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Observation of a hierarchy of up to fifth-order rogue waves in a water tank
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We present experimental observations of the hierarchy of rational breather solutions of the nonlinear

Schrödinger equation (NLS) generated in a water wave tank. First, five breathers of the infinite hierarchy

have been successfully generated, thus confirming the theoretical predictions of their existence. Breathers of

orders higher than five appeared to be unstable relative to the wave-breaking effect of water waves. Due to the

strong influence of the wave breaking and relatively small carrier steepness values of the experiment these results

for the higher-order solutions do not directly explain the formation of giant oceanic rogue waves. However, our

results are important in understanding the dynamics of rogue water waves and may initiate similar experiments in

other nonlinear dispersive media such as fiber optics and plasma physics, where the wave propagation is governed

by the NLS.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLS) describes a

variety of nonlinear wave processes in physics, including

gravity waves on the surface of the deep ocean [1,2]. It

has been well established that the NLS has a hierarchy of

rational solutions that describe doubly localized structures

with infinitely increasing amplitude as its order increases

[3–7]. The lowest-order structure of this hierarchy is known as

the Peregrine breather [8]. Due to its localization both in time

and in space it is considered to be a prototype of a rogue wave in

the ocean [9] that has the remarkable property to “appear from

nowhere and disappear without a trace” [10]. All higher-order

structures of this family have the same property and in addition

have progressively increasing amplitudes [11]. As such, they

would describe rogue waves of significantly higher ratio of

peak to the background amplitude.

Theoretically, expressions for these solutions can be written

in general form for any order [4–7,12]. However, explicit

formulas become cumbersome with increasing order, and

the highest order to which a solution is presently known is

eight [13]. Difficulties in writing the solution are reoccurring

when they are observed experimentally. The Peregrine breather

has been observed recently in optics [14], in a water wave

tank [15], and in plasma [16]. The second-order structure,

or “superrogue wave,” has also been observed in the case of

deep-water waves [17]. Thus, fundamentally, the existence

of two lowest-order structures in experiment has been proven.

However, the higher-order structures of this hierarchy still have

to be shown to exist. This is not an easy task as these waves,

in addition to high amplitude, have higher steepness. In order

to keep the parameters of the structure within the allowed

limitations, one has to choose carefully the initial conditions

for their excitation.
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In this work, we are able to demonstrate the existence of

higher-order rational solutions on a water surface up to fifth

order. This seems to be the maximum order which we can

achieve, at least with our existing experimental equipment.

This is a remarkable achievement taking into account the

approximate nature of modeling deep-water waves with the

NLS. Of course, we are far from claiming that these solutions

can describe real oceanic rogue waves [1,18–22]. However,

our results show clearly that nonlinearity may play a central

role in the dynamics of water waves. As such, these results can

be considered as significant progress in our understanding of

water wave dynamics.

II. THEORETICAL BACKGROUND

The NLS is one of the fundamental equations in theoretical

physics. Generally, it describes one-dimensional evolution

in time and space of weakly nonlinear wave packets in

optics, hydrodynamics, and plasmas and, more generally, in

nonlinear dispersive media [23,24]. In particular, it describes

the propagation of deep-water waves [25–27]. For this purpose,

the NLS can be written as
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where x and t are the spatial and time coordinates, respectively,

and ω0 and k0 denote the wave frequency and the wave number

of the carrier wave. The dispersion relation of linear deep-water

wave trains is given by ω0 =
√

gk0, where g is the gravitational

acceleration. The wave group velocity is cg := dω
dk

|k=k0
= ω0

2k0
.

The surface elevation of water waves η(x,t) can be calculated

from the NLS variable A(x,t). To second order in steepness it

is given by

η(x,t) = Re{A (x,t) exp [i (k0x − ω0t)]}
+ Re

{

1
2
k0A

2 (x,t) exp [2i (k0x − ω0t)]
}

. (2)
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When dealing with exact solutions, it is convenient to use

the dimensionless form of the NLS,

iψT + ψXX + 2|ψ |2ψ = 0, (3)

which is obtained from Eq. (1) using the rescaled variables:

T = −
ω0

8
t, X = (x − cgt)k0 = xk0 −

ω0

2
t, ψ =

√
2k0A.

(4)

Here, X is the coordinate in a frame moving with the group

velocity, and T is the rescaled time.

