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A second-order sliding-mode observer based on the modified super-twisting algorithm

providing finite time exact observation is applied for system identification. The value of the

equivalent output injection is used to identify perturbations directly. Continuous time versions

of least square and forgetting factor methods are proposed to identify unknown time-invariant

parameters respectively.

1. Introduction

1.1 Antecedents and motivations

Modern identification theory (Ljung 1979, Eykhoff and

Parks 1990, Ljung and Gunnarsson 1990) basically deals

with the problem of the efficient extraction of signal

and systems dynamic properties based on available

data measurements. Dynamic system identification is

traditionally concerned with two issues: estimation of

parameters based on direct and complete state

space measurements and, state estimation (filtering) of

completely known nonlinear dynamics.
Parameter identification for different classes of

nonlinear systems has been extensively studied during

the last three decades. Basically, the class of linear and

nonlinear systems whose dynamics depends linearly

on the unknown parameters was considered (see, for

example, Soderstrom and Stoica (1989), Ljung and

Gunnarsson (1990), Lei and Chen (1991)). A general

feature of these publications, is that exact state space

vector measurements are assumed to be available.
The problem of observation has been actively devel-

oped within Variable Structure Theory using the Sliding

Mode approach. Sliding mode observers (see, for

example, the corresponding chapters in the textbooks

by Edwards and Spurgeon (1998) and Utkin et al. (1999)

and the recent tutorials by Barbot and Floquet (2002),

Edwards et al. (2002) and Poznyak (2003) are widely
used due to their attractive features:

(a) Insensitivity (more than robustness) with respect to
unknown inputs.

(b) Possibilities to use the values of the equivalent

output injection for the unknown inputs identifica-
tion (Utkin et al. 1999, Orlov 2000).

(c) Finite time convergence to the reduced order

manifold.

In Hashimoto et al. (1990), Barbot et al. (1996), Utkin

et al. (1999) and Barbot and Floquet (2004) a step by

step form of sliding mode observers were proposed.
Such observers were based on the transformation of a

given system to a block triangular observable form and

the step by step estimation of each state by using of the
value of the equivalent output injection. Realization of

this scheme caused obligatory filtration due to the
necessary discretization. On the other hand, above

mentioned schemes allow formulation of extended

observability conditions for the systems with unknown
inputs ensuring the possibilities of observations of

mechanical systems with unknown inputs.
In Levant (1998, 2003), robust exact differentiators,

based on the super-twisting second-order sliding-mode

control algorithm, were designed ensuring a finite time*Corresponding author. Email: lfridman@servidor.unam.mx
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convergence to the values of the corresponding deriva-
tives without filtration. A new generation of observers
based on second-order sliding-mode algorithms has
been recently designed and applied to some practical
applications (Alvarez et al. 2000, Bartolini et al. 2003,
Shtessel et al. 2003, Pisano and Usai 2004, Davila
et al. 2005).

1.2 Main contributions

In Davila et al. (2005), a second-order sliding-mode
observer based on a modification of the super-twisting
algorithm is proposed for observation of mechanical
systems with unknown inputs and only position avail-
able. This observer ensures the finite time convergence to
the value of observed velocity without filtration. But the
properties of the equivalent output injection (EOI) of
this observer was not studied in Davila et al. (2005).
This paper is dedicated to use the EOI of the observer

proposed in Davila et al. (2005) for identification of
mechanical systems:

. It is shown that for the case when a model of the
system is known external perturbations could be
identified directly from the EOI.

. For the identification of time invariant parameters a
continuous time version of the Least Square Method
(LSM) using EOI is proposed.

. For the identification of a time varying parameters
vector a continuous-time Matrix Forgetting Factor
(MFF) algorithm (Poznyak and Medel 1999) is
modified using the EOI.

1.3 Structure of the paper

In x 2 the problem formulation is presented. A descrip-
tion of the robust exact observer (Davila et al. 2005) is
given in x 3. The properties of EOI are analysed in x 4.
Section 4.2 shows that the perturbations could be
identified directly from EOI. In x 5.2 a continuous time
version of the LSM for identification of time invariant
parameters is proposed. A continuous time modification
of the MFF algorithm (Poznyak and Medel 1999) for
identification of time variant parameters is suggested in
x 5.3. In x 6 examples illustrating the proposed identifica-
tion algorithms are given.

2. Problem statement

Consider the general model of a mechanical system

MðqÞ€qþ Cðq, _qÞ_qþ Pð_qÞ þ GðqÞ þ�ðt, q, _qÞ ¼ u, ð1Þ

where q 2 R
n is a vector of generalized coordinates,

M(q) is an inertia matrix, Cðq, _qÞ is a matrix of Coriolis

and centrifugal forces, Pð_qÞ is a Coulomb friction force,
which possibly contains relay terms depending on _q,
G(q) is a vector of gravitational forces, �ðt, q, _qÞ is an
uncertainty term and u is the torque produced by
actuators. The control input u is assumed to be given
by some known feedback function. Note that M(q) is
invertible for all q, since M(q)¼MT(q) is strictly positive
definite. Also other terms are supposed to be uncertain,
but the corresponding nominal functions Mn(q),
Cnðq, _qÞ, Pnð_qÞ, Gn(q) are assumed to be known.
Assume the vector q is available and the vector _q must
be observed.

