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Observation of a modulational instability in Bose-Einstein condensates
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We observe the breakup dynamics of an elongated cloud of condensed 85Rb atoms placed in an optical

waveguide. The number of localized spatial components observed in the breakup is compared with the number

of solitons predicted by a plane-wave stability analysis of the nonpolynomial nonlinear Schrödinger equation,

an effective one-dimensional approximation of the Gross-Pitaevskii equation for cigar-shaped condensates. It is

shown that the numbers predicted from the fastest growing sidebands are consistent with the experimental data,

suggesting that modulational instability is the key underlying physical mechanism driving the breakup.
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Intensity-dependent instabilities are a dramatic manifesta-

tion of the strong nonlinear effects that can occur in nature,

and they are observed throughout physics as the development

of spatial or temporal modulations with growing amplitudes.

Modulational instability (MI) is a well-known phenomenon in

optics which manifests itself as a decay of long optical signals

into pulse trains [1–3]. MI is a general wave phenomenon that

occurs when a weak perturbation to a wave form is enhanced

by nonlinearity, giving rise to sidebands in the spectrum with

subsequent modulation growth and the formation of a train of

spatially or temporally separated solitary waves [4].

Solitary matter waves of a different origin have been exten-

sively studied in Bose-Einstein condensates (BECs), where

interatomic interactions give rise to strong nonlinearities.

In particular, soliton trains in BECs have previously been

observed in 7Li condensates with attractive interactions loaded

into highly anisotropic traps [5]. The formation of multiple

solitary waves has also been observed during the collapse of Rb

condensates [6]. Recently, BEC solitons have been employed

for the first realization of a solitonic atom interferometer [7].

Despite theoretical predictions [8,9], the stochastic nature

of many nonlinear processes, combined with traditionally

destructive methods of BEC imaging, has impeded the direct

observation of more subtle nonlinear effects.

In this Rapid Communication, we present real-time obser-

vations of MI in BECs. Using nondestructive in situ imaging,

we are able to image a single BEC placed in an optical

waveguide as it undergoes the transformation into a train of

spatially localized components. We show that the number of

localized components observed after the breakup is consistent

with an MI analysis conducted in the framework of the
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nonpolynomial Schrödinger equation (NPSE) [10], suggesting

that MI is the underlying physical mechanism driving the

observed breakup.

Experimental approach. The experimental apparatus is

described in Ref. [11]. In summary, a combined two- and three-

dimensional magneto-optical trapping (MOT) system collects

and cools both 85Rb and 87Rb atoms (Fig. 1). The atoms are

then loaded into a magnetic trap and undergo rf evaporation

before being loaded into an optical crossed-dipole trap. The

cross trap consists of intersecting 1090 and 1064 nm laser

beams with approximate waists of 300 and 250 μm (half width

at 1/e2 intensity), respectively. After loading, the magnetic

trap coils are switched from an anti-Helmholtz to Helmholtz

configuration, generating a bias magnetic field over the extent

of the cloud. This allows the s-wave scattering length of the

cloud as to be tuned by utilizing a Feshbach resonance. Setting

the 85Rb scattering length close to zero (as = 3a0, with a0

the Bohr radius) while ramping down the cross-trap intensity

allows the remaining 87Rb atoms to be removed while minimiz-

ing three-body recombination losses in 85Rb. A further period

of evaporation with as = 300a0 creates a 85Rb BEC of atom

number N = 3×104 with no observable thermal fraction. This

is the initial condition for all experiments discussed below.

To monitor the cloud dynamics, two orthogonal imaging

systems are available. First, a horizontal absorption beam

allows the cloud to be imaged after 20 ms of ballistic expansion

(as = 0) in free space to calibrate the absolute atom number. A

second vertical, far-detuned imaging beam utilizes nondestruc-

tive shadowgraph imaging to take in situ images of the conden-

sate [12]. Up to 100 images can be taken in a single run as little

as 0.4 ms apart with no measurable change in atom number.

