk det
[
Ku,N,{ai},ρ(wi, wj)

]k
i,j=1

.

Our definitions imply that the kth term in the sum in (4.10) is a power series in u
starting from uk. Therefore, (4.10) is a well–defined power series in u. In fact, this
power series is easily seen in the proof to be a degree N polynomial in u.
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Remark 2. When the above theorem is seen as an analytic identity after specify-
ing some value of u for which all the series absolutely converge, then the kernel
Ku,N,{ai},ρ can be represented in the form

Ku,N,{ai},ρ(w,w
′) =

∫
C1,2,...

Γ(−s)Γ(1 + s)
(−u)s

qsw − w′
GN,{ai},ρ(w)

GN,{ai},ρ(q
sw)

where C1,2,... is a negatively oriented contour which encloses the positive integer
poles of Γ(−s)Γ(1 + s) and no other poles of the integrand. This representation is
useful when performing asymptotics (cf. [BC, Section 3.2.3], [BCF, Sections 5 and
6]).

Remark 3. When t = 0, [BC, Theorem 3.2.16] provides a second Fredholm deter-
minant formula for the same expectation which differs from the result of taking
t = 0 in the above theorem (cf. [BC, Corollary 3.2.10 and Theorem 3.2.11]). It
might be possible to write an analog to this second type of Fredholm determinant
at the general (q, t) level, though we do not pursue that here as it is so far unclear
if it has applications.

We now present the proof of Theorem 4.8. At the end of the section we state
one other Fredholm determinant result in the form of Theorem 4.13.

Proof of Theorem 4.8. The following operator and eigenfunction relation in Propo-
sition 4.10 come from [FHHSY, Proposition 3.24].

Definition 4.9. For any N ≥ 1 and any ν ∈ (Z≥0)
N define a difference operator

Nu
N,ν which acts on the space of analytic functions in x1, . . . , xN as

(4.11) N
u
N,ν = u|ν|

∏
1≤i<j≤N

qνjxj − qνixi

xj − xi

∏
1≤i,j≤N

(txi/xj ; q)νi

(qxi/xj ; q)νi

N∏
i=1

(
Tq,i

)νi .

Define the Noumi q–integral operator Nu
N which acts on the space of analytic func-

tions in x1, . . . , xN as

(4.12) N
u
N =

∑
ν∈(Z≥0)N

N
u
N,ν .

The Macdonald polynomials diagonalize the Noumi q–integral operator with
explicit eigenvalues.

Proposition 4.10 (Noumi). For any N ≥ 1, formal parameter u, and λ ∈ Y such
that �(λ) ≤ N , the following identity of power series in u holds:

(4.13) N
u
NPλ(x1, . . . , xn) =

N∏
i=1

(qλitN+1−iu; q)∞
(qλitN−iu; q)∞

Pλ(x1, . . . , xN ).

This proposition is proved in Section 5. It first appeared in the literature as
[FHHSY, Proposition 3.24] and therein is attributed to a personal communication
from M. Noumi; its proof will appear in [NS]. Since at the time of publication this
proof had not yet been posted, we also present E. Rains’ proof of this result as an
appendix in Section 5.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



OBSERVABLES OF MACDONALD PROCESSES 1547

Remark. For r ≥ 0, the operator

N
[r]
N

∑
ν∈(Z≥0)

N

|ν|=r

Nu
N,ν

is also diagonalized by the Pλ with eigenvalues gr(q
λ1tN−1, qλ2tN−2, . . . , qλN t0).

Here gr is the (q, t)–version of the complete homogeneous symmetric polynomial

(i.e., gr = Q(r)). Clearly Nu
N =

∑∞
r=0 u

rN
[r]
N .

Proposition 4.10 implies that
(4.14)∑
λ∈Y

N∏
i=1

(qλitN+1−iu; q)∞
(qλitN−iu; q)∞

MMa
N,{ai};ρ(λ) =

Nu
NΠ(x1, . . . , xN ; ρ)

Π(x1, . . . , xN ; ρ)

∣∣∣∣∣
x1=a1,...,xN=aN

,

the argument here being parallel to that of Proposition 4.4; see also [BC, Section
2.2.3] for a general discussion. The only thing to check here is that the series giving
the coefficient of ur in the left side of (4.14) is absolutely convergent. This series
is (cf. [M, Chapter VI, (2.8)])

(4.15)
∑
λ∈Y

gr(q
λ1tN−1, qλ2tN−2, . . . , qλN t0)MM

a
N,{ai};ρ(λ).

