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We report experimental realization of a quantum time quasicrystal and its transformation to a quantum

time crystal. We study Bose-Einstein condensation of magnons, associated with coherent spin precession,

created in a flexible trap in superfluid 3He-B. Under a periodic drive with an oscillating magnetic field, the

coherent spin precession is stabilized at a frequency smaller than that of the drive, demonstrating

spontaneous breaking of discrete time translation symmetry. The induced precession frequency is

incommensurate with the drive, and hence, the obtained state is a time quasicrystal. When the drive is

turned off, the self-sustained coherent precession lives a macroscopically long time, now representing a

time crystal with broken symmetry with respect to continuous time translations. Additionally, the magnon

condensate manifests spin superfluidity, justifying calling the obtained state a time supersolid or a time

supercrystal.
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Originally, time crystals were suggested as a class of

quantum systems for which time translation symmetry is

spontaneously broken in the ground state, so that the time-

periodic motion of the background constitutes its lowest

energy state [1]. It was quickly shown that the original idea

cannot be realized with realistic assumptions [2–6]. This

no-go theorem forces us to search for spontaneous time-

translation symmetry breaking in a broader sense (see, e.g.,

the review in Ref. [7]). One available direction is a system

with off-diagonal long-range order, experienced by super-

fluids, Bose gases, and magnon condensates [5,8]. In the

grand canonical formalism, the order parameter of a Bose-

Einstein condensate (BEC)—the macroscopic wave func-

tion Ψ, which also describes conventional superfluidity—

oscillates periodically: Ψ ¼ hâ0i ¼ jΨje−iμt, where â0 is

the particle annihilation operator and μ is a chemical

potential. Such a periodic time evolution can be observed

experimentally provided the condensate is coupled to

another condensate. If the system is strictly isolated, i.e.,

when the number of atoms N is strictly conserved, there is

no reference frame with respect to which this time

dependence can be detected. That is why for the external

observer the BEC looks like a fully stationary ground state.

However, for example, in the Grand Unification exten-

sions of the Standard Model, there is no conservation of the

number of atoms N due to proton decay [9]. Therefore, in

principle, the oscillations of the macroscopic wave function

of an atomic superfluid in its ground state could be

identified experimentally and the no-go theorem avoided

if we had enough time for such experiment, about

τN ∼ 10
36 years. In general, any system with off-diagonal

long-range order can be characterized by two relaxation

times [5]. One is the lifetime τN of the corresponding

particles (quasiparticles). The second one is the thermal-

ization time, or energy relaxation time τE, during which the

superfluid state of N particles is formed. If τE ≪ τN , the

system relatively quickly relaxes to a minimal energy state

with quasifixed N (the superfluid state) and then slowly

relaxes to the true equilibrium state with μ ¼ 0. In the

intermediate time τE ≪ t ≪ τN , the system has finite μ and

thus becomes a time crystal. Note that in the limit of the

exact conservation of the particle number mentioned above

τN → ∞, the exchange of particles between the system and

the environment is lost, and the time dependence of the

condensate cannot be experimentally resolved.

Bose-Einstein condensates of pumped quasiparticles,

such as photons [10], are, in general, a good example of

systems with off-diagonal long-range order, where the

condition τN ≫ τE is fulfilled. Time crystals can be

conveniently studied in experiments based on the magnon

BEC states in superfluid phases of 3He, where the lifetime

of quasiparticles (magnons) can reach minutes. Magnon

BEC in 3He was first observed in the fully gapped

topological B phase [11,12], then in the chiral Weyl

superfluid A phase [13,14], and recently in the polar phase

with Dirac lines [15]. The magnon number N is not

conserved, but the decay time is τN ≫ τE, see Fig. 1.

For t < τN, the magnon BEC corresponds to the minimum

of energy at fixed N. The lifetime τN is long enough to

observe the Bose condensation and effects related to the

spontaneously broken Uð1Þ symmetry, such as ac and dc

Josephson effects, phase-slip processes, Nambu-Goldstone

modes, etc [16]. Each magnon carries spin −ℏ, and the

number of magnons is thus N ¼ ðS − SzÞ=ℏ, where S is the
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total spin and the ẑ axis is directed along the applied

magnetic field H. The state with jSzj < S corresponds to

the precessing macroscopic spin with transverse magnitude

S⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 − S2z
p

, and the brokenUð1Þ symmetry within the

condensate is equivalent to broken SOð2Þ symmetry of the

spin rotation about the direction ofH. The magnon BEC is

manifested by spontaneously formed coherent spin pre-

cession and is described by the wave function hŜþi ¼
ffiffiffiffiffiffi

2S
p

hâ0i ¼ S⊥e
iωt, where Ŝþ ¼ Ŝx þ iŜy. Here, the role of

the chemical potential is played by the global frequency ω

of the precession. A characteristic feature of the coherent

precession is that this frequency is constant in space even

for a spatially inhomogeneous magnon condensate in an

inhomogeneous trapping potential.

