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Einstein’s 1925 paper predicted the occurrence of Bose–Einstein
condensation (BEC) in an ideal gas of non-interacting bosonic
particles1. However, particle–particle interaction and peculiar
excitation spectra are keys for understanding BEC and
superfluidity physics. A quantum field-theoretical formulation
for a weakly interacting Bose condensed system was developed by
Bogoliubov in 1947, which predicted the phonon-like excitation
spectrum2 in the low-momentum regime. The experimental
verification of the Bogoliubov theory on the quantitative level
was carried out for atomic BEC3 using the two-photon Bragg
scattering technique4. Exciton-polaritons in a semiconductor
microcavity, which are elementary excitations created by strong
coupling between quantum-well excitons and microcavity
photons, were proposed as a new BEC candidate in solid-state
systems5. Recent experiments with exciton-polaritons have
demonstrated several interesting signatures from the viewpoint
of polariton condensation, such as quantum degeneracy at
non-equilibrium conditions6–8, the polariton-bunching effect
at the condensation threshold9, long spatial coherence10–12

and quantum degeneracy at equilibrium conditions13. The
particle–particle interaction and the Bogoliubov excitation
spectrum are at the heart of BEC and superfluidity physics, but
have only been studied theoretically for exciton-polaritons14,15.
In this letter, we report the first observation of interaction effects
on the exciton-polariton condensate and the excitation spectra,
which are in quantitative agreement with the Bogoliubov theory.

In a semiconductor microcavity with single or multiple
quantum wells (QWs), eigenstates are altered to the new
normal modes, called exciton-polaritons, when the cavity
photon/QW-exciton coupling rate exceeds the decay rates of
the photon and exciton. The exciton-polariton is a promising
solid-state system for studying the dynamical condensation
phenomena in solids5,16. Because its effective mass is eight orders
of magnitude smaller than that of a hydrogen atom and four
orders of magnitude smaller than exciton mass, the critical
temperature of the polariton Bose–Einstein condensation (BEC)
transition is expected to be up to room temperature. The leakage
photons carry identical energy and in-plane momentum to
the internal polaritons, thus it is possible to directly measure

the energy–momentum dispersion relation and population
distribution of the polaritons by an angle-resolved spectroscopy
technique. This important information is available for liquid-4He
systems only through ‘quantum evaporation’17 and for gaseous
atoms only through ‘Feshbach resonance controlled free expansion’.

The exciton-polariton trap used in our experiment is shown
in Fig. 1a. Three stacks of four GaAs QWs are embedded at the
central three antinode positions of an AlAs/AlGaAs distributed
Bragg reflector planar microcavity. The normal-mode splitting is
2g0 ∼ 15 meV and the cavity photon lifetime is 2 ps. This leads to
a k = 0 lower-polariton (LP) lifetime of ∼4 ps at zero detuning,
∆ ≡ EC − EX = 0, where k is the in-plane wavenumber and EC

and EX are the cavity and QW exciton energies at k = 0. The
trap potential of ∼200 µeV is provided by a hole surrounded by a
thin metal (Ti/Au) film18. The cavity resonant field normally has
an antinode at the AlGaAs–air interface. However, the antinode
position is shifted inside the AlGaAs layer with the metal film as
shown in Fig. 1a, which results in a blueshift of the cavity resonance
and the LP energy. In our experiment, the LPs were confined
in circular holes of varying diameters from 5 µm to 100 µm. In
a trap with 5–10 µm diameter, a single fundamental transverse
mode dominates the condensation dynamics over other higher-
order modes owing to the relatively weak confining potential.

The total number n of LPs injected into a trap by the pump
pulse and the number n0 of the LP centred at k = 0 and within
|k| 6 4 × 103 cm−1, corresponding approximately to the trapped
ground state, are plotted in Fig. 1b as a function of normalized
pump rate P/Pth. The fractional ratio n0/n increases nonlinearly
at the condensation threshold and reaches a maximum of ∼0.6
at P/Pth ∼ 6.