The combinatorial formula for Macdonald polynomials gr (see [M, Chapter VI,
Section 7]) and inequalities 0 < q, t < 1 imply that

0 ≤ gr(q
λ1tN−1, qλ2tN−2, . . . , qλN t0) ≤ gr(1, . . . , 1︸ ︷︷ ︸

N

).

Thus, (4.15) is absolutely convergent as in Definition 4.1.
Recall (cf. Section 3.1) that Π(x1, . . . , xN ; ρ) = Π(x1; ρ) · · ·Π(xN ; ρ). For such

functions, it is possible to encode the application of the Noumi operator in terms
of a Fredholm determinant. Theorem 4.8 immediately follows from equation (4.14)
along with the application of the following proposition.

Proposition 4.11. The following holds as an identity of power series in u:

Nu
NΠ(x1, . . . , xN ; ρ)

Π(x1, . . . , xN ; ρ)

∣∣∣∣∣
x1=a1,...,xN=aN

= det(I +Ku,N,{ai},ρ)L2(γ).

Proof. We proceed in three steps. In step 1 we show how simple residue consider-
ations imply that the Fredholm expansion for det(I +Ku,N,{ai},ρ)L2(γ) terminates

after N terms. In step 2 we present a lemma which relates the kth term in this
expansion to the application of the operators Nu

N,ν with the number of non–zero
parts of ν equal to k. In step 3 we conclude the proof by combining the two previous
steps.

Step 1. Recall the definition of det(I + Ku,N,{ai},ρ)L2(γ) via the Fredholm series
expansion. We can rewrite

Ku,N,{ai},ρ(w,w
′) =

N∏
r=1

1

w − ar
K̃u,N,{ai},ρ(w,w

′)

where K̃u,N,{ai},ρ(w,w
′) is now analytic inside the contour γ in both variables.

This means that we can evaluate all of the wi integrations in (4.10) via the residue
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theorem. Each variable wi can pick a residue at any of {a1, . . . , aN}. This leads to
the expansion ∫

γ

dw1 · · ·
∫
γ

dwk det
[
Ku,N,{ai},ρ(wi, wj)

]k
i,j=1

=
∑
p

det

⎡⎢⎣ N∏
r=1

r 	=p(i)

1

ap(i) − ar
K̃u(ap(i), ap(j))

⎤⎥⎦
k

i,j=1

where the summation is over all assignments p : {1, . . . k} → {1, . . . , N}. If k > N ,
then there must exist some i �= i′ such that p(i) = p(i′). Consequently, row i and
row i′ of the above matrix coincide; hence the determinant is zero. Thus

det(I +Ku,N,{ai},ρ)L2(γ)(4.16)

= 1 +

N∑
k=1

1

k!

∫
γ

dw1 · · ·
∫
γ

dwk det
[
Ku,N,{ai},ρ(wi, wj)

]k
i,j=1

.

Step 2. We now show how the kth term in equation (4.16) arises from a combination
of the Nu

N,ν with the number of non–zero parts of ν equal to k (and these non–zero

parts summed over the natural numbers).

Lemma 4.12. Fix N ≥ 0, k ∈ {0, 1, . . . , N} and assume ν ∈ (Z≥0)
N is such that

ν1, . . . , νk ≥ 1 and νk+1, . . . , νN = 0. Then, for all a1, . . . , aN and u,

(4.17)
1

(N − k)!

∑
σ∈SN

Nu
N,σ(ν)Π(x1, . . . , xN ; ρ)

Π(x1, . . . , xN ; ρ)

∣∣∣∣∣
x1=a1,...,xN=aN

=
1

(2πi)k

∫
γ

dw1 · · ·
∫
γ

dwk det
[
K ′

u,N,{ai},ρ(νi, wi, wj)
]k
i,j=1

,

where

K ′
u,N,{ai},ρ(v, w,w

′) =
uv

qvw − w′
GN,{ai},ρ(w)

GN,{ai},ρ(q
vw)

,

and Sn is the symmetric group of rank N which acts on ν = (ν1, . . . , νk) by per-
muting its coordinates.