Introducing the variables x1¼ q, x2 ¼ _q, and the
measured output y¼x1 the model (1) can be rewritten in
the state-space form

_x1 ¼ x2

_x2 ¼ Fðt, x1, x2, uÞ þ �ðt, x1, x2, uÞ, u ¼ Uðt, x1, x2Þ,

y ¼ x1,

9>=>;
ð2Þ

where the nominal part of the system dynamics is
represented by the function

Fðt, x1,x2, uÞ ¼ �M�1
n ðx1Þ½Cnðx1, x2Þx2

þ Pnðx2Þ þ Gnðx1Þ � u�

containing the known nominal functions Mn,Cn,Gn,Pn,
while the uncertainties and perturbations are concen-
trated in the term �(t,x1, x2, u). The solutions to system
(2) are understood in Filippov’s sense (Filippov 1988). It
is assumed that the function F(t, x1, x2,U(t, x1, x2)) and
the uncertainty �(t, x1, x2,U(t, x1, x2)) are Lebesgue-
measurable and uniformly bounded in any compact
region of the state-space (x1, x2)

T. This assumption
means that we consider the space of ‘‘real’’ mechanical
system variables where bounded. It will be assumed that
x1, x2, u are time functions. The tasks are to design an
observation algorithm to obtain the value of vector x2
and an identification algorithm to get the system
parameters, with only the knowledge of the state x1
and the input u(t).

3. State observation

In this paper, for the observation and identification of
mechanical systems we propose the use of the second-
order sliding-mode super-twisting based observer
(Davila et al. 2005) of the form

_̂x1 ¼ x̂2 ¼ �2�ð~x1Þsignð~x1Þ

_̂x2 ¼ Fðt, x1, x̂2, uÞ þ �1signð~x1Þ

~x1 ¼ y� x̂1

9>>=>>; ð3Þ
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where x̂1, x̂2 are the estimates of the state vectors x1, x2
respectively; the gain matrixes a1, a2 and �ðx̂1Þ are
defined as

a1 ¼ diagf�11 ,�12 , . . . ,�1ng,

a2 ¼ diagf�21 ,�22 , . . . ,�2ng,

�ð~x1Þ ¼ diagfj ~x11 j
1=2, j ~x12 j

1=2, . . . , j ~x1n j
1=2g,

signð~x1Þ ¼ ½signð ~x11 Þ, signð ~x12 Þ, . . . , signð ~x1n Þ�
T,

where ~x11 ¼ x1i � x̂1i , i¼ 1, . . . , n, are corresponding
coordinates of vector x1, and constants �1i,�2i are the
correction factors designed for convergence of estima-
tion error for each couple of coordinates ðx1i , x2iÞ:
An error equation takes the form

_~x1 ¼ ~x2 � a2�ð~x1Þsignð~x1Þ

_~x2 ¼ �Fðt, x1, x2, x̂2, uÞ þ �ðt, x1, x2, uÞ � a1signð~x1Þ,

)
ð4Þ

where �Fðt, x1, x2, x̂2, uÞ ¼ Fðt, x1, x2, uÞ � Fðt,x1, x̂2, uÞ,
k�ðt, x1, x2, uÞk � �þ: Let us denote �fiðt, x1, x2, x̂2, uÞ and
�iðt, x1, x2, uÞ to the ith row of the functions vector
�Fðt, x1, x2, x̂2, uÞ and the perturbation �ðt, x1,x2, uÞ
respectively. Due the boundedness assumption it is
possible to find an upperbound for each couple of
coordinates such that

j ~fiðt, x1, x2, x̂2, uÞ þ �iðt, x1, x2, uÞj < f þi ð5Þ

Theorem 3.1 (Davila et al. 2005): Suppose that condi-
tion (5) holds for system (2), and the parameters of the
observer (3) are selected according to

�1i > f þi ,

�2i >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�1i � f þi

s
ð�1i þ f þi Þð1þ piÞ

ð1� piÞ
,

9>>=>>; ð6Þ

where pi are some constants to be chosen 05 pi5 1,
i¼ 1, . . . , n, and �1 ¼ diagf�11 ,�12 ; . . . ; �1ng, �2 ¼ diag
f�21 ,�22 ; . . . ; �2ng: Then, the observer (3) ensures the
convergence of the estimated states ðx̂, _̂xÞ, to the real value
of the states ðx, _xÞ after a first time transient and there
exists a time constant t0 such that for all t� t0,
ðx̂1, x̂2Þ ¼ ðx1, x2Þ:

The proof of Theorem 3.1 is given in Davila et al.
(2005).