Generally, the NLS has a hierarchy of breather solutions

localized in space and time [3,8,10]. They pulsate only once,

thus representing a class of solutions that can be considered a

model for oceanic rogue waves. The j -order rational solution

of the NLS in general form, also known as the j th Akhmediev-

Peregrine solution, can be written in the form

ψj (X,T ) = ψ0

[

(−1)j +
Gj + iHj

Dj

]

exp(2i|ψ0|2T ), (5)

where the background amplitude is ψ0 and the polynomials

Gj (X,T ), Hj (X,T ), and Dj (X,T ) can be found in Ref. [11]

for a few lowest-order solutions. In particular, for the Peregrine

breather, G1 = 4, H1 = 16|ψ0|2T , and D1 = 1 + 4|ψ0|2X2 +
16|ψ0|4T 2. The corresponding expressions for higher-order

solutions are progressively more complicated. To give an

example, the expressions for the eighth-order solution written

similarly would require 60 printed pages [13]. We assume that

the polynomials Gj , Hj , and Dj for j = 3,4,5 are known

from Refs. [3,5,6] and will not copy them here. The amplitude

profiles for rational solutions up to fourth order are illustrated

in Fig. 1. The central amplitude is equal to (2j + 1)ψ0. It

increases progressively with j .

Experimental explorations of this class of breather solutions

started recently with the Peregrine breather, observed first in

fiber optics [14], in a water tank [15], and in plasma [16]. The

second-order solution was observed only in the case of water

waves [17]. In the present work, we took further steps in order

FIG. 1. (Color online) Higher-order Akhmediev-Peregrine ratio-

nal solutions of the NLS with the background amplitude ψ0 = 1. At

X = 0 and T = 0 the maximal amplitude amplification of the j th

solution is 2j + 1.

to observe third-, fourth-, and fifth-order solutions in a water

wave tank.

III. OBSERVATIONS OF THE HIGHER-ORDER

ROGUE WAVES

The present experiments were conducted in a 15 m ×
1.6 m × 1.5 m water wave tank. An illustration and technical

details of the tank can be found in Ref. [15]. The single-flap

wave maker is computer controlled to generate the desired

wave shapes and heights. To avoid wave reflections, an ab-

sorbing beach is installed at the opposite end. All experiments

are conducted in deep-water conditions, with the ratio of the

water depth h of 1 m to the wavelength being much larger

than unity. The water surface elevation at any given point is

measured by a capacitance wave gauge with a sensitivity of

1.06 V/cm and a sampling frequency of 0.5 kHz, placed at a

distance 9 m from the flap.

In order to generate rational breathers representing giant

rogue waves in the tank, one has to fix the initial amplitude a0

and the steepness ε = a0k0 of the carrier wave. Once the ampli-

tude and the steepness are determined, it is straightforward to

find the wave number k0 and to derive the wave frequency from

the linear dispersion relation, i.e., ω0 =
√

gk0 =
√

gε

a0
. Then,

using the relation ψ0 = a0

√
2k0 and inverting the scaling in

Eq. (4), the analytical solution can be converted to dimensional

form.

To determine the boundary conditions for the wave maker,

the dimensionalized analytical solution of the NLS (5) is

translated along the tank in order to observe the position of

maximal amplitude of the rational solutions (x = 0) closer

to the beach. Then the expression for the surface elevation,

Eq. (2), is used to calculate the initial condition at the position

of the paddle, which is x = −9 m. Such an arrangement

produces the maximal amplitude of the breather at a distance

of 9 m from the flap.

In order to calibrate our wave-generating equipment, first,

we measured the response function of the flap. Namely, we

generated a pure sinusoidal wave with a given amplitude at

the output of the computer signal controlling the flap and

measured the water wave amplitude in the tank. The plot of

water wave amplitude versus the amplitude of the computer

signal is shown in Fig. 2. It can be seen that within the range

of amplitudes we are dealing with, this plot is linear. The

corresponding coefficient of this linear response function has

been used in the computer program in further experiments.

The first observation of a Peregrine soliton evolution in

water waves was reported in Ref. [15]. It was done at a

fixed frequency ω0 = 10.68 s−1, an amplitude of a0 = 0.01

m, and a water depth value of h = 1 m in the tank. In

order to confirm that the Peregrine breather does exist for

a wider range of parameters of the experimental setup, we

repeated these observations. Figure 3 shows another example

of a measured Peregrine breather. Here, the steepness of the

carrier is ε = 0.09, and the background wave has an elevation

amplitude of 0.5 cm. Therefore, the frequency is ω0 =
13.29 s−1. Then, the maximal amplitude amplification is 3,

providing an amplitude of the rogue wave of 1.5 cm.

The first experimental demonstration of the second-order

Akhmediev-Peregrine soliton was reported earlier in Ref. [17].
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FIG. 2. (Color online) Response function of the flap for a fixed

steepness value ε = 0.1 and a fixed depth h = 1 m.

Figure 4 shows another observation for the parameter values

of a0 = 3 mm and k0 = 13.33 m−1; hence, ω0 = 11.43 s−1.

