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Abstract: 

We constructed an electrical circuit to realize a modified Haldane lattice exhibiting the unusual 

phenomenon of antichiral edge states. The circuit consists of a network of inductors and capacitors 

with interconnections reproducing the effects of a magnetic vector potential. The next nearest 

neighbor hoppings are configured differently from the standard Haldane model, and as predicted by 

earlier theoretical studies, this gives rise to antichiral edge states that propagate in the same direction 

on opposite edges and co-exist with bulk states at the same frequency. Using pickup coils to measure 

the voltage distributions in the circuit, we experimentally verify the key features of the modified 

Haldane lattice, including the group velocities of the antichiral edge states. 

 

The Haldane model1 is a simple but rich theoretical model that exemplifies the 

physics of two-dimensional topological insulators2-5. When magnetic fluxes are 

appropriately threaded through a honeycomb lattice, with zero net flux in each unit cell, 

the band structure hosts a band gap spanned by chiral edge states; on a rectangular strip, 

the edge states localized on opposite edges will propagate in opposite directions. The 

edge states are protected by topological band invariants (Chern numbers) of the bulk 

bands. The Haldane model has been realized in condensed matter systems6, and very 

similar models have been used to create classical wave analogues of topological 

insulators based on photonics7-9, acoustics10-12, and electric circuits13,14. The Haldane 

model has also inspired the development of more complex topological insulators, such 

as the time-reversal (T) invariant Kane-Mele model15,16, which consists of spin-up and 

spin-down sectors that can be regarded as two copies of the Haldane model. 

Recently, Colomés and Franz discovered that a subtle modification to the Haldane 

model leads to strikingly different behaviors17. With a different configuration of 

magnetic fluxes, equivalent to reversing the next-nearest-neighbor (NNN) hoppings in 

one sublattice, the lattice exhibits “antichiral edge states” that propagate in the same 

direction on opposite sides of a rectangular strip. Moreover, the bulk spectrum is 

ungapped, so on a finite rectangular strip the transmission in one direction is edge-

dominated whereas transmission in the opposite direction must occur via the bulk17. To 

our knowledge, there is thus far no experimental demonstration of this effect, despite 

proposals to realize it using strained materials18, ferromagnetic materials with 



Dzyaloshinskii-Moriya interactions19, exciton polaritons20, and gyromagnetic photonic 

crystals21. 

Here, we use electric circuits to experimentally realize antichiral edge states and 

study their properties. Circuit metamaterials have been the subject of recent theoretical 

and experimental interest30-43 due to the ease with which they can be designed and 

fabricated to realize different topological phases, as well as unusual lattice 

configurations that are hard to achieve on other platforms (such as high spatial 

dimension42,43 and Mobius strip configurations30). Circuits have been used to 

demonstrate four-dimensional topological insulators42,43, nonlinear topological 

boundary states36,37 and topological corner modes388,41. Most notably, Jia et al. have 

shown how a Haldane-type Chern insulator phase can be accessed using a lattice of 

capacitors (C) and inductors (L) with “braided” interconnections30. Although LC 

circuits are time-reversal symmetric, the braiding decomposes the spectrum into two 

degenerate sectors that are individually T-broken30-47. Utilizing this idea, we design and 

fabricate a braided LC circuit lattice that realizes the modified Haldane model. Using 

different samples with electrical connections simulating periodic or closed boundaries, 

we probe the bulk and edge excitation spectra as well as the antichiral propagation 

characteristics of the edge states. The experimental results are in good agreement with 

theoretical predictions. This work points the way toward using circuit metamaterials for 

future studies of more complicated T-broken materials, including higher dimensional 

lattices and unusual sample geometries. 

The schematic of the modified Haldane model17 is shown in Fig. 1a. Each unit cell 

contains two sites, A and B. The NNN hoppings between A sites and between B sites 

have π/2 phase shifts in the directions indicated by the arrows. The nearest-neighbor 

(NN) hoppings have zero phase. Figure 1b shows schematically how such hoppings 

can be realized using interconnected capacitor and inductor elements. On each lattice 

site there are two inductors X and Y, whose ends are labeled as X± and Y±; the voltages 

across the inductors are and respectively. All the inductors 

have the same inductance L, and inductors at different sites are connected via capacitors. 