The imaging laser is offset-beat locked, allowing the beam

detuning to be dynamically changed during a run [13]. This al-

lows several nondestructive pictures to be taken before the laser

is brought onto resonance and a final destructive, high signal-

to-noise ratio (SNR) picture is taken with the same optics.

The experiment is conducted as follows: A 85Rb condensate

is formed at an s-wave scattering length of as ≈ 300a0 in a

2469-9926/2017/96(4)/041601(5) 041601-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevA.96.041601
https://creativecommons.org/licenses/by/4.0/


RAPID COMMUNICATIONS

P. J. EVERITT et al. PHYSICAL REVIEW A 96, 041601(R) (2017)

(b)

(c)

i

ii

iii

(a)

FIG. 1. (a) Schematic of UHV apparatus and an optical waveg-

uide. (b) Soliton train observed after 100 ms propagation of a BEC

in the waveguide at as = −1.15a0. (c) Modulational instability in a

one-dimensional (1D) model: (i) An initially localized state becomes

(ii) modulated by unstable momentum sidebands which (iii) grow

exponentially to produce a train of solitons.

harmonic trap (ωz = 2π×7 Hz axially, ωr = 2π×70 Hz

radially) before the axial trapping is turned off, creating

an optical waveguide for the atoms. The waveguide has a

repulsive harmonic potential with frequency ωz = 2π×3i Hz

due to the curvature in the magnetic potential [7]. Simulta-

neously, the scattering length is rapidly quenched to another

value (as/a0 = [−2.1,5]) before the condensate is allowed

to evolve in the waveguide for approximately 100 ms. In all

figures, t is the time after this quench, once the condensate

is freely propagating in the waveguide. For these initial

conditions the chemical potential is μ = 6.2h̄ωz, which is

the strongly cigar-shaped regime [14]. The longitudinal shape

of the condensate has a width (Lz) on the order of tens of

micrometers. Dispersion of the cloud in the waveguide is

minimized by a careful choice of the initial scattering length.

Our choice ensures that the dimensions of the axially trapped

cloud prior to quenching as are similar to those of an axially

untrapped soliton at the new (necessarily negative) scattering

length. This is determined by a variational method [15]. The

condensates are then propagated in the waveguide for a range

of scattering lengths (as/a0 ∈ [−6,6]).

For propagation at certain negative scattering lengths the

condensate breaks up into a train of similarly sized, spatially

localized components. These are solitonlike, in that they are

stable under further propagation beyond 90 ms. Three separate

exemplar runs are shown in Fig. 2. These examples demon-

strate the typical train formation at −1.15a0, a scattering length

for which the condensate is stable up to 60 ms. Moreover, for

as > −1.15a0, three-body recombination losses are <5% in

the first-stage dynamics where train formation occurs.

Ten runs were conducted for each choice of as . The number

of spatial components was quantified using an image pro-

cessing algorithm (see Supplemental Material [16]). Briefly,

the images were de-noised, then binarized with the number

of resulting solitons given by counting the morphological

components. Train formation is stochastic in nature—the

same experimental conditions resulted in a varying number of

constituent components (Fig. 2). Although the atom number

varied shot to shot by up to 10%, this variation was shown to be

uncorrelated with the final number of components. Variations

in both the spatial locations of the individual components and

the formation onset time were also observed.

Theoretical approach. The NPSE [10]—an effective 1D

model of the Gross-Pitaevskii equation (GPE)–provides a

simple and effective theoretical insight into our experimental

observations. It well approximates the full three-dimensional

(3D) dynamics of the GPE for cigar-shaped condensates

whose relevant dynamics occur in the axial direction [8,10].

