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M. Simard,49 P. Taras,49 F. B. Viaud,49 H. Nicholson,50 G. De Nardo,51 F. Fabozzi,51,x L. Lista,51 D. Monorchio,51

C. Sciacca,51 M. A. Baak,52 G. Raven,52 H. L. Snoek,52 C. P. Jessop,53 K. J. Knoepfel,53 J. M. LoSecco,53 G. Benelli,54

L. A. Corwin,54 K. Honscheid,54 H. Kagan,54 R. Kass,54 J. P. Morris,54 A. M. Rahimi,54 J. J. Regensburger,54 S. J. Sekula,54

Q. K. Wong,54 N. L. Blount,55 J. Brau,55 R. Frey,55 O. Igonkina,55 J. A. Kolb,55 M. Lu,55 R. Rahmat,55 N. B. Sinev,55

D. Strom,55 J. Strube,55 E. Torrence,55 N. Gagliardi,56 A. Gaz,56 M. Margoni,56 M. Morandin,56 A. Pompili,56

M. Posocco,56 M. Rotondo,56 F. Simonetto,56 R. Stroili,56 C. Voci,56 E. Ben-Haim,57 H. Briand,57 G. Calderini,57

J. Chauveau,57 P. David,57 L. Del Buono,57 Ch. de la Vaissière,57 O. Hamon,57 Ph. Leruste,57 J. Malclès,57 J. Ocariz,57

A. Perez,57 J. Prendki,57 L. Gladney,58 M. Biasini,59 R. Covarelli,59 E. Manoni,59 C. Angelini,60 G. Batignani,60

PRL 100, 081801 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
29 FEBRUARY 2008

0031-9007=08=100(8)=081801(7) 081801-1 © 2008 The American Physical Society



S. Bettarini,60 M. Carpinelli,60 R. Cenci,60 A. Cervelli,60 F. Forti,60 M. A. Giorgi,60 A. Lusiani,60 G. Marchiori,60

M. A. Mazur,60 M. Morganti,60 N. Neri,60 E. Paoloni,60 G. Rizzo,60 J. J. Walsh,60 J. Biesiada,61 P. Elmer,61 Y. P. Lau,61

C. Lu,61 J. Olsen,61 A. J. S. Smith,61 A. V. Telnov,61 E. Baracchini,62 F. Bellini,62 G. Cavoto,62 D. del Re,62 E. Di Marco,62

R. Faccini,62 F. Ferrarotto,62 F. Ferroni,62 M. Gaspero,62 P. D. Jackson,62 L. Li Gioi,62 M. A. Mazzoni,62 S. Morganti,62

G. Piredda,62 F. Polci,62 F. Renga,62 C. Voena,62 M. Ebert,63 T. Hartmann,63 H. Schröder,63 R. Waldi,63 T. Adye,64
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We report the observation of the b! d penguin-dominated decay B0 ! K�0 �K�0 with a sample of
383:2� 4:2 million B �B pairs collected with the BABAR detector at the PEP-II asymmetric-energy e�e�

collider at the Stanford Linear Accelerator Center. The measured branching fraction is B�B0 !
K�0 �K�0� � �1:28�0:35

�0:30 � 0:11	 
 10�6 and the fraction of longitudinal polarization is fL�B
0 !

K�0 �K�0� � 0:80�0:10
�0:12 � 0:06. The first error quoted is statistical and the second systematic. We also

obtain an upper limit at the 90% confidence level on the branching fraction for B�B0 ! K�0K�0�<
0:41
 10�6.
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The study of the branching fractions and angular distri-
butions of B meson decays to hadronic final states without
a charm quark probes the dynamics of both weak and
strong interactions, and plays an important role in under-
standing CP violation. Decays proceeding via electroweak
and gluonic b! d penguin diagrams have only recently
been measured in the decays B! �� [1] and B0 ! K0 �K0

[2]. On the other hand, the charmless decay B0 ! K�0 �K�0

proceeds through both electroweak and gluonic b! d
penguin loops to two vector particles (VV). The standard
model (SM) suppressed decay B0 ! K�0K�0 could appear
via an intermediate heavy boson.