4. Equivalent output injection analysis

4.1 Equivalent output injection

The finite time convergence to the second order
sliding mode set ensures that there exists the time

constant t0>0 such that for all t� t0 the following
identity holds

0 � _~x2 � �Fðt, x1, x2, x̂2, uÞ þ �ðt, x1, x2, uÞ � a1signð~x1Þ,

notice �Fðt,x1,x2, x̂2,uÞ ¼Fðt,x1,x2,uÞ�Fðt,x1, x̂2,uÞ ¼ 0
because x̂2 ¼x2: Then the equivalent output injection
zeq is given by

zeqðtÞ � �1signð~x1Þ � �ðt, x1,x2, uÞ: ð7Þ

We said before the term �(t, x1, x2, u) is composed by
uncertainties and perturbations. This term could be
written as

�ðt, x1, x2, uÞ ¼ �ðtÞ þ�Fðt, x1, x2, uÞ, ð8Þ

where �(t) is an external perturbation term and
�F(t, x1, x2, u) concentrates the parameter uncertainties.

Theoretically, the equivalent output injection is
the result of an infinite switching frequency of the
discontinuous term a1signð~x1Þ: Nevertheless, the realiza-
tion of the observer produces high (finite) switching
frequency making necessary the application of a filter.
To eliminate the high frequency component we will use
the filter of the form

� _�zeqðtÞ ¼ � �zeqðtÞ þ zeqðtÞ

where � 2 R and h � � � 1, and where h is a sampling
step.

It is possible to rewrite zeq as result of filtering process
in the following form

zeqðtÞ ¼ �zeqðtÞ þ "ðtÞ ð9Þ

where "ðtÞ 2 R
n is the difference caused by the filtration

and �zeqðtÞ is the filtered version of zeq(t).
Nevertheless, as it is shown in Utkin (1992) and

Fridman (1999)

lim
�!0
h=�!0

�zeqð�, hÞ ¼ zeqðtÞ,

then, it is possible to assume that the equivalent output
injection is equal to the output of the filter.

4.2 Perturbation identification

Consider the case where the nominal model is totally
known, for all t> t0 the uncertain part�F(t, x1, x2, u)¼ 0.
The equivalent output injection takes the form

�zeqðtÞ ¼ a1 signð~x1Þ ¼ �ðtÞ: ð10Þ

The result of the filtering process will hold

lim
�!0
h=�!0

�zeqð�Þ ¼ �ðtÞ,
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Then, any bounded perturbation can be identified, even
in the case of discontinuous perturbations, using directly
the filter output (see x 9.1).

5. Parameter identification

In mechanical system observation and identification, we
deal with the data set of a continuous-time nature.
That’s why an implementation of any standard dis-
cretization scheme is related to unavoidable losses of an
existing information. This produces a systematical error
basically caused by the estimation of derivatives of the
considered process. As shown above, the proposed
second-order sliding mode technique provides an
estimation of derivatives converging in a finite time
that permits to avoid an additional error arising during
any standard discretization scheme implementation.
Below we present the continuous-time version of
LS- and FF-algorithms based on the proposed second-
order sliding mode observation scheme. Notice that the
proposed algorithm can be implemented in analogue
devices directly.

5.1 Regressor form

Let us consider the not perturbed case when �(t)¼ 0 and
�ðt, x1, x2, uÞ ¼ �Fðt, x1, x2, uÞ: The systems acceleration
(i.e. _x2Þ can be represented as a sum of a well-known
part and an uncertain part.

_x2 ¼ Fðt, x1, x2, uÞ þ�Fðt, x1, x2, uÞ,

where Fðt, x1, x2, uÞ 2 R
n is a completely known part of

the system and �Fðt, x1, x2, uÞ is an uncertain part.
Using the regressor notation (Soderstrom and Stoica
1989) we can write the uncertain part as

�Fðt, x1, x2, uÞ ¼ �ðtÞ’ðt, x1, x2, uÞ,

where �ðtÞ 2 R
n�l is a matrix composed by the value of

the uncertain parameters of the functions M,C,G,P and
’ðt, x1, x2, uÞ 2 R

l is a known nonlinear functions vector.
System (2) takes the form

_x1 ¼ x2,

_x2 ¼ Fðt,x1,x2,uÞ þ �ðtÞ’ðt,x1,x2,uÞ, u¼Uðt,x1,x2Þ,

y¼ x1,

9>=>;
ð11Þ

and the observer can be rewritten as

_̂x1 ¼ x̂2 þ �2�ð~x1Þsignð~x1Þ

_̂x2 ¼ Fðt,x1, x̂2, uÞ þ ��ðtÞ’ðt, x1, x̂2, uÞ þ a1signð~x1Þ,

)
ð12Þ

where �� 2 R
n�l is a matrix of nominal values of the

parameters matrix �(t). The error dynamics (4), for all
t� t0 become

_~x1 ¼ ~x2 � �2�ð~x1Þsignð~x1Þ

_~x2 ¼ ð�ðtÞ � ��ðtÞÞ’ðt, x1, x2, uÞ � a1signð~x1Þ:

9=; ð13Þ

Note that parameter uncertainties are concentrated in
the first part of the model ð�ðtÞ � ��ðtÞÞ’ðt, x1, x2, uÞ:

The task is to design an algorithm which provides
parameter identification for the original system (1),
when only the position x1 is measurable and the nominal
model ��ðtÞ’ðt, x1, x2, uÞ is known.