Proof. We evaluate the right–hand side of equation (4.17) via residues in order to
prove the theorem. Observe that the only term in K ′

u,N,{ai},ρ involving both w and

w′ is (qvw−w′)−1. The Cauchy determinant identity (3.15) may be applied to this
term, and a small calculation and reordering of terms leads to

RHS (4.17) =
1

(2πi)k

∫
γ

dw1 · · ·
∫
γ

dwk

k∏
i=1

N∏
j=1

−1

wi − aj

×
k∏

i,j=1
i 	=j

(wi − wj)

k∏
i,j=1

−1

wj − qνiwi

k∏
i=1

N∏
j=1

(aj − qνiwi)

× u|ν|
∏

1≤i<j≤k

qνiwi − qνjwj

wi − wj

k∏
i=1

N∏
j=1

(twi/aj ; q)∞
(qwi/aj ; q)∞

k∏
i=1

Π(qνiwi; ρ)

Π(wi; ρ)
.
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Inspection of the above formula reveals that it is only the first product which has
poles inside the γ contour. The residue theorem implies that we can evaluate the
above integral by computing the sum of the residues at wi = ap(i), 1 ≤ i ≤ k,
summed over every choice of assignment p : {1, . . . , k} → {1, . . . , N}. Further
inspection reveals that due to factors (wi−wj), if p(i) = p(j) for some i �= j, then the
residue is zero. Hence we are left with the sum over all assignments for which p(i) �=
p(j) when i �= j. As a convention, define p(1 + k), . . . , p(N) to be the (ordered)
remaining elements of {1, . . . , N} which are not equal to p(1), . . . , p(k). Denote
as P the set of all such defined assignment (or permutations) from {1, . . . , N} →
{1, . . . , N}. Thus (after noticing that various factors of −1 multiply to 1)

RHS (4.17) =
∑
p∈P

k∏
i=1

N∏
j=k+1

qνiap(i) − ap(j)

ap(i) − ap(j)

× u|ν|
∏

1≤i<j≤k

qνixp(i) − qνjap(j)

ap(i) − ap(j)

k∏
i=1

N∏
j=1

(tap(i)/ap(j); q)∞

(qap(i)/ap(j); q)∞

k∏
i=1

Π(qνiap(i); ρ)

Π(ap(i); ρ)
.

Recalling that νk+1 = . . . = νN = 0 we can combine the above expressions as

RHS (4.17)

=
∑
p∈P

u|ν|
∏

1≤i<j≤N

qνiap(i) − qνjap(j)
ap(i) − ap(j)

N∏
i,j=1

(tap(i)/ap(j); q)∞

(qap(i)/ap(j); q)∞

N∏
i=1

Π(qνiap(i); ρ)

Π(ap(i); ρ)
.

Again, due to the fact that νk+1 = . . . = νN = 0, the summation over p ∈ P can
be replaced by p ∈ SN , yielding

RHS (4.17) =
1

(N − k)!

∑
p∈SN

u|ν|
∏

1≤i<j≤N

qνiap(i) − qνjap(j)

ap(i) − ap(j)

×
N∏

i,j=1

(tap(i)/ap(j); q)∞

(qap(i)/ap(j); q)∞

N∏
i=1

Π(qνiap(i); ρ)

Π(ap(i); ρ)
.

The (N −k)! came from the size of SN/P . We now recall σ = p−1 and replace ap(i)
by ai and νi by νσ(i) in the above expression. Noting that

(T νi
q,iΠ)(x1, . . . , xN ; ρ)

Π(x1, . . . , xN ; ρ)
=

Π(qνixi; ρ)

Π(xi; ρ)
,

we are finally led to

RHS (4.17) =
1

(N − k)!

∑
σ∈SN

Nu
N,σ(ν)Π(x1, . . . , xN ; ρ)

Π(x1, . . . , xn; ρ)

∣∣∣∣∣
x1=a1,...,xN=aN

,

as desired to prove the lemma. �

Step 3. We now rewrite the Noumi q–integral operator in terms of the expressions
on the left–hand side of equation (4.17). In particular, we split the summation
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defining Nu
N based on the number of non–zero parts to ν:

N
u
N =

∑
ν∈(Z≥0)N

N
u
N,ν =

N∑
k=0

∑
S⊆{1,...,N}

|S|=k

∑
ν∈(Z≥0)

N

νi>0 for i∈Sνi=0 for i/∈S

N
u
N,ν

=

N∑
k=0

∞∑
ν1,...νk=1

N !