Theoretical models in the framework of QCD factoriza-
tion predict the angular distribution of the VV decays of the
B meson, as measured by the longitudinal polarization
fraction fL, to be �0:9 for both tree- and penguin-
dominated decays [3]. However, recent measurements of
the pure penguin VV decay B! �K� indicate fL � 0:5
[4]. Several attempts to understand this unexpected value
of fL within or beyond the standard model have been made
[5]. Further information about decays related by SU�3�
symmetry may provide insight into this polarization puzzle
and test factorization models. A time-dependent angular
analysis of B0 ! K�0 �K�0 can distinguish between penguin
annihilation and rescattering as mechanisms for the value
of fL observed in B! �K� [6]. The B0 ! K�0 �K�0 mode
can also be used within the SM framework to help con-
strain the angles � and � of the unitarity triangle [7].

Theoretical calculations for B0 ! K�0 �K�0 branching
fractions cover the range �0:16–0:96� 
 10�6 [8].
Recently, Beneke, Rohrer, and Yang [9] predicted
�0:6�0:1�0:3

�0:1�0:2� 
 10�6 and fL � 0:69� 0:01�0:16
�0:20. Experi-

mentally, upper limits on the branching fractions at the
90% confidence level (CL) of 22
 10�6 and 37
 10�6

exist for B0 ! K�0 �K�0 and B0 ! K�0K�0, respectively
[10].

We report measurements of the branching fraction and
the fraction of longitudinal polarization for the decay mode
B0 ! K�0 �K�0, with explicit consideration of nonresonant
backgrounds and interference from K�0 �K�0�1430�. We
place an upper limit on the branching fraction of B0 !
K�0K�0, where we use the notation K�0K�0 to also repre-
sent �K�0 �K�0. Charge-conjugate modes are implied
throughout, and we assume equal production rates of
B�B� and B0 �B0.

This analysis is based on a data sample of 383:2� 4:2
million B �B pairs, corresponding to an integrated luminos-
ity of 348 fb�1, collected with the BABAR detector at the
PEP-II asymmetric-energy e�e� collider operated at the
Stanford Linear Accelerator Center. The e�e� center-of-
mass (c.m.) energy is

���
s
p
� 10:58 GeV, corresponding to

the ��4S� resonance mass (on-resonance data). In addition,
36:6 fb�1 of data collected 40 MeV below the ��4S�

resonance (off-resonance data) are used for background
studies.

The BABAR detector is described in detail in Ref. [11].
Charged particles are reconstructed as tracks with a 5-layer
silicon vertex detector and a 40-layer drift chamber inside a
1.5-T solenoidal magnet. An electromagnetic calorimeter
is used to identify electrons and photons. A ring-imaging
Cherenkov detector is used to identify charged hadrons and
provides additional electron identification information.
Muons are identified by an instrumented magnetic-flux
return.

The B0 ! K�0 �K�0 and B0 ! K�0K�0 candidates are
reconstructed through the decays K�0 ! K��� and
�K�0 ! K���. The differential decay rate, after integrat-

ing over the angle between the decay planes of the vector
mesons, for which the acceptance is uniform, is

 

1

�

d2�

dcos�1dcos�2
/

1�fL
4

sin2�1sin2�2�fLcos2�1cos2�2;

(1)

where �1 and �2 are the helicity angles of the K�0 or �K�0.
The helicity angle of the K�0� �K�0� is defined as the angle
between the K��K�� momentum and the direction oppo-
site to the B meson in the K�0� �K�0� rest frame [12].