5.2 Time-invariant parameters identification

Consider the case when system parameters are time
invariant, i.e. �(t)¼ �. Now, the equivalent output
injection can be represented in the form

�zeqðtÞ ¼ a1signð~x1Þ ¼ ð� � ��Þ’ðt, x1,x2, uÞ: ð14Þ

Notice that a1signð~x1Þ is a known term and the finite
time convergence of observer guarantees the knowledge
of all the state vectors, i.e. ’ðt, x1, x̂2, uÞ ¼ ’ðt, x1, x2, uÞ
for all t� t0. Equation (14) represents a linear regression
model where the vector parameters to be estimated
are ð� � ��Þ: To obtain the real system parameters �
a linear regression algorithm could be proposed from
equation (14).

The recursive LSM algorithm (see for example
Soderstrom and Stoica (1989)) applied for parameter
identification of dynamical systems is designed using
discretization of regressor and derivative of the states in
order to obtain the regressor form. Then the algorithm is
applied in a discrete form. Notice that the linear
regressor form in Soderstrom and Stoica (1989) could
be directly obtained from (14).

Defining �� :¼ � � ��, post-multiplying (14) by
’Tðt, x1, x2, uÞ (for short notation function ’ðt, x1, x2, uÞ
will be called as ’(t)). Now, using the auxiliary variable
� for integration in time, the average values of equation
(14) take the form

1

t

Z t

0

�zeqð�Þ’
Tð�Þd� ¼ ��

1

t

Z t

0

’ð�Þ ’ð�ÞT d�: ð15Þ

Therefore, the system parameters can be estimated from
(15) by

c�� ¼

Z t

0

�zeqð�Þ’
Tð�Þd�

� � Z t

0

’ð�Þ’Tð�Þd�

� ��1

, ð16Þ
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where c�� is the estimation of ��. For any square matrix
the next equalities hold

��1ðtÞ�ðtÞ ¼ I

��1ðtÞ _�ðtÞ þ _��1ðtÞ�ðtÞ ¼ 0:

)
ð17Þ

Let us define �ðtÞ ¼ ½
R t

0 ’ð�Þ’
Tð�Þd���1: Using (17) we

can rewrite (16) in the form

c��

�

¼

Z t

0

�zeqð�Þ’
Tð�Þd�

� �
_�ðtÞ þ zeqðtÞ’

TðtÞ�ðtÞ:

Now, using equation (15) we can write

c��

�

¼ c���
�1ðtÞ _�ðtÞ þ �zeqðtÞ’

TðtÞ�ðtÞ:

Equalities (17) allow us to write a dynamic expression to
compute �� as

_c�� ¼ �c��’ðtÞ þ �zeqðtÞ
h i

’TðtÞ�ðtÞ: ð18Þ

In the same way, a dynamic form to find �(t) is
given by

_�ðtÞ ¼ ��ðtÞ’ðtÞ’TðtÞ�ðtÞ: ð19Þ

The average values of the real zeq(t), without filtering,
satisfy the equalityZ t

0

zeqð�Þ’ð�Þ
Td� ¼ ��

Z t

0

’ð�Þ’ð�ÞT d�

then

�� ¼

Z t

0

zeqð�Þ’ð�Þ
T d�

� �
�ðtÞ:

Substituting equation (9), the real values of vector
parameters �� holds

�� ¼

Z t

0

�zeqð�Þ’ð�Þ
T d� þ

Z t

0

"ð�Þ’ð�ÞTd�

� �
�ðtÞ: ð20Þ

Let us assume �zeqðtÞ ¼ c��’ðtÞ: In this case equation (20)
becomes

�� ¼ c��

Z t

0

’ð�Þ’ð�ÞTd� þ

Z t

0

"ð�Þ’ð�ÞTd�

� �
�ðtÞ,

which can be written as

�� ¼ c�� þ

Z t

0

"ð�Þ’Tð�Þd�

� �
�ðtÞ: ð21Þ

From equation (21) it is possible to define the
convergence conditions

supkt�ðtÞk < 1, ð22Þ

1

t

Z t

0

"ð�Þ’Tð�Þ d�

���� ���� ! 0 as t ! 1: ð23Þ

Condition (22), known as persistent excitation condition
(see for example, Soderstrom and Stoica (1989)),
requires the non-singularity of the matrix
��1ðtÞ ¼

R t

0 ’ð�Þ’
Tð�Þd�: To avoid this restriction let us

introduce the term �I where 0 < � � 1 and I is the
unitary matrix and redefine ��1ðtÞ as

��1ðtÞ ¼

Z t

0

’ð�Þ’ð�ÞTd�
� �

þ �I:

In this case the value of ��1ðtÞ is always non-singular.
Notice that the introduction of the term �I is

equivalent to set the initial conditions of (19), as

�ð0Þ ¼ ��1I, 05�-small enough:

The introduction of the term � ensures the condition
supkt�tk < 1 but does not guarantees the convergence
of the estimated parameters to the real values. The
convergence of the estimated values to the real ones is
ensured by the persistent excitation condition (see for
example Soderstrom and Stoica (1989))

lim inf
t!1

1

t

Z t

0

ð’ð�Þ’ð�ÞTd�Þ > 0

Condition (23) refers to the filtering process, and it gives
the convergence quality of the identification. As fast as
term ð1=tÞ

R t

0 "ð�Þ’ð�Þ
Td� converges to zero, the esti-

mated parameters will tend to the real parameters
values. The above can be summarized in Theorem 1.