The top panels in Fig. 1c show the near-field emission patterns
from a trap with 8 µm diameter at pump rates below, just above
and well above the condensation threshold. The measured standard
deviations for the polariton position 1x and the wavenumber
1k are plotted as functions of P/Pth in Fig. 1c. Sudden decreases
in 1x and 1k were clearly observed at P ∼= Pth. Just above
threshold, the measured uncertainty product 1x1k is ∼0.98,
which may be compared to the Heisenberg limit (1x1k ∼ 0.5)
for a minimum-uncertainty wavepacket. The monotonic increase
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Figure 1 An exciton-polariton condensate in a single-mode trap. a, A schematic diagram of a polariton trap formed by a thin metal film (Ti/Au: 4/20 nm) on top of a
microcavity structure with circular holes (diameter : 4–100 µm). The microcavity consists of a l/2 AlAs optical cavity layer sandwiched by two distributed Bragg reflectors

with alternating AlGaAs/AlAs l/4 layers, where l is the cavity resonance wavelength. Three stacks of four GaAs QWs are placed at the central three antinodes of the

microcavity photon field. A photon-field amplitude has an antinode at an AlGaAs–air interface without a metal film, whereas a deposited thin metal film pushes an antinode

position inside the AlGaAs layer, which results in the blueshift of the cavity resonance and the lower polariton (LP) energy. The blueshift of the LP energy under the metal film

is typically ∼200 µeV. b, The total number n of LPs injected into a trap (pink dashed line) and number n0 of the LP centred at k = 0 and within |k| 6 4×103 cm−1 (red

circles), which approximately corresponds to the LP number of the ground state of the trap, are plotted as functions of P/Pth. Inset: The fractional population n0/n as a

function of P/Pth. The linearly polarized laser beam is injected with an angle of 60
◦
(k = 7×104 cm−1 ) into a trap with 8 µm diameter, where the detuning parameter is

∆= 5.4meV. c, The measured standard deviations of LP distribution in coordinate 1x (blue circles) and in wavenumber 1k (red crosses) are plotted as a function of

P/Pth. Theoretical values for 1x and 1k obtained by the GP equation are shown by blue and red solid lines (Supplementary Information, S1). Top panels are the near-field

images at three different pump levels: 0.3Pth, Pth and 2.5Pth. d, The measured LP energy shift at k = 0 (blue diamonds) and energy shift U (n ) calculated by equation (1)

(light-blue solid line) are plotted as functions of the total number of polaritons. The numerical results by the GP equation, including the effect of pump-dependent condensate

size, are shown by red circles (Supplementary Information, S1).

in 1x and 1x1k at higher pump rates stems from the
repulsive interaction among LPs in a condensate and is well
reproduced by theoretical analysis using the Gross–Pitaevskii (GP)
equation as shown in Fig. 1c (Supplementary Information, S1 for
detailed theoretical analysis and Supplementary Information, S2 for
complete experimental data.)

The k = 0 LP energy is blueshifted with the number of
polaritons as shown in Fig. 1d. This is a direct manifestation of the
aforementioned repulsive interaction among LPs in a condensate.
The k = 0 LP energy shift U (n) is calculated by the relation

U (n) =
1

2
δEX +

√

g2
0 +

∆2

4
−

√

g(n)2 +
(∆− δEX )2

4
, (1)

where δEX = EB(n/ns) and g(n) = g0(1 − (n/n′
s)) represent

the blueshift of the QW exciton energy due to fermionic

exchange interaction19,20 and the reduced normal-mode
splitting due to phase-space filling and fermionic exchange
interaction21, respectively. ns = (NQWS/2.2πa∗

B
2|X|2) and

n′
s = (NQWS/4πa∗

B
2|X|2) are the saturation polariton numbers

for the above two nonlinear processes, respectively. a∗
B is the QW

exciton Bohr radius, NQW =12 is the number of QWs, g0 ≈7.5 meV
is the photon–exciton coupling strength, S is the cross-sectional
area of the condensate and |X|2 = (1/2)[1+∆/

√
4g2

0 +∆] is the
exciton fraction of the k = 0 LP.