According to the NPSE, the 3D condensate wave function

is factorized into transverse and longitudinal components,

ψ(x,y,z,t) = f (z,t)φ(x,y,t ; f (z,t)). The axial component

f (z,t) is the unique unknown of the model, and its evolution

is described by

i
∂f

∂t
=

[

−c1

1

2

∂2

∂z2
+

c2

σ 2
|f |2 + c3

(

σ 2 +
1

σ 2

)]

f, (1)

where c1 = h̄/(2m), c2 = UN/(2πa2
⊥h̄), c3 = ω⊥/2, and

σ 2 = (1 + c4|f |2)1/2, with c4 = 2asN . Here, U = 4πh̄2as/m,

N is the condensate number, and a⊥ =
√

h̄/(mω⊥) is the os-

cillator length in the transverse direction with a corresponding

trapping frequency ω⊥.

Run 1 Run 2

10
0

-10
10
0

-10
10
0

-10

Run 3

s
m

03
s

m
0

40
m

s
s

m06
s

m
05

70
m

s
s

m
09

s
m

08

10
0

-10

10
0

-10
10
0

-10
10
0

-10

10
0

-10
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100

z (µm)z (µm)z (µm)

x
 (

µ
m

)

OD

0

0.5

1.0

1.5

2.0

FIG. 2. Experimental data for three separate runs illustrating the breakup phenomenon after BEC is released into the waveguide with

as = −1.15a0. The first seven images were taken with in situ nondestructive shadowgraph imaging. The final image was taken with in situ

destructive absorption imaging. Color map optical density (OD) values relate to the destructive picture.
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Following the standard procedure [2], we describe the MI

dynamics in the axial coordinate by assuming f (z,t) is the

sum of a plane wave and two small perturbations centered at

spatial frequencies ±k, f (z,t) = u exp(iβut) + p+ exp[ikz +
iβ+(k)t + g(k)t] + p− exp[−ikz + iβ−(k)t + g(k)t], where

u,p± are complex, βu is real, and β± and g are real functions

of k, with g the temporal growth rate of the perturbations.

Inserting this ansatz into Eq. (1) and applying a linear

stability analysis yields expressions for βu,± and g. The latter

quantity is the gain spectrum of spatial modes with wave

number k,

g(k) =
√

c1k2(4M − c1k2)/2, (2)

M =
−(c2 + c3c4/2)|u|2

σ 2
0

+
(c2|u|2 + c3)c4|u|2

2σ 6
0

, (3)

where σ 2
0 = (1 + c4|u|2)

1/2
.

Equation (3) implies that all spatial frequencies in the

MI band |k| � 2(M/c1)1/2 undergo amplification and that

the fastest growing sidebands are at k̂ = (2M/c1)1/2 with a

corresponding growth rate ĝ = M .

In the weakly interacting limit c4|f |2 ≪ 1, Eq. (1) reduces

to the well-known 1D GPE [10], which is less accurate than

the NPSE as it fails to describe the condensate dynamics

outside the weakly interacting regime [10]. Therefore, Eq. (3)

accurately describes the growth rate of perturbations in both

weakly and strongly interacting regimes.

In the more general and realistic case where the initial axial

function u0(z) = f (z,t = 0) is not a plane wave but finite

sized, the BEC undergoes both a linear reshaping [first term on

the right-hand side (RHS) of Eq. (1)] and a nonlinear reshaping

[second and third terms on the RHS of Eq. (1)], which

are respectively analogous to the diffraction and nonlinear

self-phase modulation (SPM) experienced by an optical beam

propagating in nonlinear Kerr media [17].