(N − k)!k!

1

N !

∑
σ∈SN

N
u
N,σ(ν),

where in the second line ν = (ν1, . . . , νk, 0, . . . 0). Note that the N choose k factor
came from the number of ways of choosing the subset S, and the reciprocal of N
factorial came from the symmetrization of ν.

Using the above calculation and Lemma 4.12, we find that

Nu
NΠ(x1, . . . , xN ; ρ)

Π(x1, . . . , xn; ρ)

∣∣∣∣∣
x1=a1,...,xN=aN

=
N∑

k=0

1

k!

∞∑
ν1,...νk=1

1

(2πi)k

∫
γ

dw1 · · ·
∫
γ

dwk det
[
K ′

u,N,{ai},ρ(νi, wi, wj)
]k
i,j=1

=

N∑
k=0

1

k!

1

(2πi)k

∫
γ

dw1 · · ·
∫
γ

dwk det
[
Ku,N,{ai},ρ(wi, wj)

]k
i,j=1

,

where in the third line the summation over the νi was absorbed into the determinant
(resulting in the Ku,N,{ai},ρ kernel). Finally, by virtue of equation (4.16) from step
1, we conclude the proof of the proposition. �

As explained before the statement of Proposition 4.11, this also completes the
proof of Theorem 4.8. �

We present a second general (q, t) Fredholm determinant which relies upon the
Macdonald difference operators Mr

N (see Section 4.1) and their elementary sym-
metric function eigenvalues (see equation (4.2)).

Letting u be a formal parameter, we may define

MN (u) =
N∑
r=0

(−u)rMr
N .

Then, for λ ∈ Y with �(λ) ≤ N , we have

(4.18) MN (u)Pλ(x1, . . . , xN ) =

N∏
i=1

(1− uqλitN−i).

This follows from equation (4.2) since the right–hand side above is the generating
function for the elementary symmetric polynomials; cf. [M, Chapter I, Section 2].

Theorem 4.13. Fix N non–zero complex numbers a1,. . . , aN and a specialization
ρ such that for some 0 < R < 1 we have

|pk(ρ)| < Rk, k = 1, 2, . . . , |ai|R < 1, i = 1, . . . , N.
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Let Ca be a contour which lies inside a circle of radius R−1 and which encloses all
a1, . . . , aN but not ta1, . . . , taN . Set

JN,{ai},ρ(w,w
′) =

1

tw′ − w

N∏
m=1

tw − am
w − am

Π(qw; ρ)

Π(w; ρ)
.

Then the following equality holds as an identity of power series in u:

∑
λ∈Y

N∏
i=1

(1− uqλitN−i)MMa
N,{ai},ρ(λ) = det(I − uJN,{ai},ρ)L2(Ca).

Remark 1. The above Fredholm determinant is related to the generating function
of the elementary symmetric polynomials er, whereas the Fredholm determinant
presented in Theorem 4.8 is related (see Proposition 4.10) to the (q, t)–analog of
the complete homogeneous symmetric polynomials gr. There is an endomorphism
ωq,t on Λ which maps ωq,tgr(X; q, t) = er(X). At this point, it is not clear how
this endomorphism is related to the two Fredholm determinant formulas we have
presented.

Remark 2. In equation (3.3) of [W] (for ρ a finite length specialization into a set
of complex numbers y1, y2, . . .) an alternative expression (written as F (u;x, y; t))
is given for the above Fredholm determinant. This function is then related to the
Izergin–Korepin determinant.

Remark 3. It is possible to state a formal version of the above theorem immediately
from Proposition 3.8.

Proof of Theorem 4.13. Observe that by virtue of the eigenrelation (4.18) satisfied
by MN (u),

MN (u)Π(x1, . . . , xN ; ρ)

Π(x1, . . . , xN ; ρ)

∣∣∣∣∣
x1=a1,...,xN=aN

=
∑
λ∈Y

N∏
i=1

(1− uqλitN−i)MM
a
N,{ai},ρ(λ).