The coherently precessing spins are observed in NMR

experiments via a corresponding precession of magnetiza-

tion M ¼ γS, where γ is the gyromagnetic ratio (Fig. 2).

Equilibrium nonzero magnetization M ¼ χH is created by

an applied static magnetic field, χ being the magnetic

susceptibility. The magnetic field defines the Larmor fre-

quency ωL ¼ jγjH. Then, a transverse radio-frequency (rf)

pulse Hrf ¼ Hrf x̂e
iωdrivet is applied to deflect the spins by

angle β with respect to H. This corresponds to pumping

N ¼ Sð1 − cos βÞ=ℏ magnons to the sample. After the

pulse, the signal picked up by the NMR coils rapidly decays

due to dephasing of the precessing spins caused by inho-

mogeneity of the trapping potential. After time τE, collective

synchronization of the precessing spins takes place, leading

to the formation of the magnon BEC with an off-diagonal

long-range order. This process is the experimental signature

of the time crystal: The system spontaneously chooses a

coherent precession frequency, and one can directly observe

the resulting periodic time evolution (Fig. 1).

Note that the periodic phase-coherent precession

emerges in the interacting many-body magnon system,

which experiences the spin superfluidity [16]. The sponta-

nously broken Uð1Þ symmetry and the interaction between

magnons in magnon BEC give rise to the Nambu-

Goldstone modes, which can be identified with phonons

of this time crystal. The frequency of the precession is

determined by interactions (here of spin-orbit type, see

below) and is robust to perturbations in the system. All this

fits the presently adopted criterions of “time crystal,” which

exhibits typical hallmarks of spontaneous symmetry break-

ing, such as long-range order and soft modes [17]. The

coherent precession can be also considered as a macro-

scopic realization of the time crystal behavior of excited

eigenstates [18].

Also another direction to circumvent the no-go theorem

has been suggested—Floquet time crystals emerging under
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FIG. 1. Time supercrystal in superfluid 3He-B emerging from

spontaneous coherence in freely precessing magnetization. (Top)

The coherent precession of magnetization,Mx þ iMy ¼ γS⊥e
iωt,

is established with time constant τE after the excitation pulse at

t ¼ 0. The signal is picked up by the NMR coils (Fig. 2) and

down-converted to lower frequency (with reference at 834 kHz).

(Bottom) Since the magnetic relaxation in superfluid 3He is small,

the number of magnons N slowly decreases with timescale

τN ≫ τE. During relaxation the precession remains coherent,

and the state represents Bose-Einstein condensate of magnons

until the number of magnons drops below the critical value

(which in these experiments corresponds to a signal below the

noise level).

NMR coils

6 mm

Magnon BEC

Pinch coil

Sample container

x
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FIG. 2. Experimental setup: Sample container is made from

quartz glass and filled with superfluid 3He-B. NMR coils create a

pumping field Hrf and pick up the induction signal from

coherently precessing magnetization M of the magnon BEC.

The trapping potential for the condensate is created by a spatial

distribution of the orbital anisotropy axis of 3He-B (small green

arrows) and an axial minimum in the static magnetic field

produced by a pinch coil.
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a drive [19–29]. As distinct from the breaking of conti-

nuous time translation [1–5], here the discrete time sym-

metry t → tþ T is spontaneously broken, with T being the

period of the driving force. The system spontaneously

acquires a period nT which is larger than that of the drive,

i.e., ωcoherent ¼ ωdrive=n, where ωdrive ¼ 2π=T. For exam-

ple, the period may be doubled, n ¼ 2 [30]. In Ref. [31], a

parametric resonance was observed, in which the magnon

BEC generates pairs of (longitudinal) Higgs modes with

ωHiggs ¼ ωdrive=2, although no direct demonstration of

doubling of the period of the response of the magnon

BEC itself was provided. The breaking of discrete time

symmetry may also result in the formation of time

quasicrystals [32–36], where the periodic drive gives rise

to the quasiperioic motion with, say, two incommensurate

periods. We now discuss an observation of a time quasi-

crystal in a magnon BEC obtained by applying a drive and

its evolution to a superfluid time crystal (time supercrystal)

when the drive is switched off.

In our experiments, the magnon BEC is trapped in a

potential well. The trap is formed by the combination of the

spatial distribution of the orbital anisotropy axis of the

Cooper pairs, called texture, and by a magnetic field

minimum, created with a pinch coil (Fig. 2). The potential

well is harmonic, and the magnon condensate can be

excited on several different energy levels in it, not only

in the ground state. The ground state can be simultaneously

populated by relaxation from the chosen exited level,

forming a system of two coexisting condensates [37].

