
 Open access  Journal Article  DOI:10.1063/1.1594851

Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model.
— Source link 

J. M. González-Miranda

Institutions: University of Barcelona

Published on: 01 Aug 2003 - Chaos (American Institute of Physics)

Topics: Crisis, Attractor, Hindmarsh–Rose model and Control of chaos

Related papers:

 A model of neuronal bursting using three coupled first order differential equations.

 Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos

 Complex bifurcation structures in the hindmarsh–rose neuron model

 A quantitative description of membrane current and its application to conduction and excitation in nerve

 The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations.

Share this paper:    

View more about this paper here: https://typeset.io/papers/observation-of-a-continuous-interior-crisis-in-the-hindmarsh-
j1vpbo3pmc

https://typeset.io/
https://www.doi.org/10.1063/1.1594851
https://typeset.io/papers/observation-of-a-continuous-interior-crisis-in-the-hindmarsh-j1vpbo3pmc
https://typeset.io/authors/j-m-gonzalez-miranda-2lkpeerjrg
https://typeset.io/institutions/university-of-barcelona-1a08l35y
https://typeset.io/journals/chaos-26ua87uh
https://typeset.io/topics/crisis-1vnqnfgt
https://typeset.io/topics/attractor-1wiqn8po
https://typeset.io/topics/hindmarsh-rose-model-eksp5kfz
https://typeset.io/topics/control-of-chaos-3nnlha0m
https://typeset.io/papers/a-model-of-neuronal-bursting-using-three-coupled-first-order-56eke0sz43
https://typeset.io/papers/dynamical-phases-of-the-hindmarsh-rose-neuronal-model-l7vpx4ex4g
https://typeset.io/papers/complex-bifurcation-structures-in-the-hindmarsh-rose-neuron-yubtcr1izf
https://typeset.io/papers/a-quantitative-description-of-membrane-current-and-its-4g0u04i6is
https://typeset.io/papers/the-hindmarsh-rose-neuron-model-bifurcation-analysis-and-1a0o5ghut0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/observation-of-a-continuous-interior-crisis-in-the-hindmarsh-j1vpbo3pmc
https://twitter.com/intent/tweet?text=Observation%20of%20a%20continuous%20interior%20crisis%20in%20the%20Hindmarsh-Rose%20neuron%20model.&url=https://typeset.io/papers/observation-of-a-continuous-interior-crisis-in-the-hindmarsh-j1vpbo3pmc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/observation-of-a-continuous-interior-crisis-in-the-hindmarsh-j1vpbo3pmc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/observation-of-a-continuous-interior-crisis-in-the-hindmarsh-j1vpbo3pmc
https://typeset.io/papers/observation-of-a-continuous-interior-crisis-in-the-hindmarsh-j1vpbo3pmc


Observation of a continuous interior crisis in the Hindmarsh–Rose
neuron model
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Interior crises are understood as discontinuous changes of the size of a chaotic attractor that occur

when an unstable periodic orbit collides with the chaotic attractor. We present here numerical

evidence and theoretical reasoning which prove the existence of a chaos-chaos transition in which

the change of the attractor size is sudden but continuous. This occurs in the Hindmarsh–Rose model

of a neuron, at the transition point between the bursting and spiking dynamics, which are two

different dynamic behaviors that this system is able to present. Moreover, besides the change in

attractor size, other significant properties of the system undergoing the transitions do change in a

relevant qualitative way. The mechanism for such transition is understood in terms of a simple

one-dimensional map whose dynamics undergoes a crossover between two different universal