A special case of Theorem 4.5 (also found in [BC, Proposition 2.2.10]) states
that

Mr
NΠ(x1, . . . , xN ; ρ)

Π(x1, . . . , xN ; ρ)

∣∣∣∣∣
x1=a1,...,xN=aN

=
1

r!

1

(2πi)r

∮
Ca

dw1 · · ·
∮
Ca

dwr det
[
JN,{ai},ρ(wk, w�)

]r
k,�=1

.

Multiplying each term by (−u)r and summing over r ∈ {0, 1, . . . , N} we recover
the first N +1 terms in the Fredholm series expansion of det(I −uJN,{ai},ρ)L2(Ca).
It is easy to see that all further terms in the expansion vanish (this is somewhat
similar to step 1 in the proof of Theorem 4.8), hence the desired result. �
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5. Appendix: E. Rains’ proof of Proposition 4.10

The following appendix, due to Eric Rains, provides a derivation of Proposition
4.10 from an elliptic integral operator. Let us fix some notation:

θq(x) :=
∏
k≥0

(1− qkx)(1− qk+1/x), Γp,q(x) :=
∏

j,k≥0

1− pj+1qk+1/x

1− pjqkx
,

Γ̃q(x) :=
1

(x; q)∞
.

Note that Γ̃q(x) is slightly different than the usual definition of the q–deformed
Gamma function, hence the tilde. When multiple arguments come into these func-
tions, it means that one multiplies the single variable evaluation over all variables.
For example,

Γp,q(y
±
i y

±
j ) := Γp,q(yiyj)Γp,q(yiy

−1
j )Γp,q(y

−1
i yj)Γp,q(y

−1
i y−1

j )

or (a, b; q)∞ = (a; q)∞(b; q)∞. In what follows, a pair of partitions is denoted by a
bold lambda λ, whereas a single partition is just λ.

The elliptic interpolation functions R∗(n)
λ (y1, . . . , yn;u0, u1; t; p, q) are defined in

equation (8.45) of [R1]. They satisfy the following integral operator identity, which
is itself a special case of that given in equation (8.12) of [R1]:

R∗(n)
λ (y1, . . . , yn;u0, u1; t; p, q)

R∗(n)
λ (. . . , tn−iu2, . . . ;u0, u1; t; p, q)

=
∏

0≤r<s≤3

n∏
i=1

Γp,q(t
n−iurus)

((p; p)∞(q; q)∞)n

(2Γp,q(t))nn!

×
∫
Cn

R∗(n)
λ (x1, . . . , xn; t

−1/2u0, t
−1/2u1; t; p, q)

R∗(n)
λ (. . . , tn−i−1/2u2, . . . ; t−1/2u0, t−1/2u1; t; p, q)

×
∏n

i,j=1 Γp,q(t
1/2x±1

i y±1
j )∏

1≤i<j≤n Γp,q(ty
±1
i y±1

j , x±1
i x±1

j )

×
n∏

i=1

∏3
r=0 Γp,q(t

−1/2urx
±1
i )

Γp,q(x
±2
i )

∏3
r=0 Γp,q(ury

±1
i )

dxi

2πixi
,

which is valid under the assumption tn−2u0u1u2u3 = pq. Here the notation
“. . . tn−iu2 . . . ” means the set of variables tn−iu2, i = 1, . . . , n, and similarly for
“. . . , tn−i−1/2u2, . . . ”. The contours C are constrained so that every (infinite) col-
lection of poles which converge to 0 lies inside the contour, and every (infinite)
collection of poles converging to ∞ lies outside the contour.

If we reparametrize

(u0, u1, u2, u3) �→ (s, p1/2u1, tu, p
1/2u3)

and take the limit p → 0, the interpolation functions become the (symmetric ver-

sions of) the interpolation polynomials P̄
∗(n)
λ of Okounkov [O2], and we obtain the
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identity

P̄
∗(n)
λ (y1, . . . , yn; q, t, s)

P̄
∗(n)
λ (. . . , tiu, . . . ; q, t, s)

=
Γ̃q(t

nus)

Γ̃q(us)

(q, t; q)n∞
2nn!