Similar off-resonant excitation of the coherent spin pre-

cession was first observed in Ref. [38]. It requires an

excitation at a higher frequency than the frequency of the

coherent precession in the ground state, in partial analogy

with lasers [39] in the sense that a coherent signal emerges

from incoherent pumping.

One important property of magnon condensates in the

textural trap—as compared with, say, atomic BECs in

ultracold gases [40]—is that the trap is flexible. The trap

is modified by the magnon BEC, which owing to the spin-

orbit interaction repels the texture and extends the trap. As

a result, the energy levels in the trap depend on the

magnon number N in the condensate. This mechanism is

similar to the formation of hadrons in the so-called MIT

bag model in quantum chromodynamics (QCD), in which

free quarks dig a boxlike hole in the QCD vacuum

[41,42]. Indeed, in the limit N →∞, the harmonic trap

transforms to the box [37,43]. The flexible trap provides

an effective interaction between the magnons. In atomic

BECs, interactions also lead to dependence of the chemi-

cal potential on the number of particles, but the functional

dependence on N is different. The eigenstates in the

magnon trap determine possible frequencies of the coher-

ent precession. The dependence of the precession fre-

quency on N is seen in Fig. 3 at t > 0: during decay of

the magnon BEC, its ground-state energy level increases

as the trap shrinks in size and eventually reaches the

undisturbed harmonic shape.

In Fig. 3, the frequency ωdrive of the driving rf field

corresponds to that of the second radial axially symmetric

excited state in the harmonic trap [level (2,0)]. The drive

pumps magnons to this level forming magnon condensate

there. One can see additional oscillations spontaneously

generated at a lower frequency ωcoherent < ωdrive, which

corresponds to the BEC forming at the ground state in the

trap by magnons coming from the exited state. Note that the

frequencies of the ground and exited states can be tuned by

changing the magnetic field magnitude and, independently,

the spacing of the states by the magnetic field profile. The

spacing further depends on the number of magnons in the

trap, and one can choose the frequencies to be incom-

mensurate. This demonstrates that the discrete time sym-

metry t → tþ T of the drive is spontaneously broken

leaving a state composed of precession at two incommen-

surate frequencies ωcoherent and ωdrive. We emphasize that

the two states coexist in the same trapping potential and
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FIG. 3. Time crystal and time quasicrystal. The measured signal

is analyzed using time-windowed Fourier transformation,

revealing two distinct states of coherent precession seen as sharp

peaks. Driving field Hrf with the frequency ωdrive, applied at

t < 0, excites magnons on the second radial excited level in the

harmonic trap. The majority of these magnons moves to the

ground level, where they form the magnon BEC. Their precession

is seen as the signal at the smaller frequency, ωcoherent < ωdrive.

The total signal is quasiperiodic in time, see Fig. 4. At t ¼ 0, the

rf pumping is switched off and the (2,0) level quickly depopu-

lates. Only the periodic signal from the precession of the ground-

level magnon BEC remains, like in Fig. 1. Its frequency is slowly

increasing in time in the flexible trap, following the decay of the

magnon number N. This emphasizes the robust nature of the

breaking of continuous time translation symmetry and signifies

the time crystal.
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hence occupy the same volume. The observed state is

therefore a time quasicrystal (the term time quasicrystal

was introduced in Ref. [44]). The measured signal with

oscillations at two well-resolved frequencies is shown

in Fig. 4.

After the pumping is stopped (at t ¼ 0 in Fig. 3), the

excited-state condensate rapidly decays. What is left is the

condensate in the ground state, whose frequency slowly

increases with time following the decay of the magnon

number N. This state is a time crystal, as discussed above.

That is, the driven time quasicrystal with broken discrete

time translation symmetry transforms to the time crystal

with broken continuous time symmetry.

In conclusion, in a single experiment, we have observed

both types of time crystals discussed in the literature. These

are states with broken continuous and discrete time trans-

lation symmetries. They are found in the coherent spin

dynamics of superfluid 3He-B, interpreted using the lan-

guage of magnon Bose-Einstein condensation in a flexible

trap provided by the 3He-B order parameter distribution.

The discrete time translation symmetry breaking takes

place under an applied rf drive. The magnon condensation

is then manifested by coherent spin precession at a

frequency smaller than the drive. The induced precession

frequency is incommensurate with the drive, giving rise to a

time quasicrystal with the discrete time-translation sym-

metry being broken. When the drive is turned off, the self-

sustained coherent precession lives for a long time, while

the number of magnons decays only slowly. This is a time

crystal. Both the time crystal and the time quasicrystal are

formed in the topological superfluid 3He-B [45,46] and

possess spin superfluidity. Therefore these states can be

called time supersolids.
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