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1. Introduction 

Coriolis vibratory gyroscopes (CVG) are one of the most commonly used and fastest 

developing type of gyroscopes in inertial navigation systems. The well-known 

hemispherical resonator gyroscope (HRG) is considered the only technology capable 

of several decades’ operation without failure in space [1, 2]. Quality factor and its 

mismatch are vital parameters of the resonator which determine the noise level and 

sensitivity of the CVG. Using fused silica material, the Q factor of the HRG achieved 

over 25 million [2], which is one of the reasons why HRG is the only kind of CVG that 

has achieved navigation-grade performance. Despite their remarkable advantages, 

HRGs demand rather complicated manufacturing process and extremely high cost. 

Cylindrical resonator gyroscope (CRG) is considered a lower-cost and 

easier-manufacturing variant while preserving medium accuracy performance and the 

inherent rugged nature. It also shares with HRG advantages of instant start-up 

capability, considerable vibration and shock resistance and long lifespan, etc.; 

therefore it is highly competitive in medium accuracy market when size, weight, power 

consumption and cost are comprehensively considered. A number of cylindrical 

resonator gyroscopes have been proposed [3-8], with Q factors ranging from several 

thousands to nearly one million. While efforts have been focused on the Q factor 
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improvement of fused silica material and resonators [7, 9-11] and the analysis of loss 

mechanisms [5, 8, 12-14], research on Q factor asymmetry is rare despite the fact that 

it is a major source of errors for Coriolis vibratory gyroscopes [15-19]. In his 

well-recognized work [15], D. D. Lynch briefly described the drift mechanism of 

asymmetric damping (i.e., asymmetric Q factors around the azimuth axis of the 

resonator) for hemispherical resonator gyroscopes. He also included the asymmetric 

damping and defined principle damping axes in his widely-applied generic model of 

Coriolis vibratory gyroscopes [16]. Y. K. Zhbanov has considered methods to suppress 

drift caused by Q factor asymmetry [17], and M. Shatalov and C. Coetzee gave a 

detailed electro-mechanical model of HRGs, showing that drift caused by Q-factor 

difference could be compensated by proper controlling the discrete parametric drive 

functions [18]. These works stand significant theoretical and practical value on CVG 

control, however, they did not address the measurement of Q factor asymmetry, nor 

did they systematically analyze the Q variation behavior of resonators. As for the 

experimental measurement of Q factor variation, X. Xi et al. briefly mentioned the 

circumferential change of Q factors [5]. However, they conclude this change as a 

cosine function, and they did not further explain the reason for this phenomenon. As 

the Q factor asymmetry of the resonator is detrimental to gyro performance, it is of 
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great importance to measure and study the Q factor asymmetry in addition to 

enhancing Q factor of resonators. 

The initiative of this study was to characterize the Q factor and its asymmetry of the 

cylindrical resonator reported in [7]. During characterization we discovered the 

circumferential Q variation when the resonator was excited at one direction and 

measured at different directions. In this paper, we first briefly introduced the basics of 

the cylindrical resonator, and demonstrated our Q factor measurement procedure based 

on the non-contact method using an acoustic source for excitation and a laser Doppler 

vibrometer for detection. We then presented our discovery that the Q factor varies 

periodically around the azimuth axis of the resonator. Based on the two-dimensional 

mass-spring model, we numerically simulated the measurement procedure. Numerical 

calculations were consistent with experimental results, suggesting the Q factor 

variation behavior is due to the existence of frequency mismatch and Q asymmetry, 

and the misalignment of excitation direction with principle axes. We concluded that for 

each detection point, the vibration is the superposition of two eigen-modes, and fitting 

with a one-dimensional oscillator would result in repetitive errors.  

2. Basic Concepts and Theories 

2.1. Resonator Structure and Operational Principle 
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Our resonator structure is based on the cylindrical shell resonator first reported by V. 