×
∫
Cn

P̄
∗(n)
λ (x1, . . . , xn; q, t, t

−1/2s)

P̄
∗(n)
λ (. . . , ti−1/2u, . . . ; q, t, t−1/2s)

×
∏n

i,j=1 Γ̃q(t
1/2x±1

i y±1
j )∏

1≤i<j≤n Γ̃q(ty
±1
i y±1

j , x±1
i x±1

j )

×
n∏

i=1

Γ̃q(t
−1/2sx±1

i , t1/2ux±1
i )

Γ̃q(sy
±1
i , tuy±1

i , x±2
i )

dxi

2πixi
.

We now want to reparametrize

xi → t−1/2sxi, yi → syiu → u/s

and take the limit s → ∞ so that the interpolation polynomials become shifted
Macdonald polynomials. This is an apparently badly behaved limit, as it involves
q–gamma functions with arguments tending to infinity. To fix this, we observe as
in Lemma 5.2 of [R2] that the Sn–invariant function

θq(
∏n+1

r=0 wr/
∏n

i=1 xi)
∏n

i=1

∏n+1
r=0 θq(wrxi)∏

1≤i<j≤n θq(xixj)
∏

0≤r<s≤n+1 θq(wrws)−1

becomes 1 if we sum over cosets of Sn in the hyperoctahedral group BCn. Thus
if we multiply the integrand by 2n times an instance of this function, the integral
will be unchanged. Using the reflection identity

Γ̃q(x)θq(x) = Γ̃q(q/x)
−1

we find that we can cancel the badly scaling gamma factors by taking w0 = t−1/2s,
wn+1 = t1/2u, and wi = t1/2yi for 1 ≤ i ≤ n. In particular, we find

P̄
∗(n)
λ (y1, . . . , yn; q, t, s)

P̄
∗(n)
λ (. . . , tiu, . . . ; q, t, s)

= Γ̃q(t
nus, q/us)

(q, t; q)n∞
n!

×
∫
Cn

P̄
∗(n)
λ (x1, . . . , xn; q, t, t

−1/2s)

P̄
∗(n)
λ (. . . , ti−1/2u, . . . ; q, t, t−1/2s)

θq(ust
n/2

n∏
i=1

yi/xi)

×
∏

1≤i<j≤n

Γ̃q(q/tyiyj , q/xixj)

Γ̃q(tyi/yj , tyj/yi, t/yiyj , xi/xj , xj/xi, 1/xixj)

×
n∏

i,j=1

Γ̃q(t
1/2xi/yj , t

1/2yj/xi, t
1/2/xiyj)

Γ̃q(q/t1/2xiyj)

×
n∏

i=1

Γ̃q(q/syi, q/tuyi, t
−1/2s/xi, t

1/2u/xi, q/x
2
i )

Γ̃q(s/yi, tu/yi, q/t−1/2sxi, q/t1/2uxi, 1/x2
i )

dxi

2πixi
,
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which after rescaling gives the limit

∏
1≤i≤n

(qλitn+1−iu; q)∞
(qλitn−iu; q)∞

t|λ|P̄
∗(n)
λ (y1, . . . , yn; q, t)

=
(q, t; q)n∞

n!

∫
Cn

P̄
∗(n)
λ (x1, . . . , xn; q, t)

θq (ut
n
∏n

i=1 yi/xi)

θq(u)

×
∏n

i,j=1 Γ̃q(xi/yj , tyj/xi)∏
1≤i<j≤n Γ̃q(xi/xj , xj/xi, tyi/yj , tyj/yi)

n∏
i=1

Γ̃q(q/tuyi, 1/xi)

Γ̃q(1/yi, q/uxi)

dxi

2πixi
,

again with the contour containing all “small” poles and excluding all “large” poles.
Now if we rescale x → vx, y → t−1vy and take the limit v → ∞, the shifted

Macdonald polynomials become Macdonald polynomials, and we obtain the identity

n∏
i=1

(qλitn+1−iu; q)∞
(qλitn−iu; q)∞

Pλ(y1, . . . , yn; q, t)

=
(q, t; q)n∞

n!

∫
Cn

Pλ(x1, . . . , xn; q, t)
θq(u

∏n
i=1 yi/xi)

θq(u)

×
∏n

i,j=1 Γ̃q(txi/yj , yj/xi)∏
1≤i<j≤n Γ̃q(xi/xj , xj/xi, yi/yj , yj/yi)

n∏
i=1

dxi

2πixi
.