Theorem 1: The algorithms (18) and (19) ensure the
convergences of c�� ! �� under conditions (22) and (23).

Remark 1: The effect of noise sensitivity of the
suggested procedure can be easily seen from (23):

1

t

Z t

0

"ð�Þ’Tð�Þd� ! 0, when t ! 1

There "(t) is given by (9) and includes all error effects by
observation noises (if there are), error in the realization
of the equivalent output injection and etc. One can see
that if "(t) and ’(t) are uncorrelated and ‘‘on average’’
equal to zero, i.e.,

1

t

Z t

0

"ð�Þd� ! 0,
1

t

Z t

0

’ð�Þd� ! 0

then the noise effect vanishes.
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5.3 Time-variant parameter identification

Consider the case when �ðtÞ 2 R
n is a time-variant

parameter vector. In this case a continuous version of
LSM has to be designed to obtain time-invariant
parameter identification. Here we will suggest a combi-
nation of LSM with matrix forgetting factor (Poznyak
and Medel 1999) to ensure parameters identification.
Assume there are no external perturbations acting on
the system, i.e. �(t, x1, x2, u)¼ 0. The equivalent output
injection is given by

�zeqðtÞ ¼ a1signð~x1Þ ¼ ð�ðtÞ � ��ðtÞÞ’ðt, x1, x2, uÞ: ð24Þ

Let us call the matrix R ¼ RT 2 R
n�n as the matrix

forgetting factor, satisfying the conditions j�min(R)j>0,
and R¼ %5 1. Define #ðtÞ ¼ �ðtÞ � ��ðtÞ as the parameter
vector to identify. Multiplying both sides of (24) by
’ðtÞTRt�� and averaging in time, one has

1

t

Z t

0

�zeqð�Þ’
Tð�ÞRt�� d� ¼

1

t

Z t

0

#ð�Þ’ð�Þ’Tð�ÞRt�� d�:

Assuming that #ðtÞ is a slowly variant parameter
ðk _#ðtÞk � 	Þ we may define its estimate in the following
form

#̂ðtÞ :¼

Z t

0

�zeqð�Þ’
Tð�ÞRt�� d�

� �
�ðtÞ, ð25Þ

where

�ðtÞ :¼

Z t

0

’ð�Þ’Tð�ÞRt�� d�

� ��1

:

Notice that limt!1 kRkt ! 0: Then, the forgetting
factor is chosen to assign a weight to the values of
’(�)’T(�), emphasizing the actual value and making less
important the past values, ensuring that the identifica-
tion algorithm and the identifying parameter changes at
the same ratio.
Let us define �(t) and �(t)�1 as

�ðtÞ :¼

Z t

0

�zeqð�Þ’
Tð�ÞRt�� d� ð26Þ

�ðtÞ�1 :¼

Z t

0

’ð�Þ’Tð�ÞRt�� d� þ �I: ð27Þ

Post-multiplying (24) by ’T(t) and introducing the
matrix forgetting factor

#̂ðtÞ

Z t

0

’ð�Þ’Tð�ÞRt��d� ¼

Z t

0

�zeqð�Þ’
Tð�ÞRt�� d�

using (26) and (27) it is possible to write

#̂ðtÞ��1ðtÞ ¼ �ðtÞ,

#̂ðtÞ ¼ �ðtÞ�ðtÞ, ð28Þ

_̂
#ðtÞ ¼ �ðtÞ _�ðtÞ þ _�ðtÞ�ðtÞ: ð29Þ

Equation (26) could be written in a dynamical form as

_�ðtÞ ¼ �zeqðtÞ’
TðtÞ þ

Z t

0

�zeqð�Þ’
Tð�Þ

d

dt
Rt��

� �
d�: ð30Þ

Notice that by definition

d

dt
Rt�� ¼ lim

�t!0

1

�t
½Rtþ�t�� � Rt���

d

dt
Rt�� ¼ Rt�� lim

�t!0

1

�t
½R�t � I�:

9>=>; ð31Þ

Let us introduce the matrix T as the modal matrix of R
(its columns are eigenvectors of R), such that

�R ¼ T�1RT ¼

�r1 0 . . . 0 0
0 �r2 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . �rn�1 0
0 0 . . . 0 �rn

266664
377775

then, equation (31) can be written as

lim
�t!0

1

�t
R�t ¼ lim

�t!0

1

�t
TT�1R�tTT�1

lim
�t!0

1

�t
R�t ¼ lim

�t!0

1

�t
T

�r�t
1 0 . . . 0 0

0 �r�t
2 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � �r�t
n�1 0

0 0 . . . 0 �r�t
n

26666666664

37777777775
T�1

¼ T Iþ lim
�t!0

1

�t

�r�t
1 � 1 � � � 0

..