behaviors. © 2003 American Institute of Physics. @DOI: 10.1063/1.1594851#

Nonlinear systems are usually able to display different

dynamic behaviors depending on system parameters and

external inputs. When these are slightly modified the sys-

tem dynamics usually experiences little modifications, ex-

cept when these changes occur in the vicinity of a critical

point, in which case an abrupt qualitative change or tran-

sition in the dynamics occurs. An important example of

these transitions is the case when the system changes its

behavior from periodic to chaotic. This has been an ob-

ject of major attention since the beginning of the study of

chaos theory, and several types of transition, called routes

to chaos, have been discovered. Chaos-chaos transitions

in which the nature of the chaotic dynamics changes

abruptly between two qualitatively different chaotic at-

tractors have received less attention, but are equally im-

portant. In this article we present the observation of a

chaos-chaos transition of a new type. This occurs in a

system which belongs to a class which is of major impor-

tance in biological physics and in chemistry: a bursting-

spiking system. This kind of system is able to display two

main types of dynamics: firing of spikes at more or less

regular intervals, and bursting of trains of spikes inter-

woven with periods of quiescence. Neurons are one ex-

ample of such systems for which the pattern of spiking is

of great importance because it is believed that it codifies

the information transmitted by the neuron. The transi-

tion between these two types of dynamics in a well estab-

lished neuron model is studied here.

I. INTRODUCTION

Neurons can be seen as nonlinear dynamic systems

where the relevant dynamic variable is the membrane poten-

tial that propagates along the axon. Experiments performed

on neurons subject to electrical stimulus result in the obser-

vation of two significant dynamic behaviors of the action

potential. The simplest one consists in trains of sharp peaks

known as spikes, while the other, which is more complicated,

consists of bursts of spikes alternated by time lapses of qui-

escence. The nature of the dynamics in the two cases can be

either periodic or chaotic. It is commonly believed that the

information in the nervous system is encoded and transmit-

ted by means of sequences of spikes,1 although it is contro-

versial if the relevant observable is the mean frequency of

the spike firing, or other statistical properties of the inter-

spike intervals ~see Refs. 2–4 and references therein!. More-

over, spiking and bursting is also present in other types of

electrically excitable cells, such as muscle fibers,5 in bio-

chemically excitable cells, such as hepatocytes,6 and in

chemical systems.7 This makes the study of spiking and

bursting dynamics an object of major interest within the

theory of nonlinear dynamics and chaos because of the spe-

cial nature of the dynamics involved and because of its ap-

plications to neurobiology, other biophysical fields, chemis-

try and possibly other fields.

The electrical activity of a neuron is determined by the

electrical properties of the axon membrane whose character-

ization requires at least two variables to describe the activity

of the channels which exchange ions with the environment.

These can be of one of two types: fast or slow. Moreover,

there are also external inputs, which are given by electric

currents injected in the neuron from the environment, other

neurons, or the experimental setting. Hindmarsh and Rose8

have proposed a phenomenological model which takes this

into account; it is a third order system of nonlinear ordinary

differential equations which are able to display spiking or

bursting dynamics depending on the system parameters

which describe the state of the neuron and the external in-

puts. In appropriate ranges of parameters it has been found to

be a realistic description of the electro-physics observed in

experiments. For example, Rabinovich et al.9 have founda!Electronic mail: jgm@ffn.ub.es
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that it provides a good description of the dynamics observed

in experiments made with isolated neurons of the Pyloric

control pattern generator of the California spiny lobster.

Moreover, this model is being currently used in diverse the-

oretical and computational studies of the nonlinear dynamics

of individual neurons10,11 as well as of ensembles of

neurons.12,13

In this article we will study the transition between the

bursting and the spiking dynamics in the chaotic regime of

the Hindmarsh–Rose neuron model. We will show that the

transition between these two types of behavior can be a

chaos-chaos transition for which the attractor size changes

suddenly but continuously as a system parameter is varied.

The existence of this transition is of interest in neurobiology,

because this provide a mechanism that allows rapid switch-

ing between different relevant neuronal behaviors. Then, the

study of this transition may be useful to understand how the

nervous system is able to give fast responses to external

stimulus.14,15

From the point of view of chaos theory, this behavior

presents certain resemblance with the chaos-chaos transition

known as interior crisis that was discovered by Grebogi, Ott

and Yorke.16 These authors observed discontinuous changes

of attractor size caused by the collision of an unstable peri-

odic orbit with a small sized attractor at certain critical pa-

rameter value. In contrast, the transition presented here, al-

though very steep, is continuous; therefore, we propose to

call it a continuous interior crisis. The mechanism for the

continuous interior crisis is also different than the one gov-

erning the discontinuous crisis.16 By means of the study of

an appropriate one-dimensional map we will show that the

transition between the bursting and the spiking regimens can

be seen as a continuous change between two universal types

of nonlinear dynamics: the dynamics of the quadratic map,

which models the spiking behavior, and the dynamics for the

asymmetric tent map, which models the bursting behavior.