The charged tracks from the K�0 decays are required to
have at least 12 hits in the drift chamber and a transverse
momentum greater than 0:1 GeV=c. The tracks are identi-
fied as either pions or kaons by measurement of the energy
loss in the tracking devices, the number of photons mea-
sured by the Cherenkov detector, and the corresponding
Cherenkov angles. These measurements are combined
with calorimeter information to reject electrons, muons,
and protons. We require the invariant mass of the K�0

candidates to be 0:792<mK� < 1:025 GeV=c2. A B me-
son candidate is formed from two K�0 candidates, with the
constraint that the two K�0 candidates originate from the
interaction region.
B meson candidates are characterized kinematically by

the energy difference �E � E�B �
���
s
p
=2 and the energy-

substituted mass mES � ��s=2� pi � pB�2=E2
i � p2

B	
1=2,

where �Ei;pi� and �EB;pB� are the four-momenta of the
��4S� and B meson candidate, respectively, and the aster-
isk denotes the ��4S� rest frame. The total event sample is
taken from the region �0:08  �E  0:2 GeV and
5:25  mES  5:29 GeV=c2. Events outside the region
j�Ej  0:07 GeV and 5:27  mES  5:29 GeV=c2 are
used to characterize the background. The average number
of signal B meson candidates per selected data event is
1.03. A single Bmeson candidate per event is chosen as the
one whose fitted decay vertex has the smallest �2.
Monte Carlo (MC) simulations show that up to 4%
(1.6%) of longitudinally (transversely) polarized signal
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events are misreconstructed, with one or more tracks orig-
inating from the other B meson in the event.

To reject the dominant background consisting of light-
quark q �q (q � u, d, s, c) continuum events, we require
j cos�T j< 0:8, where �T is the angle, in the c.m. frame,
between the thrust axes [13] of the B meson and that
formed from the other tracks and neutral clusters in the
event. We create a Fisher discriminant F to be used in the
maximum-likelihood (ML) fit, constructed from a linear
combination of five variables: the polar angles of the B
meson momentum vector and the B meson thrust axis with
respect to the beam axis, the ratio of the second- and
zeroth-order momentum-weighted Legendre polynomial
moments of the energy flow around the B meson thrust
axis in the c.m. frame [14], the flavor of the other B meson
as reported by a multivariate tagging algorithm [15], and
the boost-corrected proper-time difference between the
decays of the two B mesons divided by its variance. The
second B meson is formed by creating a vertex from the
remaining tracks that are consistent with originating from
the interaction region.

We suppress background from decays to charmed
states by removing candidates that have decays consistent
with D� ! K����� and an invariant mass in the range
1:845<mK����� < 1:895 GeV=c2. We reduce back-
grounds from B0 ! �K�0 by assigning the kaon mass to
the pion candidate and rejecting the event if the combined
invariant mass of the two charged tracks is between 1.00
and 1:04 GeV=c2. Finally, we require the cosine of the
helicity angle of both K�0 candidates to be less than 0.98 to
reduce the continuum background and avoid the region
where the reconstruction efficiency falls off rapidly.

We use an extended unbinned ML fit to extract the signal
yield and polarization simultaneously for each mode. The
extended likelihood function is

 L �
1

N!
exp

�
�
X
j

nj

�YN
i�1

�X
j

njP j� ~xi; ~�j�
�
: (2)

We define the likelihood Li for each event candidate i as
the sum of njP j� ~xi; ~�j� over four hypotheses j (signal, q �q
background, K�0�1430� and B �B backgrounds as discussed
below), where P j� ~xi; ~�j� is the product of the probability
density functions (PDFs) for hypothesis j evaluated for the
ith event’s measured variables ~xi, nj is the yield for hy-
pothesis j, and N is the total number of events in the
sample. The quantities ~�j represent parameters in the
expected distributions of the measured variables for each
hypothesis j. Each discriminating variable ~xi in the like-
lihood function is modeled with a PDF, where the parame-
ters ~�j are extracted from MC simulation, off-resonance
data, or �mES;�E� sideband data.

The seven variables ~xi used in the fit are mES, �E, F ,
and the invariant masses and cosines of the helicity angle
of the two K�0 candidates. Since the correlations among

the fitted input variables are found to be on average �1%
with a maximum of 4%, we take each P j to be the product
of the PDFs for the separate variables. The effect of ne-
glecting correlations is evaluated by fitting ensembles of
simulated experiments in which we embed signal and
background events randomly extracted from fully simu-
lated MC samples.