. . .
. ..

.

0 � � � �r�t
n � 1

26664
37775

0BBB@
1CCCAT�1

¼ T Iþ

ln �r1 � � � 0

..

. . .
. ..

.

0 � � � ln �rn

2664
3775

0BB@
1CCAT�1:

ð32Þ

Using (32) it is possible to define lnR as

lnR ¼ lim
�t!0

1

�t
½R�t � I� ¼ T�1

ln �r1 � � � 0

..

. . .
. ..

.

0 � � � ln �rn

264
375T
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and in consequence, equation (31) takes the form

d

dt
Rt�� ¼ Rt�� lnR: ð33Þ

Substituting (33) into (30) we have

_�ðtÞ ¼ �zeqðtÞ’
TðtÞ þ

Z t

0

�zeqð�Þ’
Tð�ÞRt�� lnR d�,

_�ðtÞ ¼ �zeqðtÞ’
TðtÞ þ lnR

Z t

0

�zeqð�Þ’
Tð�ÞRt�� d�

_�ðtÞ ¼ �zeqðtÞ’
TðtÞ þ ðlnRÞ�ðtÞ:

9>>>>>>=>>>>>>;
ð34Þ

From (27) one has

_��1ðtÞ ¼ ’ðtÞ’TðtÞ þ

Z t

0

’ð�Þ’Tð�Þ
d

dt
Rt��

� �
d�

_��1ðtÞ ¼ ’ðtÞ’TðtÞ þ lnR

Z t

0

’ð�Þ’Tð�ÞRt�d d�

_��1ðtÞ ¼ ’ðtÞ’TðtÞ þ ðlnRÞ��1ðtÞ: ð35Þ

Using (35) and (17) we can write

_�ðtÞ��1ðtÞ þ �ðtÞð’ðtÞ’TðtÞ þ ��1ðtÞ lnRÞ ¼ 0

_�ðtÞ ¼ ��ðtÞð’ðtÞ’TðtÞ þ ��1ðtÞ lnRÞ�ðtÞ

_�ðtÞ ¼ �ð�ðtÞ’ðtÞ’TðtÞ þ lnRÞ�ðtÞ: ð36Þ

If we use (34) and (36), equation (29) could be written as

_̂
#ðtÞ ¼ ��ðtÞ �ðtÞ’ðtÞ’TðtÞ þ lnR

� �
�ðtÞ

þ �zeqðtÞ’
TðtÞ þ�ðtÞ lnR

� �
�ðtÞ

_̂
#ðtÞ ¼ ��ðtÞ�ðtÞ’ðtÞ’TðtÞ�ðtÞ þ �zeqðtÞ’

TðtÞ�ðtÞ:

From (28) it follows

_̂
#ðtÞ ¼ �#̂ðtÞ’ðtÞ’TðtÞ�ðtÞ þ �zeqðtÞ’

TðtÞ�ðtÞ

_̂
#ðtÞ ¼ �zeqðtÞ � #̂ðtÞ’ðtÞ

	 

’TðtÞ�ðtÞ: ð37Þ

Theorem 2: The algorithms (36) and (37) ensure the
following upper bound for the estimation error:

k�#ðtÞk2 � nm2
ð1��tÞ

2

ðln�Þ2
	

ffiffiffiffiffiffi
m2

p

j ln�j
þ "þ

� �2

k�ðtÞk2 ð38Þ

where �# ¼ #̂� #, under the assumption that the next
conditions holds

	 k _#ðtÞk � 	

	 kRk ¼ � < 1

	 k’ðtÞ’TðtÞk ¼ ’TðtÞ’ðtÞ ¼ k’ðtÞk2 � m2

	 In ð9Þ k"ðtÞk � 
þ

Proof: Let us combine (9) into (25) and it follows that

�#ðtÞ ¼

Z t

0

#ð�Þ’ð�Þ’Tð�ÞRt��d�

�
þ

Z t

0

"ð�Þ’Tð�ÞRt��d�

�
�ðtÞ � #ðtÞ

�#ðtÞ ¼

Z t

0

ð#ðtÞ � #ð�ÞÞ’ð�Þ’Tð�ÞRt��d�

�
þ

Z t

0

"ð�Þ’Tð�ÞRt��d�

�
:¼MðtÞ ¼M1ðtÞ þM2ðtÞ

where

M1ðtÞ :¼

Z t

0

ð#ðtÞ � #ð�ÞÞ’ð�Þ’Tð�ÞRt�� d�

� �
�ðtÞ ð39Þ

M2ðtÞ :¼

Z t

0

"ð�Þ’Tð�ÞRt�� d�

� �
�ðtÞ ð40Þ

Notice that

k�#ðtÞk2 ¼ trf�#ðtÞ�#TðtÞg ¼ trfMðtÞMTðtÞg

� nkMðtÞk2 � nðkM1ðtÞk þ kM2ðtÞkÞ
2

ð41Þ

We need to obtain upper bounds for kM1ðtÞk and
kM2ðtÞk. For the norm of M1ðtÞ we have