This article is then organized as follows. In Sec. II we

present numerical results for the Hindmarsh–Rose model8

which show that this system is able to undergo a continuous

interior crisis when the transition from bursting to spiking

dynamics occurs. In Sec. III we will define a new one dimen-

sional map whose behavior can smoothly change from burst-

ing to spiking dynamics with the sharpness of the transition

given by the properties of the map, providing in this way a

mechanism for the continuous interior crisis. In Sec. IV we

will discuss the above results both in terms of its interest to

biophysics and of its relevance in the theory of dynamic

systems and chaos, to finally end with a summary.

II. CONTINUOUS CRISIS IN THE HINDMARSH–ROSE
MODEL

The Hindmarsh–Rose equations8 define a recognized

model for the bursting-spiking dynamics of the membrane

voltage, x(t), observed in experiments made with single

neurons. The equations of the model written in dimension-

less form read

ẋ5y13x2
2x3

2z1I , ~1!

ẏ5125x2
2y , ~2!

ż52r@z24~x1
8
5!# . ~3!

In these equations y(t) and z(t) are auxiliary variables de-

scribing, respectively, fast and slow transport processes

across the membrane. The external current applied, I , and

the internal state of the neuron, r , are the control parameters

of the model used often. Rabinovich et al.9 have found that

for r'0.0021 this is a realistic description of the electro-

physics of certain neurons axons. The spiking and bursting

regimes displayed by this system are represented in Fig. 1.

The spiking behavior, as shown in Fig. 1~a!, is characterized

by a oscillation of x(t), which can be viewed as a series of

peaks or spikes. The bursting behavior @Fig. 1~b!# is charac-

terized by the alternation between two types of dynamics:

one of spiking nature and the other with no oscillations, in

which the systems appear to be at rest; when a nonoscillatory

time interval ends with the first spike of a series we have a

burst. The transition between these two types of dynamic

behaviors when a control parameter is changed will be stud-

ied here.

For this nonlinear oscillator, working in the chaotic re-

gime, we have observed that a small change of the value of I

~or r) in a proper critical region results in a large change of

the attractor size, as well as in qualitative changes of other

significant properties such as the statistics of the return times

of x(t). Although we will present here results mainly for r

50.0021, we will note that similar behaviors can be ob-

served for other sets of parameter, and for changing r while

I is maintained fixed. At the above parameter values, this

system is chaotic only within two disjoint intervals of values

of I , @3.135,3.150# and @3.222,3.319#. This last interval will

be studied here. An elementary bifurcation analysis shows

that the dynamics occurs around a single unstable fixed point

having a spectrum of eigenvalues of the type ~2,1,1!; i.e., a

saddle. Numerical results for the two largest Lyapunov ex-

ponents, and the bifurcation diagram given from the con-

secutive maxima reached by x(t), xM , are displayed in Figs.

2~a! and 2~b!, respectively. They show how a chaotic attrac-

tor undergoes a sudden but continuous change around the

value of IC'3.2958. This transition, as seen in the bifurca-

tion diagram, bears a fast decrease of the size of the one-

dimensional attractor which describes the dynamics in the

Poincaré section, and a qualitative change in the nature of the

FIG. 1. Two types of dynamic behavior for the dynamics of the Hindmarsh–

Rose model given by Eqs. ~1!–~3! with r50.0021: ~a! spiking dynamics at

I53.31, and ~b! bursting dynamics at I53.28.
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dynamics as indicated in the inset where the well known

portrait of dynamics of the quadratic map17,18 has emerged

above IC . The change in the dynamics around IC when I

increases does affect the size of the three dimensional attrac-

tor as well. This is demonstrated in Fig. 2~c! where the val-

ues of the range of variation of x(t), Dx5xMax2xMin , ap-

pear as a function of I @similar results have also been

obtained for y(t) and z(t)]. There is a decrease in the size of

the three-dimensional attractor along a curve which displays

a sharp inflection point at IC'3.295 85 which we identify as

the critical point. The changes depicted in Figs. 2~b! and 2~c!
occur within a narrow parameter interval, DI'0.01 ~i.e.,