V. Chikovani et al. [8, 9], but is the first monolithic fused silica variant [7]. As shown 

in Fig. 1(a), the main sensing element of the resonator is the resonant shell, the 

thickness of which was carefully designed to ensure the resonator has an appropriate 

wineglass mode frequency and an acceptable sensitivity. The vibration-conducting 

shell should be as thin as manufacturing process can provide, so as to better conduct 

the vibration between resonant shell and the bottom plate, where the sensing element is 

usually attached. The holes of the bottom plate can decrease the stiffness of the bottom 

plate. In the ideal case, the vibration modes are spatially orthogonal (in the case of n=2 

wineglass modes, their angular positions are 45° relative to each other) and have equal 

eigen-frequencies. Each direction would be equivalent for excitation because the 

vibration modes have indeterminate angular positions around the axis of symmetry. 

The wineglass modes were shown with FEM simulation figures in Fig 1(b). 

 

Fig. 1. (a)The structure of the monolithic fused silica cylindrical resonator. (b) FEM 

simulation of the wineglass modes. 



 

7

The operational principle of the cylindrical resonator gyroscope is well understood 

[16, 19-23]. The cylindrical resonator is excited at a constant amplitude in n=2 

wineglass mode, as shown in Fig. 2(a), which is often referred to as the drive mode or 

the primary mode. The driving mechanism can be piezo-electric, electrostatic, 

electromagnetic, etc. The Coriolis force due to external rotation gives rise to the 

response mode (or the secondary mode), which is ideally at 45 degrees relative to the 

primary mode. The amplitude of the secondary mode is proportional to the external 

angular rate. The cylindrical resonator gyroscope usually works in the 

force-to-rebalance mode, in which the angular rate is proportional to the force applied 

to null the secondary mode arisen from external rotation [24].  

However, imperfections are inevitable in real devices due to material anisotropy and 

manufacturing errors. These imperfections cause frequency split as well as Q factor 

asymmetry, which result in two sets of principle axes, the frequency axes and the 

damping axes. These two sets principle axes often do not coincide with each other [15]. 

As shown in Fig. 2(b), each set of axes contains two axes, which lie 45° relative to 

each other. The angular positions of these axes are defined by θk and θc in respect to 

the x direction in an anti-clockwise manner. To illustrate, we assume that the two 

eigen-frequencies are f1 and f2, respectively. The angular position of f1 axis is θk 
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anti-clockwise in respect to x, and the angular position of f2 axis is 45° anti-clockwise 

from f1 axis. The damping axes are similarly defined, with two eigen-Q factors denoted 

by Q1 and Q2, respectively. The frequency mismatch and the Q factor asymmetry are 

defined as Δf=f1-f2 and ΔQ=Q1-Q2, respectively. 

 

(a) 

 

(b) 

Fig. 2. Schematic of: (a) the vibration mode of an ideal cylindrical resonator; (b) the 

definition of coordinates and parameters of a practical imperfect cylindrical resonator.  

2.2. Q factor  

For a cylindrical resonator, a higher Q factor means higher sensitivity and lower 

noise level. Q factor is commonly used to express energy dissipations in resonant 

systems, which is defined by energy stored in the system divided by energy dissipated 

per resonant cycle as in  

  (1) 



 

9

Where Etotal is the total stored energy, which is the sum of the kinetic and potential 

energies at some point of time, and ΔE is the dissipated energy per resonant cycle, 

which is related to various damping mechanism: external loss including air damping 

(Qair), support loss (Qsup); internal loss of the resonator and material including surface 

loss (Qsurf) and thermal elastic damping (QTED), etc. The total Q factor can also be 

described as 

         (2) 

As different loss mechanisms usually vary in orders of magnitude, the total loss is 

determined by the largest loss. Resonators with different sizes, structures and materials 

have different dominant loss mechanisms [5, 7, 8]. As our experiments were performed 

under atmospheric pressure, the setting loss in this case is air damping, which restricted 

the Q factor of our resonators to ~10
4
 [7].   

In experiment, the following definition is usually used for high values of Q 

  (3) 

Where fr is the resonant frequency and Δf is the 3-dB bandwidth of the resonant peak 

[25]. In the experimental procedure based on Equation (3), the amplitude frequency 

response (AFR) is used to calculate the Q factor of the resonator, thus the procedure is 

often referred to as the AFR method. For even higher Q factor (up to 10
5
), the 
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ring-down time τ (when the vibration amplitude attenuate to 1/e the initial value) was 

measured and the Q factor was calculated by Q=πfrτ. 