At this point, we observe that the “small” poles are at the points of the form
qkyi, k ≥ 0, and if we take a residue at one such point, the corresponding poles
will not appear in the residual integrand. Moreover, if we shrink the contour by
ever larger powers of q, the integrand converges to 0 exponentially fast. We may
thus replace the contour–integral by a sum over residues. Note that this involves
a choice of bijection between the x variables and the y variables, which can be
absorbed by symmetry, eliminating the 1/n! factor. We thus obtain the claimed
result of Proposition 4.10:

n∏
i=1

(qλitn+1−iu; q)∞
(qλitn−iu; q)∞

Pλ(y1, . . . , yn; q, t)

=
∑

ν∈(Z≥0)n

u|ν|
∏

1≤i<j≤n

qνjyj − qνiyi
yj − yi

n∏
i,j=1

(tyi/yj ; q)νi

(qyi/yj ; q)νi

Pλ(q
ν1y1, . . . , q

νnyn; q, t).

Comparing coefficients of uk gives the eigenfunction relation of [NS], [FHHSY,
Proposition 3.24].

6. Appendix: On a formal version of Theorem 4.5

The goal of this section is to obtain a formal version of Theorem 4.5 for the case
ri = 1 for all i.

Theorem 6.1. Set

Ê1(λ) = 1 + (1− t)
∞∑
j=1

(1− qλj )t−j .
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We have

(6.1)
∑

λ1,...,λN

MPf
N,A,B(λ

1, . . . , λN )Ê1(λ1) · · · Ê1(λN )

=
1

(2πi)N

∮
· · ·

∮ N∏
α=1

dvα
vα

∏
1≤α≤β≤N

H−1
(
(tvα)

−1;Bβ
)
H−1

(
Aα; vβ

)
W

(
(tvα)

−1; vβ
)
,

where vα is integrated over the circle of radius Rα around the origin and Rβ/(tRα) <
1 for α < β.

Remark 1. Formula (6.1) should be understood in the same sense as the statement
of Theorem 3.10.

Remark 2. Through suitable specializations and contour deformations Theorem 6.1
implies the statement of Theorem 4.5 for the case ri = 1 for all i. In particular, we
could also obtain Corollary 4.7 by further setting t = 0.

Sketch of the proof of Theorem 6.1. We start from [BC, Proposition 2.2.10] (that
is also Theorem 4.5 with m = 1 and r = 1), which reads for X = (x1, . . . , xN ) and
Y = (y1, . . . , yN ):

∑
λ∈Y

⎛⎝ N∑
j=1

qλj tN−j

⎞⎠Pλ(X)Qλ(Y )

= Π(X;Y )
tN

(t− 1)

1

2πi

∮ N∏
j=1

1− t−1z−1xj

1− z−1xj

N∏
j=1

1− zyj
1− tzyj

dz

z

= Π(X;Y )
tN

(t− 1)

1

2πi

∮
H−1

(
(tz)−1;X

)
H−1

(
z;Y

)dz
z
,

where xi and yi are assumed to be sufficiently small, and integration goes over the
contours enclosing the poles at xi and no other poles of the integrand.

Note that the residue of the last integral at z = 0 is t−N . Therefore, using

N∑
j=1

tN−j =
1

1− t
− tN

1− t

we can rewrite (assuming that qλk = 1 for k > N)

∑
λ∈Y

⎛⎝ 1

t− 1
+

∞∑
j=1

(qλj − 1)t−j

⎞⎠Pλ(X)Qλ(Y )(6.2)

=
Π(X;Y )

2πi(t− 1)

∮
H−1

(
(tz)−1;X

)
H−1

(
z;Y

)dz
z
,

with integration going over a circle around the origin. Now we can send the number
of variables to infinity in (6.2) and obtain for two infinite sets of variables X, Y :

(6.3)
∑
λ∈Y

⎛⎝1 + (1− t)
∞∑
j=1

(1− qλj )t−j

⎞⎠Pλ(X)Qλ(Y )

= Π(X;Y )
1

(2πi)

∮
H−1

(
(tz)−1;X

)
H−1

(
z;Y

)dz
z
.
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Since (6.3) has the same form as (3.8) we get an analogue of Theorem 3.10 (which
is our Theorem 6.1) by repeating the same steps as in its proof. �
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