If we ignore the pump-rate dependency of the condensate
cross-sectional area and assume a constant cross-sectional
area determined by the trap area S = π(4 × 10−4 cm)2, the
theoretical energy shift is shown by the light-blue line in Fig. 1d.
We can numerically solve the GP equation to incorporate
the pump-rate-dependent condensate size (see Supplementary
Information, S1). The results are shown by red circles in
Fig. 1d. These two theoretical predictions are compared with
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Figure 2 Polarization dependency of the excitation spectrum for an untrapped condensate system. a, A linear plot of the intensity; b–d three-dimensional logarithmic

plots of the intensity to magnify the excitation spectra. Time-integrated dispersion relation between the LP energy (in the range of 8 meV centred at 1.609 eV) versus in-plane

wavenumber for the untrapped condensate system, where the detuning parameter is ∆= 1.4meV and the pump rate is P= 3Pth (Pth = 17mW). A circularly polarized pump

beam was incident with an angle of 60
◦
. Three detection schemes: detection of the leakage photons with the cocircular polarization as the pump beam (a,b), detection of the

cross-circular polarization (c) and detection of a small amount of mixture of the cocircular polarization with the cross-circular polarization (d). The theoretical curves

represent the Bogoliubov excitation energy EB (pink line), the quadratic dispersion relations E
′
LP (black line), which start from the condensate energy, and the non-interacting

free-polariton dispersion relation ELP (white line), which is experimentally determined by the data taken far below the threshold P= 0.001Pth.

the experimental results (blue diamonds). We note that the
above-mentioned nonlinear model based on weakly interacting
bosons19–21 can reproduce the experimental data only in
low-polariton-density regimes. Therefore, we use the experimental
values (not theoretical values) for U (n) as the interaction
energy in subsequent discussions for the universal feature of the
Bogoliubov excitations.

The dispersion relations between the LP energy E and in-plane
wavenumber k obtained by the angle-resolved spectroscopy are
shown for the pump rate above threshold P/Pth = 3 in Fig. 2.
Figure 2a represents a linear plot of the intensity, whereas Fig. 2b–d
use logarithmic plots of the intensity to magnify the excitation
spectra. Here we show an ‘untrapped’ case, where the pump spot
size (diameter ∼ 30 µm) is considerably smaller than the trap size
(diameter ∼ 90 µm). In such a case, the LP condensate is formed in
an area determined by the pump spot size and the pump rate rather
than the trap size owing to the limited lateral diffusion and varying
spatial density of the LPs12,18. Above threshold, two drastic changes
are noticed compared with the standard quadratic dispersion
observed far below threshold. One is the blueshift of the k = 0 LP
energy and the other is the phonon-like linear dispersion relation
in the low-momentum regime |kξ| < 1, where ξ = h̄/

√
2mU (n)

is the healing length. White and black lines in Fig. 2b represent

the two quadratic dispersion relations, ELP =−U (n)+((h̄k)2/2m)
and E′

LP = ((h̄k)2/2m), where m is the effective mass of the k = 0
LP. Here we choose the zero energy as the condensate energy for
convenience. Neither of the two theoretical curves can explain the
measurement result. A solid pink line in Fig. 2b is the Bogoliubov
excitation energy, given by22,23

EB =
√

E′
LP(E′

LP +2U (n)) = U (n)
√

(kξ)2[(kξ)2 +2]. (2)

The measured dispersion relation for the excitation energy versus
in-plane wavenumber is in good agreement with the Bogoliubov
excitation spectrum without any fitting parameter.

A circularly polarized pump laser beam was used to inject
spin-polarized LPs in this experiment. In such a case, the LP
condensate preserves the original spin polarization of optically
injected polaritons24. The result shown in Fig. 2b was taken for
detecting the leakage photons with the same circular polarization
as that of the pump (cocircular detection). If leakage photons with
cross-circular polarization were detected, the standard quadratic
dispersion was obtained but with slightly blueshifted energy, as
shown in Fig. 2c. Even though the circularly polarized pump
beam is injected, a small number of cross-circularly polarized
photons was detected because of the spin-flip relaxation during
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Figure 3 Pump-rate dependency of the excitation spectrum for a trapped condensate system. a–d, Time-integrated dispersion relations between the LP energy (in the

range of 8 meV centred at 1.61 eV) versus in-plane wavenumber. The circularly polarized pump beam is injected into a trap with 8 µm diameter, where the detuning

parameter is ∆= 1.6meV. Pump rates are P= 0.05Pth (a), P= 1.2Pth (b), P= 4Pth (c) and P= 6Pth (d), where Pth = 4mW. Three theoretical curves represent the