As predicted in theory, the carrier wave reaches its maximal

amplitude amplification of 5 at the center of the breather.

Generally, in order to generate higher-order breather solutions

in a water wave tank, the carrier parameters have to be

carefully chosen to avoid significant distortions related to wave

breaking. As the local steepness of the wave in this case is

higher than for the Peregrine breather, we have to reduce

carrier steepness to 0.04 and its amplitude to 3 mm. Thus,

the maximum amplitude of the second-order breather reaches

15 mm.
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FIG. 3. (Color online) Experimental observation of the Peregrine

soliton at x = 0 for carrier parameters a0 = 5 mm and ε = 0.09 (blue

top curve). For comparison, the theoretical prediction at the same

position is shown by the red bottom curve.

0 5 10 15 20 25 30 35 40

0

0

1.5

1.5

Time (s)

S
u
rf

a
ce

el
ev

a
ti
o
n

(c
m

)

6 mm

6 mm

FIG. 4. (Color online) Experimental demonstration of the second-

order rational breather at x = 0 for carrier wave parameters a0 = 3

mm and ε = 0.04 (blue top curve). For comparison, the theoretical

curve at the same spatial position is shown by the red bottom curve.

Figure 5 presents experimental demonstrations of the third-

order breather solution. These are observed for several steep-

ness values of the background wave, namely, 0.04 [Fig. 5(a)],

0.03 [Fig. 5(b)], and 0.02 [Fig. 5(c)], and carrier amplitudes of

0.05 cm [Fig. 5(a)], 0.1 cm [Fig. 5(b)], and 0.2 cm [Fig. 5(c)],

respectively. For these amplitudes, experimental curves are

reasonably well described by the theory with an amplification

factor of 7 being reached at the peak of the breather for all three

cases. Relatively small background amplitudes are crucial

for these observations. The curves are becoming asymmetric

when the background steepness increases, as can be seen from

Fig. 5(c). The presence of such an asymmetry when increasing

the carrier steepness was also observed for the Peregrine

solution in Ref. [28] and for the second-order solution in
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FIG. 5. (Color online) Three experimental observations (blue top

curves) of the third-order rational breather at x = 0 for carrier wave

parameters (a) a0 = 2 mm and ε = 0.04, (b) a0 = 1 mm and ε = 0.03,

and (c) a0 = 0.5 mm and ε = 0.02. For comparison, the theoretical

predictions at the same positions are shown by the red bottom curves.
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FIG. 6. (Color online) Evolution of the third-order rogue wave

along the water wave tank for carrier parameters a0 = 2 mm and

ε = 0.04. The curves are measured at distances separated by 1 m

from each other.

Ref. [17]. A further increase of the background steepness

results in a breaking of the wave near the center of the breather.

Figure 6 shows the spatial evolution of the third-order

rational solution along the tank. The lowest curve is measured

at a distance of 1 m from the starting end of the tank; i.e.,

it is close to the paddle. The upper curve is measured at a

distance of 9 m from the paddle, i.e., at the location of the

maximum amplitude of the breather. The intermediate curves,

taken at distances separated by 1 m from each other, show

the growth of the central amplitude of the third-order breather

and the concentration of wave energy towards the central area

of the breather at the developed stage of evolution. They also

show that the whole localized formation moves with the group

velocity. The limited length of the tank does not allow us to

observe the complete evolution of the breather starting from

slightly perturbed sinusoidal wave. The distance required for

half of the evolution length until the maximum is reached can

be estimated as around 100 m. Thus, we had to start with

the initial condition at x = −9 m when the perturbation grew

noticeably. This would be the limitation for most of the water

tanks used in laboratories.

Figure 7 presents experimental observations of the fourth-

order breather solution. These experiments are done for

background amplitudes of 1 and 3 mm for steepness values

of 0.02 and 0.03, respectively. The expected wave amplitude

amplification factor of 9 is reached in these experiments re-

markably well. Unavoidable asymmetry of the curves appears

when increasing the steepness of the carrier.

The highest-order breather that we were able to observe so

far is the fifth-order solution. These results are shown in Fig. 8.

The theoretical amplification factor of the carrier amplitude

here is 11, which is a remarkable fact by itself, despite the

background wave amplitude being only 1 mm. Any attempts

to generate sixth- and higher-order breathers failed as the wave

breaking ruined the central part of the breather, thus reducing
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FIG. 7. (Color online) Two observations of the fourth-order

rational breather at x = 0 for carrier parameters (a) a0 = 1 mm and

ε = 0.02 in and (b) a0 = 3 mm and ε = 0.03 (blue top curves)

compared to the theoretical prediction at the same position (red

bottom curves).

the central peak significantly. As a result, the whole wave

evolution has been greatly distorted.