DI/IC'0.003). This sudden continuous change is what we

call here a continuous interior crisis. To get a more proper

characterization of the transition a detailed study of Dx(I),

and its derivative, has been performed in the close neighbor-

hood of the transition point. To obtain reliable results, two

averages have been performed to compute Dx(I): for each

choice of I , first a very large time average (33107 time

steps! was made for a given initial condition; then, the results

obtained have been averaged over 240 different initial con-

ditions. This provides a quite smooth result for Dx(I) around

IC which indicates that the slope of this function at IC is

finite @Fig. 2~d!#. The numerical evaluation of the derivative

of this function, dDx /dI , is very sensitive to small statistical

errors because of the small interval between consecutive

points which amplifies these errors when the numerical de-

rivative is computed. However, we have been able to obtain,

with the above statistics, the results in Fig. 2~e! which indi-

cate a bounded value for dDx /dI at the critical point. So we

conclude that there is no singularity at the inflection point in

this case.

The change of structure of the bifurcation diagram in

Fig. 2~b! suggests that the crisis implies deep and significa-

tive variations in the properties of the dynamics before and

after the transition. For this particular model, which is a rep-

resentation of a real biophysical system, it is proper to study

the dependence on I of the dynamics of the peaks of the

membrane voltage, x(t). This is because it is assumed that

the information carried along an axon by the membrane volt-

age is codified in the time intervals between successive

maxima,1–4 i.e., in the interspike intervals, t. Because of this,

it is common to characterize the dynamics of x(t) by means

of the interspike interval distribution function, H(t). We

have studied an estimate of H(t) by computing interspike

interval histograms as those shown in Figs. 3~a! and 3~b!,
where two plots of H(t), each at a different side of the

critical point, show how below the crisis these intervals are

FIG. 2. Characterization of the dynamics of the Hindmarsh–Rose model

given by Eqs. ~1!–~3! with r50.0021 as function of the external bias I: ~a!
the two largest Lyapunov exponents, ~b! bifurcation diagram given by the

maxima of x(t) ~with a detailed view of the narrow part given in the inset!,
and ~c! estimate of the size of the attractor as given by the range of variation

of x(t), Dx(I) ~with its derivative shown in the inset!. The vertical dotted

lines signal the critical value IC53.295 85. ~d! The function Dx(I), and ~e!
its derivative, both displayed in a narrow interval around the transition point.

FIG. 3. Characterization of the bursting-spiking statistics of the

Hindmarsh–Rose model with r50.0021 as a function of the external bias I:

Examples of histograms in ~a! the bursting regime (I53.28), and ~b! the

spiking regime (I53.31). ~c! Dependence of the spread of the interspike

intervals, DH , on I , ~d! a scaled view of this dependency, and ~e! a close-up

to the transition region.
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widespread along an asymmetric distribution, while above,

the spread of the values of t is much smaller and the distri-

bution tends to be more symmetric. Above the transition we

have the spiking regime where the time intervals between the

maxima ~spikes! are narrowly grouped around certain aver-

age values. Below the transition we have the bursting regime

where spiking periods, with interspike intervals described by

the short time part of the distribution, are separated by non-

spiking intervals whose duration is given by the large time

part of the distribution. The study of this chaos-chaos transi-

tion, as I increases, in terms of H(t) is given in the main

body of Fig. 3~c!, which shows the spread of the distribution,

estimated as the difference between maximum and minimum

values of the interspike intervals observed, DH5tMax

2tMin . The curve obtained shows indeed a continuous tran-

sition at IC between a region in which DH remains nearly

constant to another where it changes steadily. It is to be noted

that there is a formal resemblance between the plot in Fig.