Bogoliubov excitation energy EB on the basis of the homogeneous model (pink line), the quadratic dispersion curve E
′
LP starting from the condensate energy (black line) and

the non-interacting free-polariton quadratic dispersion curve ELP (white line) that is determined by the experimental data shown in a. In b the light-blue dotted line shows the

Bogoliubov excitation curve based on the local-density approximation (Supplementary Information, S3).

a cooling process24. On increasing the pump rate, the number
of LPs with opposite spin is also increased, so their energy
is blueshifted compared with the single-polariton energy ELP

(white line) in Fig. 2c. In Fig. 2d we intentionally mixed a
small number of the cocircular polarized photons to be detected
with the cross-circular polarized photons. The difference between
the Bogoliubov excitations with cocircular polarization and the
standard quadratic excitation with cross-circular polarization is
clearly seen.

The dispersion curves for the LP condensate in a trap with
8 µm diameter are shown in Fig. 3 for below and above threshold.
The increasing blueshift of the condensate energy with the pump
rate is seen from Fig. 3b to d. The Bogoliubov excitation energy
is modified if the density of a condensate is not homogeneous
in space owing to trapping in a finite size25. The light-blue
dotted line in Fig. 3b is the modified Bogoliubov excitation
energy based on the local density-dependent excitation energy
EB(r) =

√
E′

LP(E′
LP +2U (n)) and the spatial average of EB(r),

where U (n) varies with position (Supplementary Information, S3).
In the phonon-like regime (|kξ| < 1), the Bogoliubov dispersion
is still linear, E ≈ C ′k. However, the speed of sound is not equal
to C =

√
U (n)/m as in the homogeneous case, but is slightly

reduced. In the free-particle regime (|kξ| > 1), the dispersion is
still quadratic, EB(|kξ| > 1) ≈ U ′(n) + ((h̄k)2/2m). Here, the

off-set energy U ′(n) is also given by the spatial average of U (n).
Just above threshold, the experimental result agrees with such
an inhomogeneous model (light-blue dotted line) rather than
a homogeneous model (pink solid line). However, as shown in
Fig. 3c,d, the excitation spectra of the trapped condensates well
above threshold are well reproduced by the homogeneous model.
According to the local density approximation, at relatively high
pump rates, the trapped condensate spreads over the entire trap
owing to the repulsive interaction among condensate polaritons
and thus interacts with the excitations uniformly. Such a system
can be well described by the homogeneous model (Supplementary
Information, S3).

As indicated by equation (2), the Bogoliubov excitation energy
normalized by the interaction energy EB/U (n) is a universal
function of the wavenumber normalized by the healing length kξ.
In Fig. 4a, this universal relation (green solid line) is compared with
the experimental results for four different untrapped condensate
systems. The experimental data shown in Fig. 4a are taken by
numerical search for the intensity maximum wavenumber for
varying E values. In both the phonon-like regime at |kξ| < 1 and
the free-particle regime at |kξ| > 1, the experimental results agree
well with the universal curve. On the other hand, at a pump rate
far below threshold, the measured dispersion relation is completely
described by the single-polariton energy ELP (red solid line).
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Figure 4 Dispersion relation, energy shift in free-particle regime and population distribution in excitation spectrum. a, Numerically searched excitation energy

normalized by the interaction energy E/U (n ) as a function of normalized wavenumber kξ for four different untrapped condensate systems. A, ∆= 1.41meV, P= 4Pth

(Pth = 6.3mW); B, ∆= 0.82meV, P= 8Pth (Pth = 8.2mW); C, ∆= 4.2meV, P= 4Pth (Pth = 6.4mW); D, ∆= −0.23meV, P= 24Pth (Pth = 8.2mW). The experimental

data far below threshold are also plotted by blue crosses for system A. Three theoretical dispersion curves normalized by the interaction energy are plotted: the Bogoliubov

excitation energy EB/U (n ) starting from the condensate energy (green solid line), the quadratic dispersion curves E ′
LP/U (n ) (grey solid line) and the free-polariton dispersion