kM1ðtÞk ¼

Z t

�¼0

Z �

s¼t

_#ðsÞds

� �
’ð�Þ’Tð�ÞRt�� d�

� �
�ðtÞ

���� ����
¼

Z t

s¼0

_#ðsÞ

Z s

�¼0

’ð�Þ’Tð�ÞRt�� d�

� �
ds

� �
�ðtÞ

���� ����
� k�ðtÞk

Z t

s¼0

k _#ðsÞk

Z s

�¼0

k’ð�Þ’Tð�ÞkRt�� d�

� �
ds

� k�ðtÞk	m2

Z t

s¼0

Z s

�¼0

�t��d�ds

¼ 	m2

Z t

s¼0

�t�s

Z s

�¼0

�s�� d�ds

� k�ðtÞk	m2

Z t

s¼0

�t�s 1��s

j ln�j
ds¼

	m2

j ln�j

Z t

0

�t�sds� t�t

� �
kM1ðtÞk � k�ðtÞk

	m2

ðln�Þ2
ð1� �tÞ ð42Þ

The norm of M2ðtÞ can be written as

kM2ðtÞk � k�ðtÞk

Z t

0

k"ð�Þk k’ð�Þk kRt��kd�

Assume that "(t) and ’(t) hold the assumptions given in
Theorem 2 then the last equation becomes

kM2ðtÞk � k�ðtÞk"þ
ffiffiffiffiffiffi
m2

p
Z t

0

�t��d� ¼ k�ðtÞk"þ
ffiffiffiffiffiffi
m2

p 1� �t

j ln�j

ð43Þ

Substituting (42) and (43) into (41), implies the upper
bound for kM(t)k and, finally, leads to (38). œ

Remark 2: The real parameter values can be easily
computed from #̂ðtÞ as �ðtÞ ¼ #̂ðtÞ þ ��ðtÞ:
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6. Example

6.1 Perturbation identification

Consider the mathematical model of a pendulum
given by

€� ¼
1

J
u�

MgL

2J
sin � �

VS

J
_� þ vðtÞ

where M¼ 1.1 [Kg] is the pendulum mass,
g¼ 9.815 [m/s2] is the gravitational force, L¼ 0.9 [m] is
the pendulum length, J¼ML2

¼ 0.891 [Kgm2] is the arm
inertia, VS¼ 0.18 [Kgm2/s] is the pendulum viscous
friction coefficient, and v(t) is a bounded disturbance
term. Assume that the angle � is available to measure.
Introducing the variables x1¼ �, x2 ¼ _� and themeasured
output y¼ � the pendulum equation can be written in the
state space form as

_x1 ¼ x2

_x2 ¼
1

J
u�

MgL

2J
sinx1 �

VS

J
x2 þ vðtÞ

y ¼ x1:

Suppose that all the system parameters (M¼ 1.1
g¼ 9.815, L¼ 0.9, J¼ML2

¼ 0.891, VS¼ 0.18) are
well-known. The super-twisting observer for this
system has the form

_̂x1 ¼ x̂2 þ �2j ~x1j
1=2signð ~x1Þ

_̂x2 ¼
1

J
u�

MgL

2J
sin x1 �

VS

J
x̂2 þ �1signð ~x1Þ

~x1 ¼ y� x̂1

the equivalent output injection in this case is given by

zeq ¼ �1signð ~x1Þ ¼ vðtÞ

using a low-pass filter with �¼ 0.02 [s] for sinusoidal
external perturbation the identification is shown in
figure 1. Using a filter �¼ 0.002 [s] the perturbation

identification for a discontinuous signal is shown in
figure 2.

6.2 Time invariant parameter identification

Consider the model of a pendulum with Coulomb
friction given by the equation

€� ¼
1

J
u�

MgL

2J
sin � �

VS

J
_� �

PS

J
signð _�Þ,

where M¼ 1.1 [Kg] is the pendulum mass,
g¼ 9.815 [m/s]2 is the gravitational force, L¼ 0.9 [m] is
the arm length, J¼ML2

¼ 0.891 [Kgm2] is the arm
inertia, VS¼ 0.18 [Kgm2/s] is the viscous friction coeffi-
cient, PS¼ 0.45 [Kgm2/s2] is the Coulomb friction
coefficient. Suppose that the angle � is available to
measure. Introducing the variables x1¼ �, x2 ¼ _�, the
state space form representation for the system becomes