3. Experiment 

3.1. Experimental procedure 

In Q factor studies it is important to measure the Q factor efficiently and accurately, 

therefore the excitation and detection system should be carefully designed. In previous 

studies, the excitation methods were mostly with contact, among which piezoelectric 

actuators were most commonly used to excite samples without metal coating [26-28]. 

As fused silica is brittle material, the contact may induce defect to the surface of the 

resonator, decreasing Q factor and increasing anisotropy. Better solution is to use 

electrostatic excitation as in Ref. [27] and [29], however, the design of the 

measurement system is relatively complex. Some researchers have proposed a simple 

acoustic method to excite and measure resonators [30, 31], which is convenient, 

low-cost and has reasonable accuracy in air. However, the distances between 

microphone sensors and the resonator rim may contain inaccuracy, and there is likely 

aerial crosstalk between microphones. This inspired us to combine acoustic excitation 

and laser Doppler vibrometry for measurement of Q factors in moderate vacuum [7]. 

Our proposed method is fast and convenient for preliminary measurement of resonator 
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characteristics, including Q factor, Q factor asymmetry, vibration mode frequency and 

frequency mismatch, thus is useful in initial screening of resonators. In addition, when 

air pressure is smaller, the air damping decreases and the effect of various treatments 

on Q can be better assessed. 

The experimental setup is shown in Fig. 3. They were placed on an optical table to 

avoid environmental vibration. The rigid stem of the resonator was clamped with our 

designed fixture and together they were mounted on a rotary table. The rotary table 

was used to adjust the excitation angle. The resonator was excited by an acoustic 

source to the n=2 wineglass mode and its vibration detected by a Polytec laser Doppler 

vibrometer, which enabled non-contact characterization, avoiding possible surface 

damaging by contacting or extra damping by attaching exciting elements. In this study, 

we measured the Q factor by measuring the AFR characteristics of the resonator 

bottom, and the resonant data was processed by the Polytec software, which was 

essentially using equation (3) to calculate Q.  

 



 

12

Fig. 3. The experimental setup. The acoustic source excites the cylindrical resonator 

to the n=2 wineglass mode, and the laser Doppler vibrometer acquires the vibration 

information, which is then processed by the Polytec software. A rotary table was used 

to adjust the excitation angle. 

The measurements were performed according to the following steps. First, we 

defined 72 points at the rim of the resonator bottom, the center of which coincided with 

the resonator center; hence the angular interval between adjacent measurement points 

is 5 degrees. The excitation direction is aligned with the axis of symmetry, as shown in 

Fig. 4(a). Second, we measured the AFR of the resonator in a relatively large 

frequency range to find the resonant frequency, and then measured the AFR in an 8-Hz 

frequency range to determine the frequency more accurately. Next, we used sine 

signals to excite the resonator at the resonant frequency, and scanned the defined 

points to see the resonant mode. Then we slightly adjusted the angle of the resonator 

and repeated the last step until the node vibration was minimum, when the excitation 

direction was roughly aligned with the principle low frequency axis, i.e., . 

Then we set one antinode of the vibration pattern as the zero-degree datum direction, at 

which , as shown in Fig. 4(b). Then the resonator was kept still, and the AFRs 

of the 72 defined points with  were measured one by one, each 
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point being swept in an 8-Hz frequency range. The AFRs of different testing points 

were subsequently fitted by the Polytec software in a 0.4-Hz range and the Q factors 

were calculated, as shown in Fig. 4(c). The velocity at the resonant frequency was also 

recorded to shown the vibration pattern. Then the resonator were turned 5 , 10  and 15

 clockwise using the turntable, i.e., θk=5 , 10  and 15 , and the measurement 

procedures were repeated for three times.  

 

(a) 

 

(b) 

 

(c) 

Fig. 4. The measurement procedures. (a) Seventy-two measurement points were 

defined equi-angularly on the bottom plate of the resonator, and the excitation was 

aligned with principle frequency axis. (b) The mode shape was identified, and the 

antinode of the vibration sought out and defined as the zero-degree datum. (c) The 
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AFR of each measurement point was fitted in the Polytec software and the Q factor 

was calculated. 