The two invariant mass and helicity angle distributions
for eachK�0 meson are indistinguishable, and so we use the
same PDF parameters for both K�0 candidates. Peaking
PDF distributions are described with an asymmetric
Gaussian or a sum of two Gaussians. The transverse (lon-
gitudinal) helicity angle distributions are described with a
cos2� (sin2�) function corrected for changes in efficiency
as a function of helicity angle. The B �B backgrounds use an
empirical nonparametric function for �E, the masses, and
helicity angles. The continuum background mES shape is
described by the function x

��������������
1� x2
p

exp����1� x2�	 (with
x � mES=E�B and � a free parameter) [16], and a first- or
third-order polynomial is used for �E and the helicity
angles, respectively. The continuum invariant mass distri-
butions contain real K�0 candidates; we model the peaking
mass component using the parameters extracted from the
fit to the signal invariant mass distributions together with a
second-order polynomial to represent the nonpeaking
component.

We use the decay B0 ! D����D� ! K�0��� as a
calibration channel to account for small differences be-
tween MC simulation and reconstructed data. This decay
has a similar topology to the modes under study and is
selected using the same criteria as for K�0 �K�0 but requiring
the reconstructed K�0�� invariant mass to be in the range
1:845<mK�0�� < 1:895 GeV=c2. We predict 1860� 186
signal events and measure 1614� 47.

We use MC-simulated events to study backgrounds from
other B meson decays. The major charmless B �B back-
ground to B0 ! K�0 �K�0 is B0 ! �K�0, while charm B �B
backgrounds are effectively suppressed by the requirement
that the two pions (and kaons) have opposite charge. For
B0 ! K�0K�0, B0 ! �K�0 remains the major charmless
B �B background, but a number of charm decays contami-
nate the signal, dominated by decays of the type B0 !
D�K� and B� ! D0K�. Given the uncertainty in the
polarization and branching fractions of these backgrounds,
we allow the B �B background yield to float in the fit.

A possible background is the decay B0 !
K�0 �K�0�1430�. We use the LASS parametrization for the
�K�0�1430� line shape, which consists of the �K�0�1430�

resonance together with an effective-range nonresonant
component [17]. We apply the same selection criteria
used for K�0 �K�0 but require one of the K�0 candidates to
have an invariant mass in the range 1:025<mK� <
1:53 GeV=c2 and perform an extended unbinned ML fit
with the four variables mES, �E, F , and the K�0 mass. We
fit the LASS parametrization to the selected signal events
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in the �K�0�1430� mass range and extrapolate to the K�0

mass range. Interference effects between the K�0 and the
spin-0 final states [nonresonant and �K�0�1430�] integrate to
zero as the acceptance of the detector and analysis is
uniform. Assuming no interference, we expect 6� 5 B0 !
K�0 �K�0�1430� events in the fitted B0 ! K�0 �K�0 signal
region. The uncertainty on the contribution is calculated
from the statistical error and the large uncertainty in the
fitted LASS parameters used to describe the �K�0�1430� line
shape. We fix the yield in the final fit and vary the yield by
its error to assess the systematic uncertainty.

The continuum background PDF parameters that are
allowed to vary are the F peak position, � for mES, the
slope of �E, and the polynomial coefficients and normal-

ization describing the mass and helicity angle distributions.
We fit for B and fL directly and exploit the fact that B is
less correlated with fL than is either the yield or the
efficiency taken separately.