3~c! and the curve of the order parameter in continuous phase

transitions studied in condensed matter physics. This resem-

blance can be enhanced by means of the following trivial

scaling transformation: I*5IC2I , D*5uDH2(a1bR)u
with a and b given by a least squares fit to a straight line of

the results for DH(I) in the chaotic region with I,IC . The

transformation in I just means to swap the above-below re-

gimes, and the transformations in DH mean to define an ‘‘or-

der parameter’’ which is null in one of the two regimes and

positive in the other. As seen in Fig. 3~d!, the curves do look

like those of a continuous phase transition, corresponding the

ordered phase to the simply spiking attractor. However, we

do not have the singular behavior characteristic of second

order phase transitions, because the slope of DH
*(I*) stays

bounded as we approach the transition point @Fig. 3~e!#.
The phase diagram in the neighborhood of the transition

point at rC50.0021 and IC53.2958 has been studied by

means of the calculation of a segment of the line of critical

points. This has been obtained from the derivative of Dx

with respect to I at 20 different values of r to obtain the

values I(r) where the extrema of dD/dt are. This provides

the curve of critical points in the plane I2r separating burst-

ing from spiking dynamics which is displayed in Fig. 4~a!.
The sharpness of the transition along this critical line is mea-

sured by means of the absolute value of dD/dt , presented in

Fig. 4~b! which shows that it changes monotonically along

the line of critical points being larger for smaller values of r .

The largest Lyapunov exponent along this line remains al-

most constant @Fig. 4~c!# at a positive value (l1'0.014),

which is an indication that the system stays chaotic along

this curve.

III. THE MECHANISMS FOR THE CONTINUOUS
CRISIS

We will use one-dimensional discrete maps of the form

xn115 f (xn) which, being the simplest mathematical models

able to display chaos,17,18 are good tools to understand the

mechanism behind this transition. A well known model

which holds the essence of many real chaotic systems is the

quadratic map, which is given by

f ~x !52Cx12x2, ~4!

with C the control parameter. Its chaotic dynamics, as illus-

trated in Figs. 5~a!, 5~c!, 5~e!, and 5~g!, is characterized by

irregular oscillations @Fig. 5~a!# caused by the motion around

a fixed point close to the minima of f (x) @Fig. 5~c!#. The

dependence of the dynamic behavior on increasing C has a

characteristic bifurcation diagram @Fig. 5~e!# which results in

the suppression of chaos by an inverse period doubling cas-

cade. This behavior can also be followed by the Lyapunov

exponent @Fig. 5~g!# which decreases with increasing C

along characteristic structures caused by periodic windows in

the chaotic regime. We take this model as a paradigm of

regular chaotic oscillations, i.e., of spiking behavior.

Another representative map displaying a different char-

acteristic chaotic behavior is the tent map

f ~x !5H 12rx , if x<2/~11r !,

x21, if x.2/~11r !,
~5!

with r a parameter, which takes positive values. Its dynamic

behavior for large r ~i.e., for a highly asymmetric map! pro-

vides a prototype for bursting behavior, as show in Figs.

5~b!, 5~d!, 5~f!, and 5~h!, where a representative point start-

ing at large values of x falls down along the second branch

of the map towards the minimum of f (x), and there the first

FIG. 4. Study of the phase diagram of the Hindmarsh–Rose model around

the continuous crisis at r50.0021. ~a! Line of critical points between burst-

ing and spiking dynamics in the plane I2r . ~b! Absolute value of the de-

rivative of the width of the distribution, and ~c! the largest Lyapunov

exponent, both along the line of critical points. In all these plots the

squares indicate points obtained numerically and the lines are used to guide

the eye.
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branch sends it back to a large values of x in an event which

we identify as a burst. The bifurcation diagram @Fig. 5~f!#
displays a band with a width that increases with the asym-

metry of the map ~i.e., with the height of the bursts! and

displays little structure in the spatial distribution of phase

space points. The Lyapunov exponent dependence on r @Fig.

5~h!# is almost flat and unstructured for sufficiently asym-

metric maps. More details on the properties of each of these

maps, which are examples of different universal behaviors

for the dynamics of chaotic system, can be found in the

literature.17,18 The transition from a sustained bursting re-

gime to a simpler spiking regime can be modeled by a con-

tinuous transition between these two universal behaviors. For

this aim we will use maps having the shape of an hyperbola

so that the motion around the asymptotes is mainly of the

type of the tent map, while the motion around the vertex is of

the type of the quadratic map.