For NN (zero phase) hoppings, we connect each end X± to Y± with capacitors of 

capacitance C1. For NNN (π/2 phase) hoppings, we use capacitors of capacitance C2, 

and the connections are braided so that and . Defining 

, we find that the NNN hoppings correspond to and 

, as desired44,47. Henceforth, we will focus on one of the two “spin” sectors, 

specifically the up spin. 

For steady-state solutions of angular frequency ω, we can show using Kirchhoff’s 

laws (see Supplementary Information) that 
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where , , and C is a reference capacitance such that 

and . This has the form of the modified Haldane model, with the caveat 

that the eigenvalue E is not equal to the eigenfrequency. The Hamiltonian matrix 

elements are defined by  and 

, where ϕ = π/2 is the NNN hopping 

phase. As indicated in the right panel of Fig. 1a,  (i=1, 2, 3) are the NN bond vectors, 

and  (j=1, 2, 3) are the NNN bond vectors.  

We choose the circuit parameters to be L=3.3 mH, C1 =330 pF and C2 =33 pF, so 

that the eigenfrequency is related to E by  where C = 330 pF 

(i.e.,  and ). Figure 1c shows the resulting band diagram, with the physical 

eigenfrequency f as the vertical axis, for a strip that is infinite along x and 20 unit cells 

wide along y, with zigzag boundaries. In agreement with the prior findings of Colomés 

and Franz17, the Dirac points are shifted in opposite directions, and joined by a two-

fold degenerate arc. 

Figure 1d shows the intensity distributions for four of the eigenstates at 

wavenumber k = π/a. The middle two panels, labelled u2 and u3, correspond to the two 

degenerate eigenmodes at frequency 113.63 kHz (red dashes in Fig. 1c); they are 

localized to opposite edges of the strip, despite having the same group velocity as shown 

in Fig. 1c. The other eigenstates are bulk states, as exemplified by the eigenstates 

labelled u1 and u4, which occur at frequencies 105.08 and 124.28 kHz (blue dashes in 

Fig. 1c). The results shown here are for the spin-up states. For the spin-down states, the 

antichiral edge states have the opposite group velocity (Supplementary Fig. S1). 
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Fig. 1. Setup of the circuit. a Schematic of a modified Haldane mode. Each unit cell consists of 

sites A and B, with each site containing a pair of inductors. NN and NNN hoppings are indicated by 

black lines and green arrows. b Schematic of the braided capacitive couplings between inductors on 

different sites for NN hoppings (with zero phase) and NNN hoppings (with phase π/2) respectively. 

c Band diagram of a semi-infinite circuit lattice consisting of a strip 20 unit cells wide and infinitely 

long, with zigzag boundaries and circuit parameters L=3.3 mH, C1 =330 pF, and C2 =33 pF. 

d Intensity distributions at wavenumber π/a for the two degenerate states at frequency 113.63 kHz 

(u2 and u3) and two representative bulk states at 105.08 and 124.28 kHz (u1 and u4). The antichiral 

edge states are localized to different edges but have the same group velocity. 

 

Results 

We implemented the lattice using a FR4 printed circuit board (PCB), as shown in 

Fig. 2a. The black cylinders in the photograph are wire-wound inductors, and the 

yellow components are coupling capacitors. The circuit parameters are as stated in the 

previous paragraph. The PCB contains additional traces that can be used to connect 

additional inductors. The PCB is two sites wide in the x direction and 10 sites (5 unit 

cells) wide in the y direction; the site numbers are explicitly labeled (1 to 20) in the 

photograph. 

We first connect the left and right boundaries using capacitive connections in order 

to realize periodic boundary conditions along x. Since the circuit is two unit cells wide 

along x, this is equivalent to probing k = 0 and k = π/a in the band diagram of Fig. 1a, 

with the latter allowing the antichiral edge states to be accessed. Some additional 

shorted-out capacitors are added to the top and bottom y boundaries to achieve clean 

zigzag boundaries by compensating for the change in on-site potential caused by 

missing couplings at the lattice terminations. We place driving coils on the X inductors 

at sites 2 and 12, and use a pickup coil to measure the voltage amplitude on the Y 

inductor at site 1 (see Methods). The results are shown in the red curve in Fig. 2b. The 



response is peaked at 111.1 kHz, close to the predicted frequency of the antichiral edge 

states shown in Fig. 1c. Note that the driving scheme excites both spin-up and spin-

down states, but the antichiral edge states in both spin sectors are degenerate at k = π/a. 