Linear (diffraction) and nonlinear (SPM and MI) effects

interplay with each other and a characteristic time defines

the temporal scale over which they become relevant to the

dynamics [16]. Exploiting the analogy with optical phenomena

in Kerr media, the characteristic time for linear diffraction

and nonlinear phenomena can be roughly estimated as TD =
Lz/c

2
1 and TNL = 1/(|c2|u2

peak), respectively, where Lz is the

spatial width of u0 and upeak = max{|u0|}. In our experiment,

TD ≫ TNL, hence the first-stage evolution of the condensate is

dominated by MI and can be written as

f (z,t) = u0e
iβut +

∫

dk p(k)eikz+iβ(k) t+g(k) t , (4)

where the integration is performed over the whole MI band

and p(k) indicates the initial perturbation at spatial frequency

k that is amplified with growth rate g(k) [see Eq. (3)]. The

integral in Eq. (4) represents a superposition of sinusoidal

waves giving rise to the typical components observed in

the condensate axial profile. If the condensate is seeded by

random noise, then the initial perturbation p(k) is a stochastic

variable whose value depends on the particular experimental

run. Consequently, for a fixed time t , the position, amplitude,

and shape of the components differ between runs. This explains
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FIG. 3. Top: Density of a simulated BEC undergoing MI in

an antitrapping waveguide. Middle: Autocorrelation traces of axial

density, A(z) =
∫

dz′|f (z − z′)|2|f (z′)|2. Bottom: Width of central

peak of A(z). This width’s sharp decrease at 75 ms corresponds to

the time where MI is well developed.

the random nature of the components experimentally observed

and represents a truly distinctive signature of the MI regime.

Although the number of morphological components after

breakup is random, the average distance 〈dz〉 between consecu-

tive components is set by the fastest growing spatial frequency,

i.e., 〈dz〉 = 2π/k̂. This allows a simple estimate of the average

number of components via 〈NComp〉 = Lz/〈dz〉.
Additional to this analytic theory, we performed NPSE

simulations that aimed to reproduce experimental condi-

tions, including the antitrapping waveguide potential and

three-body recombination losses, modeled by including

iK3N
2|f |4f/(2πa2

⊥σ 2)
2

in the RHS of Eq. (1) (K3 =
4×10−41 m6 s−1 is experimentally determined). The simula-

tions were seeded with Gaussian noise with a minimum spatial

correlation width determined by the condensate’s healing

length, ensuring that the perturbation only contained physical

noise. The noise amplitude was approximately 1% of |ψ |.
Figure 3 displays the evolution of a simulated BEC

undergoing MI, resembling the typical evolution observed in

experiments (Fig. 2). Condensate breakup causes the formation

of spatial components, which become distinct and separated

once MI amplification is well developed. Furthermore, the final

distribution is typically asymmetric as a result of the random

seeding noise (|	|2 in Fig. 3).

SPM induces an axial compression of the condensate,

corresponding to a broadening of the condensate’s initial axial

spectrum (i.e., Fourier transform of u0). The larger the width


k of the initial axial spectrum, the faster is the spectral

broadening and the corresponding spatial compression. When


k � k̂, the spectral broadening of the axial spectrum overlaps

the MI band and amplification of the seeding noise is

negligible. Here, the SPM-induced spatial compression is

followed by complex dynamics that could lead to the creation

of distinct spatial components [16]. These dynamics are similar

to those undergone by short optical pulses in Kerr media [17].

However, in this circumstance, the number, position, and shape

of the spatial components are fully deterministic, as they do

not depend on the seeding noise.
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FIG. 4. Average number of spatial components observed in ex-

periment at t = 90 ms compared with NPSE simulations and analytic

estimation 〈NComp〉 = Lz/〈dz〉 (shading indicates 10% uncertainty in

measured Lz). The initial BEC is considered to have one component.

Uncertainties are indicated by the standard error in the mean (these

are smaller than the point width for simulations). The hatched region

indicates the absence of a stable soliton solution.

An intermediate regime exists where neither MI nor SPM

are truly dominant, but are equally important to the condensate

dynamics. In this instance, the condensate undergoes a

partial reshaping, followed by the creation of random spatial

components related to the MI [16].

For typical experimental parameters Lz ∼ 50 μm and

as ∼ −a0, we estimate 
k ∼ 1/Lz ≈ 20 m−1 and k̂ ≈ 100
k,

therefore SPM does not dominate over MI. However, for

sufficiently negative scattering lengths, simulations show that

a fast and strong spectral broadening due to SPM occurs.