According to these ideas, we propose the following map

that holds the essential features of real bursting-spiking sys-

tems, which we call the 2H map because it is made of two

hyperbolas:

f ~x !5H 0.10/~x2x !112, if x< x̄ ,

s/x1x21, if x. x̄ .
~6!

Here s is a control parameter, while x̄ and x are fixed by the

following condition of continuity of the map:

0.10/~ x̄2x !112512 R , ~7!

s/ x̄1 x̄21512 R , ~8!

with RP(0,1) a parameter that is fixed at R50.590 216 4 for

most of the article. The branch for x. x̄ has the shape of a

hyperbola having its concavity up, the left asymptote is ver-

tical while the right asymptote has slope equal to one, so

providing a mechanisms for bursting. Around the minima the

function is rounded, allowing spiking dynamics. The param-

eter s controls the concavity of the hyperbola and then the

bursting intensity, allowing the transition between the two

behaviors. The branch for x< x̄ is a hyperbola having a left

asymptote which is horizontal and a right asymptote which is

vertical; this provides an additional control on the bursting

activity which is needed to have the height of the bursts

limited ~i.e., a sustained bursting regime! as it occurs in real

bursting-spiking systems.

The dynamic behavior for this map is presented in Fig.

6. There is a sustained bursting regime that occurs at small

values of s @Fig. 6~a!# which is similar to that of the tent map

depicted in Figs. 5~b! and 5~d!, and a spiking regime at larger

values of s @Fig. 6~b!# similar to that of the quadratic map in

Figs. 5~a! and 5~c!. The bifurcation diagram and the

Lyapunov exponent presented in Figs. 6~c! and 6~d! present a

sustained bursting behavior for s&0.26 and the characteris-

tic structure of a quadratic map for s*0.28. There is a criti-

cal region around a critical point at sC'0.267 in which the

FIG. 5. Main features of the dynamics of the quadratic map ~left! and the

tent map ~right!. ~a! and ~b! Time series using dots for the iterates and dotted

lines to guide the eye. ~c! and ~d! Plot of the map ~thick line!, iterated point

~circles!, tracks of the iterates ~thin line!, and the auxiliary xn115xn line

~dashed!. ~e! and ~f! Bifurcation diagrams. ~g! and ~h! Lyapunov exponent

~the L50 line appears as a dotted line!. The plots in ~a! and ~c! are for C

520.90 and x050.314, and the plots in ~b! and ~d! are for r511.0 and

x050.141 ~in all cases to first 104 points of the time series have been

discarded!.

FIG. 6. Continuous interior crisis in the 2H-map. ~a! Dynamics of the type

of the tent map for s50.12, and ~b! of the type of the quadratic map

for s50.34 and x050.141, after 104 iterations in the two cases @the different

elements in these plots are to be identified as in Figs. 5~a! and 5~b!#.
~c! Bifurcation diagram with an enlargement of the upper critical region

show in the inset. ~d! Lyapunov exponent ~the L50 line appears as a dashed

line!.
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size of the attractor decreases very fast, having an envelope

which shows an inflection point, while the Lyapunov expo-

nent reaches a broad maximum. This behavior is what we

have called a continuous interior crisis.

The mechanism of the transition is as follows. There are

three relevant quantities related to the function f (x) which

defines the 2H-map @Fig. 7~a!#: the abscissa of the minimum

of f (x), xm5As , and the images obtained applying f (x) to

xm once, D(s)5 f (xm)52As21, and twice, f @D(s)# .