The experimental findings agree well with the results of circuit simulations performed 

with LTspice (see Methods), shown by the red curve in Fig. 2c. In the simulations, the 

response peaks at 113.64 kHz. This small frequency shift can be attributed to fabrication 

errors, such as the approximately 5% tolerance in the capacitances and inductances of 

the various circuit components. 

 

 

Fig. 2. Experimental characterization of bulk and edge states. a Photograph of a circuit 

corresponding to a lattice with periodic boundaries in x and zigzag boundaries in y. The 20 sites in 

the sample are explicitly numbered. Each site has an X and Y inductor (black cylinders), with NN 

and NNN hoppings implemented via capacitors (yellow components). b Experimentally measured 

voltage amplitudes. For the red curve, driving coils are placed on the X inductors at sites 2 and 12, 

and the pickup coil is placed on the Y inductor at site 1; the excitation and measurement thus occur 

along one edge of the effectively semi-infinite strip, and the peak at 111.1 kHz (red star) is close to 

the predicted eigenfrequency of the antichiral edge states. For the black curve, driving coils are 

placed on the X inductors at sites 1 and 4/6/8 (results are averaged over the three driving 

configurations), and the pickup coil is placed on the Y inductor at site 17; this serves as a probe of 

the spatially-averaged density of states, and the lack of a dip in the response shows the lack of a 

bulk band gap. c Circuit simulation results corresponding to Fig. 2b. For the strip geometry, the 

response peaks at frequency 113.64 kHz, close to the experimental peak. d Voltage amplitudes 

measured at different sites, showing strong edge localization at 111.1 kHz (red), and no edge 

localization at frequency 117.6 kHz (blue). The driving coils are placed on the X inductors at sites 

2 and 12, and the pickup coils are placed on the Y inductors at different sites. 

 

Next, we studied the bulk lattice by connecting the top and bottom inductors of 

the strip and removing the additional shorted-out capacitors, which is equivalent to 

applying periodic boundary conditions to opposite edges of the strip. To probe the 

spatially averaged density of states, we excite the lattice using one driving source at site 

1 and another at sites 4, 6, or 8, on the X inductors, with the pickup coil located at the 

X inductor on site 17, and take the averages of the three data sets. The results, plotted 

as the black curve in Fig. 2b, show no significant dip in the frequency range of interest. 



This agrees well with the theoretical expectation that this bulk bandstructure, unlike 

that of the standard Haldane model, lacks a band gap. The circuit simulation results, 

shown as the black curve in Fig. 2c, exhibit qualitatively similar behavior. 

The localized nature of the edge states can be observed by taking voltage 

amplitude measurements at different sites. Figure 2d shows the experimentally 

measured voltage amplitudes at the Y inductors on different sites, for the previously-

discussed strip geometry (i.e., open boundary conditions along the edges of the strip, 

with driving coils on the X inductors at sites 2 and 12, corresponding to the red curve 

in Fig. 2b). Here, the red curves show the response at the peak frequency of 111.1 kHz, 

which is strongly localized the top edge (the edge states on the bottom edge are not 

excited since the sources are located on the top edge). For comparison, the blue curves 

show the response at 117.6 kHz, away from the eigenfrequency of the edge states, for 

which the response is not localized to the edge. 

 

 
Fig. 3. Propagation of antichiral edge states in a finite lattice. a Photograph of the circuit boards 

implementing a 128-site lattice with open boundary conditions (left panel), and the schematic of the 

lattice (right panel). b Experimental results showing the voltage amplitude distribution at 112.7 kHz, 

produced by two driven coils with 90° phase difference (so as to excite spin-up states) placed on 

inductors X and Y at a corner site (marked by a black star). Red arrows indicate the expected 

propagation directions of the edge and bulk states. c Experimentally measured relative dwell times 

along the top edge (blue) and bottom edge (pink). The slopes of the linear least squares fits 

correspond to group velocities of -22.2 µs/site (top edge) and -23.7 µs/site (bottom edge). d Relative 

dwell times obtained from corresponding circuit simulations. The slopes of the linear least squares 

fits correspond to group velocities of -21.1 µs/site (top edge) and -22.4 µs/site (bottom edge).  