3.2. Results 

The vibration patterns were shown in Fig. 5(a), which showed that the resonator 

vibrated at the typical wineglass mode. As the excitation direction deviated from the 

principle low frequency axis, the resonant amplitudes decreased and the vibration 

pattern drifted toward the direction of the principle axes. The measured frequencies 

were shown in Fig. 5(b). When excited at 0°, the measured frequencies showed a clear 

temperature drift (Previous experiments had shown the frequency of the resonator 

varied at 0.401Hz/℃ [32]). After the stabilization of laboratory temperature, the 

measured frequency of 5°, 10°, and 15° showed a similar decreasing trend from 

antinodes to nodes. When the detection points were near the principle high frequency 

axis, the low frequency cannot be measured. Then the low frequency mode reappeared 

with a slightly higher frequency and repeated the variation pattern. 

The corresponding circumferential variations of Q factors were shown in Fig. 

5(c)(d). The Q factors varied significantly and repetitively around the azimuth axis, 

and the variation pattern repeated every 90 degrees. The Q factors became more 

unstable as the increase of the angle between excitation and principle axes, and showed 
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an increase tendency from the vibration nodes to antinodes. The Q factors continued 

increasing until reaching local maximum, starting from which Q factors dropped 

dramatically.  

 

 

(a) (b) 

(c) (d) 

Fig. 5. Experimental results. (a) The vibration patterns showed the resonator 

vibrated at n=2 wineglass mode, and the vibration had a tendency to drift toward the 

principle axes. (b) The circumferential frequency variation. (c) The circumferential Q 

factor variation when excited at 0° and 5°. (d) The circumferential Q factor variation 

when excited at 10° and 15°. 
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4. Analysis 

We analyzed the Q variation around the azimuth axis based on the two-dimensional 

mass-spring model. In the configurative space of the mass-spring system, assuming 

that x direction and y direction are aligned with the excitation (primary mode) and the 

detection (secondary mode) direction, respectively, as shown in Fig. 6. 

  

Fig. 6. Schematic of the two-dimensional oscillator model. 

Assuming that Δf and ΔQ are very small, and the Q factor is large enough. The 

resonator is excited along the x axis, and the excitation force along the y axis is zero; 

therefore the dynamic equations for the resonator are [16]: 

 

,

 (4) 

Where ω=2πf is the frequency of the excitation force, and other parameters in 

equation (4) are given in the Appendix A. In this equation, the energy coupling from 

direction y to x is neglected because according to above assumptions the coupling 
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should be small compared with the excitation force. Note that θk and θc are defined in 

the physical space  of the cylindrical resonator; therefore, it corresponds to nθk 

and nθc in the configuration space (x, y), respectively, where n=2 is the number of 

nodal lines for wineglass mode. Note that the vibration of the primary mode at the x 

direction is coupled to the secondary mode at the y direction through c21, the 

coefficient including the effect of Q factor asymmetry (ΔQ and θc), and k21, the 

coefficient including the effect of frequency mismatch (Δf and θk). 

Assuming that the steady state response (normalized by ) of the primary 

oscillation mode is  

  (5) 

Where ω=2πf is the angular frequency, and the complex frequency response of the 

primary mode is 

  (6) 

Therefore, the amplitude frequency response (AFR) and the phase frequency response 

(PFR) are: 

  (7) 
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Similarly, assuming that the steady state response of the secondary oscillation mode 

is 

  (8) 

Substituting (8) into the second equation of (3), the complex frequency response of 

the secondary mode is: 

  (9) 

Then the AFR and the PFR of the secondary oscillation are: 

  (10) 

According to the principle of mode superposition, the point at a detection angle of 

 should have a complex response of 

  (11) 
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From equation (11) (11)the AFR CBi(ω) of different detection directions can be 

calculated, where i=1,2,…72, and the detection angle is denoted as in 

. The calculations of AFR and PFR are given in the Appendix B, 

where both CBi(ω) andΨi(ω) include c11, c21, c22 (related to Q1, Q2, ΔQ and θc) and k11, 

k21, k22 (related to f1, f2, Δf and θk). Therefore, the vibration of the point at  would 

be essentially the superposition of the primary and secondary mode，the AFR CBi(ω) 

of which was affected by the complex coupling of parameters of both eigen-modes. 