D(s) is the minimum value of f (x); then f @D(s)# , the

maximum value that a phase point, xn , can reach under in-

finite iterations of the map. The functions xm(s) and D(s)

increase monotonously from s50, while f @D(s)# decreases

monotonously @Fig. 7~b!#. Therefore, for s small ~s&0.26!
the vertex of the map is very acute and the tent map behav-

ior, with little contamination of the curved vertex, is domi-

nant; moreover, the flat part at the left of the first branch of

the map allows the height of the peaks to be stabilized

against changes of s. For s large ~s*0.28! the vertex of the

map is broader and only the dynamics around the fixed point

xF , s/xF1xF215xF , is allowed giving rise to a quadratic

map like behavior. The transition between these two regimes

occurs at the value of s5sC at which the maximum value

that the coordinate of a phase point, xn , can reach, f @D(s)# ,

equals the value of the abscissa of the inflection point of the

map, f ( x̄), which is the point where the first branch of the

map stops having an effect on the dynamics, thus signaling

the end of the sustained bursting-spiking dynamics. The con-

dition for the critical point is then

D~sC!5 x̄ . ~9!

This indeed occurs at sC'0.267 as shown in Fig. 7~c!.
There is a narrow critical region around sC because the high-

est value that xn115 f (xn) can reach for each s is given by

f @D(s)# which, as shown in Fig. 7~d!, is a continuous func-

tion which has zero slope in almost all of its range of defi-

nition except in a small region around sC where the large

slope of f (x) around x̄ causes large changes in f @D(s)#

from tiny changes in s; therefore, there is a sharp transition

from bursting to spiking dynamics.

The study of the 2H map presented here has been made

for a continuity condition @Eqs. ~7! and ~8!# with R

50.590 216 4. The effect of changing R on the parameters x̄

and x is small for intermediate values of R (0.2,R,0.8),

and so is the effect on sC @Fig. 7~e!#. The change of R has

more notorious consequences when the width of the attractor

of the 2H map, W(s), is considered. According to the dis-

cussion in the previous paragraph, this is given by W(s)

5 f @D(s)#2D(s), as illustrated by the thin and thick lines

in Fig. 7~b!, which trace the envelopes of the attractor plotted

in Fig. 6~c!. W(s) is continuous and bounded at sC because

of the continuity and boundedness of f . However, its deriva-

tive at the critical point @dW/ds#s5sC
may be discontinuous

because when computed from s,sC is given by the lower

branch of the 2H map, while when computed from s.sC is

given by the upper branch. As illustrated in Fig. 7~f! this is

indeed the case for all R , with the exception of R

'0.590 216 4, which was the value chosen here with the

purpose of studying a map in qualitative agreement with the

results for the Hindmarsh–Rose model presented in Figs.

2~c!–2~e!.
It is to be noted that the overall critical behavior is not

altered in an essential form when small modifications are

made to the shape of the 2H map by modifying Eq. ~6!. This

is illustrated in Fig. 8 for four such modifications. Although

there are certain changes on the values of s at which there

are periodic windows, on the structure of the spatial distri-

bution of the map points, and on the steepness of the transi-

tion, in all cases, we observe the same general features de-

scribed in the above paragraphs.

Finally, one has to note that the analogy between interior

crisis and phase transitions suggested here is only formal, as

one should expect from the different nature of the systems

implied: deterministic for the crisis, and statistical for phase

transitions. According to the above results this appears lim-

ited to the existence of discontinuous and continuous

FIG. 7. Mechanism for the continuous interior crisis in the 2H map. ~a! The

function f (x) with the relevant quantities written as labels in the axes, and

the relevant points indicated by circles. The dashed line is y5x ~the par-

ticular curve plotted is for s5sC). ~b! Dependence of xm ~dashed line!,

D5 f (xm) ~thin line!, and f (D) ~thick line! on s. ~c! Difference between the

abscissa of the inflexion point of the 2H map, x̄ , and the abscissa of the

maximum reachable phase point, D , as a function of s ~the condition x̄

2D50 has been plotted as a dashed line to guide the eye!. ~d! Plot of the

derivative of f @D(s)# as a function of s ~thick line!. ~e! Dependence on R

of the transition point, sC ~thick line!, and the map parameters x̄ ~thin line!
and x ~dashed line!. ~f! The derivative of the width of the attractor at the

critical point computed from below ~thick line! and from above ~thin line! as

a function of R .
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changes in the attractor size, in formal correspondence with