IV. EXPERIMENTAL LIMITATIONS AND

BREAKING LIMITS

There are a few restrictions that have to be men-

tioned related to the experimental observations described

above. Higher-order solutions have a multipeak structure and

increased derivative relative to the first-order solution. Taking

this into account is essential when setting up higher-order

solutions. First, the spatial extension of the higher-order

breathers increases strongly with the order. The higher the

order of the breather is, the longer the space needed for the

FIG. 8. (Color online) (a) Fifth-order Akhmediev-Peregrine

rational solutions of the NLS with the background ψ0 = 1.

(b) Observations of the fifth-order rational breather at x = 0 for carrier

wave parameters a0 = 1 mm and ε = 0.01 (blue top curve) compared

to the theoretical prediction at the same position (red bottom curve).
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FIG. 9. (Color online) Measurement of the fifth-order rational

breather which breaks before reaching the maximal amplitude

amplification at x = 0 for carrier parameters a0 = 1 mm and ε = 0.02

(blue top curve) compared to the theoretical prediction at the same

position (red bottom curve).

breather to develop is; therefore, due to the limited size of

the tank, the higher order must be the initial wave amplitude

generated by the flap. For example, for the fifth-order solution,

in order to observe the solution at a distance 9 m from the flap,

the initial amplitude of the wave after the flap has to be as

high as about 10 times the amplitude of the underlying carrier

Stokes wave. Thus, the tank length provides a relatively small

part of the breather evolution. However, 9 m in the experiment

still correspond to 14 wavelengths, and we can clearly observe

the nonlinear evolution of the most essential central part of the

breather.

Second, significant local amplification of the wave am-

plitude of the breather means that the wave breaking may

occur before the highest amplitude is reached. Indeed, Fig. 9

shows that due to the breaking of the wave, the amplitude

amplification of 11 expected for the fifth-order solution is not

reached. This happens when the carrier steepness is increased

to 0.02, while the amplitude is 1 mm, i.e., the same as in

Fig. 8(b). Since the objective of the present study is to generate

higher-order solutions with the best possible accuracy, we tried

to keep the amplitudes at sufficiently low level. Thus, very

low steepness values of the carrier wave have been used. We

avoided exceeding criteria for local breaking during the whole

wave evolution. Controlling the steepness for each breather, we

found that spilling type breaking occurs for the experimentally

estimated threshold carrier steepness values εb shown in

Table I.

Keeping the steepness values low did not allow us to reach

high amplitudes for breathers in absolute terms. Nevertheless,

the ratio of the peak amplitude to the background amplitude

was confirmed to agree with the theory. The latter increases

with the order of the solution. We should note that the wave

breaking is a process independent from breather generation.

The distance at which the breaking of an initially sinusoidal

wave occurs depends on the amplitude of this wave and

generally decreases with the amplitude.

TABLE I. Lowest threshold carrier wave steepness value for each

rational breather when wave breaking starts.

Rational solutions Threshold steepness value εb

First order 0.12

Second order 0.06

Third order 0.05

Fourth order 0.04

Fifth order 0.02

V. SUMMARY

We have confirmed, experimentally, that the higher-order

rational breather solutions of the NLS can be generated in

conditions of deep-water gravity waves. Up to fifth order

a breather can be observed in a 15 m tank without being

significantly distorted by the wave-breaking effect and the

limitations of the short tank.

The steepness of the carrier wave is the crucial parameter

in these observations. The smaller the carrier steepness is, the

better the agreement is with the theoretical NLS prediction.

For each observed rational breather we determined the carrier

steepness values when the corresponding amplified wave

starts to break. Due to this limitation, the absolute values

of peak amplitudes for higher-order solutions cannot be

significantly increased. However, the ratio of peak amplitude to

the background wave increases in accordance with the theory.

Clearly, the results of experimental observation of higher-

order breathers in the water tank cannot be directly applied

to explain giant ocean rogue waves. First, the probability of

their excitation in a chaotic wave field would be extremely

low. Second, wave-breaking phenomena would destroy them

well before they reached high amplitudes. Third, the steep-

ness values of our experiment are significantly smaller than

steepness values related to the ocean. Furthermore, there are

myriad other factors that differ between the ocean and an

ideal laboratory setup. Nevertheless, the mere fact that such

solutions can be observed proves the validity of the nonlinear

approach to the dynamics of water waves. It also shows that

the range of phenomena described by the NLS is significantly

richer than the simple world of solitons and small-amplitude

radiation waves. This world is not complete if we do not take

into account the whole hierarchy of breathers.
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