 We then numerically simulated the experimental process using Mathematica 

software. The parameters of the principle axes were measured to provide the input for 

the simulation. As the measurement was performed in air, and it only allowed us to 

determine the principle frequency axes, we assumed the principle damping axes 

coincide with the frequency axes [30]. The eigen-frequencies were measured as 

4013.062Hz and 4011.538Hz, respectively, and the Q factor were 9421 and 8459, 

respectively. Then, we discretized the calculated CBi(ω) to simulate the data collecting 

process in experiments, and then we used the single degree-of-freedom damped 

oscillator model to fit the data and calculate the Q factor, just as the fitting of 

experimental curve in the LDV software, as shown in Fig. 7. The fitting equation is  

                 (12) 
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The discretized CBi(ω) was used to the fitting process and the Q factors and 

frequencies for different numerical detection points were calculated. Here we also 

chose a data range of ±0.2 Hz near the resonant peak, fitting only the dominant mode, 

the similar process as in the experiment. As we excite near the f2 principle axis, the f2 

mode dominates at most detection angles.  

 

Fig. 7. The exemplification of data collecting and fitting processes. The calculated 

CB4 was discretized and then fitted with a single degree-of-freedom damped oscillator 

model. 

The Q factor for different detection directions was calculated and compared with 

experimental results, as shown in Fig. 8. The calculated variation patterns were in close 

agreement with experimental results, which repeat every 90°.  
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(a) (b) 

(c) (d) 

Fig. 8. The comparison between numerically simulated Q factors and measured Q 

factors, when resonator was excited at (a) 0°, (b) 5°, (c) 10°, and (d) 15°. 

In addition, the numerically calculated frequencies also showed a variation pattern 

that was consistent with experimental results. As an example, the calculated 

frequencies when resonator was excited at 10° and 15° relative to the low frequency 

axis were depicted in Fig. 9.  
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(a) (b) 

Fig. 9. The comparison between numerically simulated frequencies and measured 

frequencies, when resonator was excited at (a) 10° and (b) 15°. 

The consistency between experimental results and numerical calculation confirmed 

that the characteristics of the cylindrical resonator can be simplified by a 

two-dimensional mass-spring system, and that the vibration at different angles of the 

cylindrical shell can indeed be simplified and represented by mode superposition. The 

Q variation and frequency deviation measured was caused by the coupling of two 

natural modes at different directions, which is affected by the frequencies and Q 

factors of both eigen-modes. When fitted by a single degree-of-freedom system 

equation, the vibration characteristics varied in a repetitive manner, which changes 

with the angle between excitation and principle axes. The more misaligned the 

excitation direction with principle axes, the more unstable both Q factors and 

frequencies become. As a result, measurement errors occur in the case of resonator 

characterization and drift errors occur in the case of vibratory gyroscopes. 



 

23

Furthermore, the measurement results of 0°, 5°, 10° and 15° were compared 

statistically. Specifically, the measured data at 0° gave an average frequency of 

4011.847 Hz for the 72 defined points, with a relative variation range of 32 ppm. The 

Q factors of the defined points ranged from 9056 to 9500. The circumferential average 

Q (Average Q 1) was 9311, and the circumferential variation of Q (QV 1) was 0.96%. 

The average Q at ±10° close to antinodes was 9294 and the corresponding variation of 

Q (QV 2) was 0.99%. The rest of data was analyzed similarly and results were listed in 

Table 1.  

Table 1 

Analysis and comparison of the experimental results with different excitation angles. 

Excitation 

Degrees (°) 

Average 

Frequency 

(Hz) 

Frequency 

Variation 

(ppm) 

Average 

Q 1 

QV1  

Average 

Q 2 

QV2 

0 4011.847 38 9311 0.97% 9294 0.99% 

5 4012.358 15 9346 2.72% 9375 1.19% 

10 4012.264 24 9143 5.07% 9295 0.90% 

15 4012.234 9 8552 10.2% 9011 1.8% 
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As shown in Fig. 5 and Table 1, as the excitation deviates from the principle axes, 

the average Q factor decreases, and the variation of Q factor increases, especially near 

the vibration nodes. Because the vibration has a tendency to drift toward principle axes, 

as is shown in Fig. 5(a), failing to excite the resonator along the principle directions 

will result in instabilities in both Q factor and frequency, introducing measurement 

errors. This phenomenon could also explain the gyro drift when the excitation and 

detection elements are misaligned. Therefore, when characterizing resonators and 

assembling gyroscopes, it is preferred to align the excitation with principle axes, and to 

keep the detection orthogonal with excitation (e.g., 90 in the case of n=2 wineglass 

mode). 