The average number of spatial components experimentally

observed as a function of quenched as is shown in Fig. 4

alongside the predictions from a stability analysis of the

NPSE as well as NPSE simulations. The difference between

simulations and analytic estimation is expected due to the

presence of a partial SPM pulse reshaping as well as the

antitrapping potential not accounted for by our analytical

model. Nevertheless, after excluding data for as < −1.7a0

(where a large thermal population was observed, so mean-field

formalism is not applicable), χ2 tests show that our analytic

theory [χ2(6) = 1.512, p = 0.959] and NPSE simulations

[χ2(6) = 0.861, p = 0.990] agree well with the experimental

data. Note also that stable soliton solutions of the initial

condensate do not exist below as = −1.2a0, as determined

by a variational analysis of the GPE energy functional [15].

The distribution of measured components was also com-

pared to that predicted by NPSE simulations. Independent

sample t-tests show that the distribution of component num-

bers predicted by the NPSE do not significantly differ to the

experimentally measured distributions [16]; this agreement is

pictorially demonstrated for as = −0.75a0 in Fig. 5.

Discussion. The observed random position, number, and

amplitude of the measured components are truly indicative

of MI dynamics. Agreement with NPSE simulations of MI is

seen in both the mean and standard deviation of the number
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FIG. 5. Probability of observing a given number of spatial

components for both experiments (57 runs) and simulations (250 runs)

at quenched scattering length as = −0.75a0. Gray regions indicate

the overlap of both distributions. An independent sample t-test

[t(71.67) = −1.346, p = 0.183] reveals no significant difference

between the two distributions.

of measured components. In contrast, if train formation was

seeded by linear effects, its dynamics would be deterministic,

similar to what occurs with SPM reshaping. Furthermore,

although the mean-field formalism employed here cannot

account for fragmentation effects captured by the many-body

model, the fragmentation dynamics predicted in an initially

symmetric condensate are highly symmetric [18]. Therefore,

the stochastic breakup dynamics observed in our experiments

are a truly distinctive signature of MI, whereas the observation

of symmetric and deterministic behavior would be suggestive

of a different underlying mechanism, such as MI seeded by

linear effects from fragmentation or SPM reshaping.

In summary, we have presented a continuous experimental

observation of MI in a BEC. A major advance of our

experiment is the ability to nondestructively image stochastic

time-dependent nonlinear phenomena with high temporal res-

olution. Our experimental observations are in good agreement

with analytical and numerical predictions provided by the

NPSE, and suggest that MI seeded by noise is the key physical

mechanism underlying the breakup of elongated condensates

into matter-wave solitary waves.

The improvements made to the experimental apparatus

will allow the detailed study of many different aspects of

nonlinear dynamics driven by MI. For MI to occur, an

initial perturbation is required that then exponentially grows.

Applying a reproducible initial noise profile to seed the

condensate (necessarily greater in amplitude than those already

present in the system) would remove the stochastic nature

of the MI, allowing the time scales and transient dynamics

of MI to be closely compared with simulation. Additionally,

the solitons here are created by matching the dimensions of

the trapped and untrapped clouds when switching off the

confining potential and adjusting the scattering length. If,

instead, a small mismatch in the radial widths of these two

solutions is created, then a transverse excitation will be present

during MI, altering the dynamics in a way not captured by the

NPSE. Finally, the role of relative phase in soliton-soliton
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interactions, either attractive or repulsive, has previously only

been inferred through a comparison with GPE simulation [19].

Combining the agile imaging system of the apparatus and the

ability to perform Bragg interferometry along the waveguide

[7] would allow a direct measurement of this effect. By first

nondestructively observing train formation and subsequent

soliton interactions, neighboring solitons can then be interfered

and their relative phase read out with higher SNR destructive

imaging.

Note added. Recently, we became aware of similar work,

developed independently, which focuses on modulational

instability in Li condensates [20].
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