_x1 ¼ x2

_x2 ¼
1

J
u�

MgL

2J
sinx1 �

V

J
x2 �

P

J
signðx2Þ,

y ¼ x1

where a1¼MgL/2J¼ 5.4528, a2¼ (VS/J)¼ 0.2020,
a3¼PS/J¼ 0.5051 are the unknown parameters. Let us
design the super-twisting based observer as

_̂x1 ¼ x̂2 þ �2j ~x1j
1=2signð ~x1Þ

_̂x2 ¼
1

J
u� �a1 sin x1 � �a2x̂2 � �a3 signðx2Þ þ �1 signð ~x1Þ,

~x1 ¼ y� x̂1

where �a1 ¼ 2, �a2 ¼ �a3 ¼ 0:1 are the nominal values of
the unknown parameters. Let the control signal be
generated by a twisting controller

u ¼ �30 signð� � �dÞ � 15 signð _� � _�dÞ, ð44Þ

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t[s]

v(t)
zeq

Figure 1. Sinusoidal external perturbation identification.
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where the reference signal is �d ¼ 0:3 sinð3tþ �=4Þþ
0:3 sinð1=2tþ �Þ: For a sampling time of 	¼ 0.0001 the
state estimation error is shown in figure 3, in this case
the identification variables are given by

zeq ¼ �1 sign ~x1

�� ¼ �a1 þ �a1 �a2 þ �a2 �a3 þ �a3
� �

�� ¼ �3:4528 �0:1020 �0:4051
� �

’ ¼

sinx1

x2

signðx2Þ

2664
3775:

Let us apply algorithm (18). Figure 4 shows the

convergence of estimated parameter to real parameter

values.

6.3 Time variant parameter identification

Consider the model of a pendulum with time-variant

damp

€q ¼
1

J
u�

MgL

2J
sin q�

PS

J
signð _qÞ � 0:5þ 0:6 sin

t

7

	 

_q,

ð45Þ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t[s]

v(t)
zeq

Figure 2. Discontinuous perturbation identification.
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−1

−0.5

0

0.5

1
x 10−6

t[s]

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3 x 10−3

t[s]

x2 estimation error

x1 estimation error

Figure 3. x1, x2 estimation error LTI case.
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where M¼ 1.1 [Kg] is the pendulum mass,
g¼ 9.815 [m/s2] is the gravitational force, L¼ 0.9 [m]
is the arm length, J¼ML2

¼ 0.891 [Kgm2] is the
pendulum inertia, Ps¼ 0.45 [Kgm2/s2] is the Coulomb
friction coefficient. Notice a variable viscous damping
coefficient had been introduced as (0.5þ 0.6 sin (t/7)).
Let the system be driven by the twisting controller

u ¼ �30 signð� � �dÞ � 15 signð _� � _�dÞ, ð46Þ

where �d ¼ 0:3 sinð3tþ �=4Þ þ 0:3 sinð1=2tþ �Þ is the
reference signal. Introducing the variables x1¼ �,
x2 ¼ _�: System (45) can be rewritten as

_x1 ¼ x2

_x2 ¼
1

J
u�

MgL

2J
sin x1 �

PS

J
signðx2Þ � 0:5þ 0:6 sin

t

7

	 

x2

y ¼ x1:

Assuming the parameters 1/J, MgL/2J, PS/J are known.
The velocity observer takes the form

_̂x1 ¼ x̂2 þ �2j ~x1j
1=2signð ~x1Þ

_̂x2 ¼
1

J
u�

MgL

2J
sinx1 �

PS

J
signðx̂2Þ þ �1 signð ~x1Þ:

~x1 ¼ y� x̂1

Notice that in this case we choose �� ¼ 0: Choosing the
observer parameters as �1¼ 2.2211, �2¼ 19.1819, we
ensure the finite time convergence of estimated states,

see figure 5. The equivalent output injection takes
the form

zeq ¼ �1 sign ~x1 ¼ 0:5þ 0:6 sin
t

7

	 

x2:

We apply the continuous time MFF method (37), (36)
with

zeq ¼ �1 sign ~x1,

# ¼ � 0:5þ 0:6 sin
t

7

	 

,

’ ¼ x2

and the forgetting factor R¼ 0.1. The results of
time-variant parameter identification is shown in
figure 6.

7. Conclusions

For observation and identification of mechanical
systems based on position measurements only we use
the second-order sliding-mode observer ensuring the
finite time convergence to zero to the velocity’s
observation error. This paper proposed the usage of
the EOI of the above mentioned observer for identifica-
tion problems:

. It is shown that the perturbations could be identified
directly from the EOI.

. Continuous time version of LSM method is suggested
for time invariant parameter identification.

. LSM with MFF are adapted for continuous time
identification of the time invariant parameters.

0 5 10 15 20 25 30 35 40 45 50
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0

2

t[s]

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

t[s]

0 5 10 15 20 25 30 35 40 45 50
−0.6

−0.4

−0.2

0

0.2

t[s]

a1MgL/(2J)

estimated of a1MgL/(2J)

a2Vs/J

estimated of a2Vs/J

a3Ps/J

estimated of a3Ps/J

Figure 4. Parameters identification for LTI case.
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