However, it is worth mentioning that the Q factors near the vibration antinodes are 

relatively stable, therefore can be used as a parameter for preliminary resonator 

monitoring. As shown in Table 1, to measure antinode Q factor when excitation is 

within ±10° would cause measurement errors of no more than 3%, thus is a 

convenient and relatively accurate method for preliminary Q factor tests. 

5. Conclusion 

In this paper, we report that the Q factor varies periodically around the resonator’s 

azimuth axis. The non-contact method of measuring the Q factor of the cylindrical 
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resonators was demonstrated, using an acoustic source for excitation and a laser 

Doppler vibrometer for detection, and we measured the resonator Q factor by the 

amplitude frequency response (AFR) method using the multi-point scanning 

measurement function of the LDV. The experimental results were in close agreement 

with our theoretical calculation. We demonstrated that as the excitation deviated from 

the principle frequency axes, the Q factor variation pattern changes regularly and the 

frequencies also changes with respect to detection angle. We showed that the nature of 

this Q variation was that, for each detection point, the vibration is the superposition of 

two eigen-modes, the AFR of which would be affected by the frequencies and Q 

factors of both eigen-modes. Therefore, fitting with a one-dimensional oscillator would 

result in repetitive errors. While Q factors of the vibration antinodes is relatively stable 

to be used as a parameter for preliminary monitoring of resonators, it is of great 

importance to align the excitation with principle axes to reduce errors when higher 

accuracy is demanded.  
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Appendix A 

The parameters in Equation (3) are defined as follows: 

 

Where f1 and f2 are the two eigen-frequencies and Q1 and Q2 are the two eigen-Q 

factors. The angular position of f1 axis is denoted by θk, and the angular position of 

Q1 axis is denoted by θc. 

Appendix B 

The AFR and PFR of the detection point i is calculated as: 
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Figures 

Fig. 1. (a)The structure of the monolithic fused silica cylindrical resonator. (b) 

FEM simulation of the wineglass modes. 

Fig. 2. Schematic of: (a) the vibration mode of an ideal cylindrical resonator; (b) 

the definition of coordinates and parameters of a practical imperfect cylindrical 

resonator. 

Fig. 3. The experimental setup. The acoustic source excites the cylindrical 

resonator to the n=2 wineglass mode, and the laser Doppler vibrometer acquires the 

vibration information, which is then processed by the Polytec software. A rotary 

table was used to adjust the excitation angle. 

Fig. 4. The measurement procedures. (a) Seventy-two measurement points were 

defined equi-angularly on the bottom plate of the resonator, and the excitation was 

aligned with principle frequency axis. (b) The mode shape was identified, and the 

antinode of the vibration sought out and defined as the zero-degree datum. (c) The 

AFR of each measurement point was fitted in the Polytec software and the Q factor 

was calculated. 

Fig. 5. Experimental results. (a) The vibration patterns showed the resonator 

vibrated at n=2 wineglass mode, and the vibration had a tendency to drift toward the 

principle axes. (b) The circumferential frequency variation. (c) The circumferential 
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Q factor variation when excited at 0° and 5°. (d) The circumferential Q factor 

variation when excited at 10° and 15°. 

Fig. 6. Schematic of the two-dimensional oscillator model. 

Fig. 7. The exemplification of data collecting and fitting processes. The calculated 

CB4 was discretized and then fitted with a single degree-of-freedom damped 

oscillator model. 

Fig. 8. The comparison between numerically simulated Q factors and measured Q 

factors, when resonator was excited at (a) 0°, (b) 5°, (c) 10°, and (d) 15°. 

Fig. 9. The comparison between numerically simulated frequencies and measured 

frequencies, when resonator was excited at (a) 10° and (b) 15°. 

 