 

To further characterize the antichiral edge states, we prepared a circuit 

corresponding to a finite lattice of 128 sites in a rectangular geometry (see Fig. 3a). 

Owing to fabrication limitations, the sample consists of two PCBs connected by cable 

assemblies. We apply two driving coils to the X and Y inductors at a corner site (marked 



by a black star in Fig. 3b), with a 90° relative phase shift in order to selectively excite 

spin-up states. In this configuration, the driving coils should excite antichiral edge states 

that propagate leftward along the upper edge. Figure 3b shows the experimentally 

obtained spin-up voltage amplitude distribution at 112.7 kHz (the frequency matching 

the antichiral edge states at k = π/a, as seen in Fig 2b). A strong voltage response is 

observed at both sample edges, a result that agrees well with the steady-state voltage 

distributions obtained in circuit simulations (Supplementary Fig. S2a). These results 

are consistent with the interpretation that antichiral edge states are initially excited on 

the top edge, undergo reflection at the left boundary into the bulk states, and reflect off 

the right boundary into left-moving antichiral edge states on both edges17. This behavior 

is further confirmed by time-domain circuit simulations (Supplementary Fig. S3). 

We then determine the group velocities of the edge states by measuring the dwell 

time dφ/dω, where φ is the phase of the complex spin-up voltage measured by the 

pickup coils at each site, and ω is the angular frequency. The rate of change of dwell 

time with distance along the edge is the group velocity19. Figure 3c shows the 

experimental results for the dwell times on the top and bottom edges; each data point is 

estimated from spin-up voltage measurements at 5 equally-spaced frequencies between 

112.5 kHz and 112.9 kHz (Supplementary Fig. S2b). From a linear least-squares fit of 

these results, we estimate group velocities of -22.2 µs/site (top edge) and -23.7 µs/site 

(bottom edge). Notably, the group velocities on both edges are negative, consistent with 

theoretical predictions. The corresponding circuit simulations (see Fig. 3d) predict 

group velocities of -21.1 µs/site (top edge) and -22.4 µs/site (bottom edge). From the 

band diagram of a strip of the same width and infinite length (similar to Fig. 1c but with 

reduced width), the group velocities of the antichiral edge states is estimated to be -16.8 

µs/site. These experimental results thus unambiguously verify the antichiral nature of 

the edge states. 

 

Discussion 

We have experimentally verified the key features of the modified Haldane lattice 

proposed by Colomés and Franz17, including the existence of antichiral edge states that 

have the same group velocity on opposite edges, the lack of a bulk gap, and the transfer 

of energy between edge and bulk states during successive reflections within a finite 

sample. These results demonstrate the flexibility of electrical circuits, as an 

experimental platform, for realizing topological phases and other related lattice 

phenomena30,31. In particular, we have used the “braiding” trick, originally introduced 

by Jia et al. in the Chern insulator context30, to implement a new set of effective vector 

potentials (complex inter-site hoppings); in the future, this approach might be used to 

implement circuit lattices with even more complicated vector potentials. 

One of the most interesting features of electrical circuits is the ability to set up lattice 

geometries that are difficult or impossible to realize on other platforms. Jia et al., for 

instance, showed that a rectangular sample can be converted into a Möbius strip by 

placing appropriate electrical connections between sites on two opposite boundaries. 

However, an unpaired Chern insulator cannot be placed in a Möbius strip geometry. An 

edge state, upon crossing one boundary, passes through to the opposite edge of the strip 



moving in the same direction, which is inconsistent with chiral propagation. In an actual 

circuit, the edge states switch to the opposite spin upon crossing the boundary30; in other 

words, the Möbius strip geometry necessarily couples the two spin sectors. Interestingly, 

however, an unpaired modified Haldane lattice can be consistently implemented on a 

Möbius strip, because of the edge states are antichiral. The present circuit design can 

accommodate a Möbius strip configuration by introducing an additional twist to the 

connections between the sites on opposite boundaries of a sample, allowing an 

antichiral edge state to travel unimpeded from one edge to the other without 

experiencing any spin-flip. We have verified this phenomenon using circuit simulations 

(Supplementary Fig. S4). In future work, it would be interesting to use circuit lattices 

to investigate how lattices with nontrivial vector potentials behave in Möbius strips and 

other non-traditional sample geometries. 