first order and higher order phase transitions. This correspon-

dence breaks down in our case when the derivatives of the

width of the attractor are considered, because the infinite

divergence proper of second order phase transitions is not

observed here in the Hindmarsh–Rose model. An infinite

divergence, maintaining the continuous crisis, could be en-

forced in the map by changing its first branch for a function

having an infinite slope at x̄ . This could be achieved, for

example, using the upper arc of an hyperbola with its sym-

metry axis parallel to the x-axis and its vertex in the inflec-

tion point ( x̄ , ȳ). Other curves, such as the first quadrant of

an ellipse with its lower point at ( x̄ , ȳ), would have also

worked. This has not been done here because this divergence

at sC is not observed in the Hindmarsh–Rose model. This

discussion, however, suggests that the dynamic behaviors

available to the 2H map could deserve additional indepen-

dent study from the point of view of theoretical physics and

mathematics, beyond the interdisciplinary biophysical ap-

proach given to the present article.

IV. DISCUSSION AND CONCLUSIONS

The observation of a continuous interior crisis in the

Hindmarsh–Rose neuron model presented here is relevant

both for the theory of nonlinear dynamics and chaos, and for

biophysics, particularly for neurobiology.

The study of transitions between different dynamic be-

haviors in nonlinear systems is an issue of major interest for

the theory of nonlinear dynamics and chaos. An important

result in this field has been the discovery of different routes

to chaos.17,18 These are transition phenomena that make cha-

otic a nonchaotic system when a control parameter is

changed, which include period doubling cascades, intermit-

tency, and Hopf bifurcations among others. Less attention,

however, has been received by the chaos-chaos transitions in

which relevant observables of a chaotic attractor change in a

sudden way with the control parameter. In this case, two

copies of the same system having very close parameter val-

ues may bear very different properties, still being both cha-

otic. The discontinuous interior crisis16 is a well known phe-

nomenon of this kind. In this article, by means of a particular

observation, we have proven the existence of a new type of

chaos-chaos transition, which bears certain resemblance with

the discontinuous interior crisis, and which may, and should

not, be confused with it. Moreover, we have presented a

simple mechanism which, being based on universal models

of chaotic dynamics, possibly gets the essence of this transi-

tion not only in the Hindmarsh–Rose model but also in other

bursting-spiking systems.

On the other hand, the existence of continuous interior

crisis in the Hindmarsh–Rose neuron model has also poten-

tial applications in biophysics because it provides a switch-

ing mechanism by which a very small change on a system

parameter, or on a external input, can toggle the dynamics

between two significantly different dynamic behaviors. An

example illustrating this occurs in neurobiology, where a ma-

jor problem is to understand how the nervous system is able

to give quick responses given the presence of time delays

and noise ~see Refs. 14 and 15 and references therein!. The

present study provides a mechanism which allows rapid

switches between different neuronal dynamic behaviors: pro-

vided that the system was initially tuned close to the continu-

ous interior crisis, small changes in neuronal input would

produce very rapid changes in the pattern of neural spiking.

Thus the occurrence of continuous interior crisis in neural

models might be relevant because it provides a new mecha-

nism to deal with this problem. This is an alternative to mul-

tistable dynamic systems, which is the only other possibility

that has been proposed until now.19,20

In conclusion, by means of the study of the bursting

dynamics of the Hindmarsh–Rose neuron model, a sharp

chaos-chaos transition has been identified in which the shape

of the attractor changes in an abrupt but continuous way

together with other relevant properties of the system. The

transition has a well defined critical point and a narrow criti-

cal region around it. This transition is different from the well

known interior crisis, which is a discontinuous change of

size. Because of the formal analogy with phase transitions in

condensed matter physics we have proposed to call this new

transition a continuous interior crisis. Its mechanism, as

shown by means of the introduction of a new one-

dimensional discrete map, the 2H map, happens to be a

crossover between two different universal forms of chaotic

behavior which has to be sharp for a well defined bursting

regime to exist. These results have natural applications in

biophysics where bursting-spiking chaotic systems are com-

mon, and might be relevant in other fields, such as chemistry,

where chaos-chaos transitions occur.
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