The total event sample consists of 7363 and 1390 events
for B0 ! K�0 �K�0 and B0 ! K�0K�0, respectively. The re-
sults of the ML fits are summarized in Table I. The B �B
background yield agrees with the MC prediction within the
statistical errors. The significance S of the signal is defined
as S � 2� lnL, where � lnL is the change in likelihood
from the maximum value when the number of signal events
is set to zero, corrected for the systematic error defined
below. The robustness of the significance estimate is cross-
checked through fitting a series of toy MC ensembles
generated from the fitted parameters. The significance of
the B0 ! K�0 �K�0 branching fraction is 6	, including sta-
tistical and systematic uncertainties. For B0 ! K�0K�0, we
compute the 90% CL upper limit as the branching fraction
below which lies 90% of the total likelihood integral,
taking into account the systematic uncertainty. Figure 1
shows the projections of the fits onto mES, �E, K�0 mass
and cosine of the K�0 helicity angle for B0 ! K�0 �K�0.

Systematic uncertainties in the branching fractions are
dominated by our knowledge of the PDF modeling.
Varying the PDF parameters by their errors results in
changes in the yields of 6.5% and 19.0% for B0 !
K�0 �K�0 and B0 ! K�0K�0, respectively. The largest con-
tribution comes from the width of the K�0.

The reconstruction efficiency depends on the decay
polarization. We calculate the efficiency using the mea-
sured polarization and assign a systematic error from the

TABLE I. Summary of results: signal yield nsig, the B �B back-
ground yield nB �B, signal reconstruction efficiency " [taking into
account that B�K�0 ! K���� � 2=3], significance S (system-
atic uncertainties included), branching fraction B, 90% CL
upper limit for B0 ! K�0K�0 branching fraction, and the longi-
tudinal polarization fL. The first error given is statistical and the
second is systematic.

Channel K�0 �K�0 K�0K�0

nsig 33:5�9:1
�8:1 2:7� 3:3

nB �B 19� 12 68� 29
" (%) 6.8 6.4
S�	� 6 0.9
B�10�6� 1:28�0:35

�0:30 � 0:11 0:11�0:16
�0:11 � 0:04

UL B�10�6� � � � 0.41
fL 0:80�0:10

�0:12 � 0:06 1:0� 1:0
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FIG. 1 (color online). Projections of the multidimensional fit onto (a) mES; (b) �E; (c) K�0 mass; and (d) cosine of K�0 helicity angle
for B0 ! K�0 �K�0 events selected with a requirement on the signal-to-total likelihood probability ratio, optimized for each variable,
with the plotted variable excluded. The points with error bars show the data; the solid line shows signal-plus-background; the dashed
line is the continuum background; the hatched region is the signal; and the shaded region is the B �B background.
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uncertainty on fL of 3.4% and 27.0% for B0 ! K�0 �K�0 and
B0 ! K�0K�0, respectively. Figure 2 shows the behavior of
�2 lnL�B; fL� for the B0 ! K�0 �K�0 mode.

The uncertainties in PDF modeling and fL are additive
in nature and affect the significance of the branching
fraction results. Multiplicative uncertainties include recon-
struction efficiency uncertainties from tracking (3.2%) and
particle identification (4.4%), track multiplicity (1%), MC
signal efficiency statistics (0.6%), and the number of B �B
pairs (1.1%). Variation of the expected yield from B0 !
K�0 �K�0�1430� events has a negligible effect on the signal.

The systematic uncertainty in fL is dominated by the
PDF shape variations, which contribute 7% for B0 !
K�0 �K�0 and 20% for B0 ! K�0K�0. Other errors identified
above for the branching fraction have a very small effect on
fL and contribute in total 0.7%. The total systematic error
is summarized in Table I.

In summary, we have measured the branching fraction
B�B0 ! K�0 �K�0� � �1:28�0:35

�0:30�stat� � 0:11�syst�	 
 10�6

with a significance of 6	. We find the fraction of longitu-
dinal polarization fL � 0:80�0:10

�0:12�stat� � 0:06�syst�. Both
results are in agreement with the upper range of theoretical
predictions. The 90% CL upper limit on the branching
fraction B�B0 ! K�0K�0�< 0:41
 10�6 is 2 orders of
magnitude more stringent than previous measurements.
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FIG. 2 (color online). Distribution of �2 lnL�B; fL� for B0 !
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