 

Methods 

Experimental setup: All circuits were implemented on FR4 printed circuit boards. 

Components consist of unshielded wire-wound inductors with 13 Ω series resistance, 

and ceramic capacitors. The input signal is produced by a function generator (Tektronix 

AFG3022C) connected to 9-turn, 8-mm-diameter air-core driving coils. The output 

signal is obtained with a pickup coil of the same dimensions, connected to a lock-in 

amplifier (Zurich Instrument MFLI).  

Circuit simulations: Circuit simulations were performed using the LTspice circuit 

simulator. Inductors are given series resistance 13 Ω, consistent with the inductors on 

the PCB. AC (steady state) analysis is used for the simulations shown in the main text, 

with a 1V sine wave as the source. The voltage at each inductor node is probed, and the 

amplitude and phase are used to derive the complex signal. 

 

Data availability  

The data that support the findings of this study in the paper are available from the 

corresponding author upon reasonable request. 
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Figures

Figure 1

Setup of the circuit. a Schematic of a modi�ed Haldane mode. Each unit cell consists of sites A and B,
with each site containing a pair of inductors. NN and NNN hoppings are indicated by black lines and
green arrows. b Schematic of the braided capacitive couplings between inductors on different sites for
NN hoppings (with zero phase) and NNN hoppings (with phase π/2) respectively. c Band diagram of a
semi-in�nite circuit lattice consisting of a strip 20 unit cells wide and in�nitely long, with zigzag
boundaries and circuit parameters L=3.3 mH, C1 =330 pF, and C2 =33 pF. d Intensity distributions at
wavenumber π/a for the two degenerate states at frequency 113.63 kHz (u2 and u3) and two
representative bulk states at 105.08 and 124.28 kHz (u1 and u4). The antichiral edge states are localized
to different edges but have the same group velocity.



Figure 2

Experimental characterization of bulk and edge states. a Photograph of a circuit corresponding to a
lattice with periodic boundaries in x and zigzag boundaries in y. The 20 sites in the sample are explicitly
numbered. Each site has an X and Y inductor (black cylinders), with NN and NNN hoppings implemented
via capacitors (yellow components). b Experimentally measured voltage amplitudes. For the red curve,
driving coils are placed on the X inductors at sites 2 and 12, and the pickup coil is placed on the Y
inductor at site 1; the excitation and measurement thus occur along one edge of the effectively semi-
in�nite strip, and the peak at 111.1 kHz (red star) is close to the predicted eigenfrequency of the antichiral
edge states. For the black curve, driving coils are placed on the X inductors at sites 1 and 4/6/8 (results
are averaged over the three driving con�gurations), and the pickup coil is placed on the Y inductor at site
17; this serves as a probe of the spatially-averaged density of states, and the lack of a dip in the response
shows the lack of a bulk band gap. c Circuit simulation results corresponding to Fig. 2b. For the strip
geometry, the response peaks at frequency 113.64 kHz, close to the experimental peak. d Voltage
amplitudes measured at different sites, showing strong edge localization at 111.1 kHz (red), and no edge
localization at frequency 117.6 kHz (blue). The driving coils are placed on the X inductors at sites 2 and
12, and the pickup coils are placed on the Y inductors at different sites.



Figure 3

Propagation of antichiral edge states in a �nite lattice. a Photograph of the circuit boards implementing a
128-site lattice with open boundary conditions (left panel), and the schematic of the lattice (right panel). b
Experimental results showing the voltage amplitude distribution at 112.7 kHz, produced by two driven
coils with 90° phase difference (so as to excite spin-up states) placed on inductors X and Y at a corner
site (marked by a black star). Red arrows indicate the expected propagation directions of the edge and
bulk states. c Experimentally measured relative dwell times along the top edge (blue) and bottom edge
(pink). The slopes of the linear least squares �ts correspond to group velocities of -22.2 μs/site (top edge)
and -23.7 μs/site (bottom edge). d Relative dwell times obtained from corresponding circuit simulations.
The slopes of the linear least squares �ts correspond to group velocities of -21.1 μs/site (top edge) and
-22.4 μs/site (bottom edge).
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