ELP/U (n ) (red solid line). b,c, The energy shift EB − ELP in the free-particle regime (|kξ| = 1) is plotted as a function of the interaction energy U (n ) for the same four different

untrapped systems as in a (b) and for four different trapped systems (c), where trapped condensate systems are labelled as follows: E, d (diameter)= 7 µm, ∆= 3.3meV; F,

d= 7 µm, ∆= 2.9meV; G, d= 8 µm, ∆= 1.6meV; H, d= 8 µm, ∆= 2.5meV. The dashed line represents the theoretical prediction on the basis of the homogeneous

model EB − ELP = 2U (n ). d, LP population distribution normalized by the value at kξ = 0.5 for the trapped system G (in c) at the pump rate P= 2Pth (Pth = 4mW). The

theoretical 1/k 2 dependency for the thermal depletion is shown by the blue solid line. The experimental data are plotted in the range of kξ = 0.2–0.6 because the

experimental data at |kξ| < 0.2 are dominated by the condensate with a finite 1k and the Bogoliubov excitation is suppressed (see Supplementary Information, S3).

The sound velocity deduced from the phonon-like linear
dispersion spectrum is of the order of ∼108 cm s−1. This value is
eight orders of magnitude larger than that of atomic BEC. This
enormous difference comes from the fact that the polariton mass
is eight orders of magnitude smaller than the atomic mass and
the polariton interaction energy is seven orders of magnitude
larger than the atomic interaction energy. According to the
Landau criterion26, the observation of this linear dispersion in the
low-momentum regime is an indication of superfluidity in the
exciton-polariton system. However, we note that a polariton system
is a dynamical system with a finite lifetime, so the Landau criterion
might be modified on a quantitative level.

In the free-particle regime (|kξ| > 1), the excitation energy
associated with the condensate is larger by 2U (n) than that
of a single LP for the same wavenumber. In Fig. 4b,c, this
important prediction of the Bogoliubov theory is compared with
the experimental results for four different untrapped and trapped
condensate systems, respectively. The experimental data were
determined as the difference between the measured excitation
energy with the presence of the condensate and the standard
quadratic dispersion for a single LP state, which is determined by
the experimental data obtained for a pump rate far below threshold
(P/Pth ≪ 1). The experimental data were taken for varying pump

rates in the range of P/Pth ≫ 1 so that the homogeneous model can
be applied to both untrapped and trapped cases. The experimental
data are in good agreement with the theoretical curve (grey dashed
line) for both untrapped and trapped cases.

Figure 4d shows the normalized LP number nk/n0
k versus the

normalized wavenumber |kξ| for a trapped condensate, where n0
k is

evaluated at |kξ|=0.5 for convenience. The LP occupation number
nk in the excitation spectrum can be calculated by applying the
Bose–Einstein distribution for the Bogoliubov quasiparticles and
subsequently taking the inverse Bogoliubov transformation22,

nk = |v−k|2 +
|uk|2 +|v−k|2

exp(βEB)−1
, (3)

where uk,v−k = ±
[

(h̄k)2/2m+U (n)

2EB

±
1

2

]1/2

and β =
1

kBT
.

The first and second terms of the right-hand side of equation (3)
represent the real particles (exciton-polaritons) created by the
quantum depletion and the thermal depletion, respectively. In
the present polariton condensate system, the thermal depletion is
much stronger than the quantum depletion, so the second term of
the right-hand side of equation (3) dominates over the first term
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(Supplementary Information, S4). In such a case, the LP population
is approximated by nk ≈ (mkBT/(h̄k)2) in the small-|kξ| regime,
whereas the LP population is given by nk ≈ (1/2

√
2)(1/kξ) if

the quantum depletion is dominant22. This theoretical prediction
of 1/k2 dependency of nk for thermal depletion is compared
with the experimental data in Fig. 4d and reasonable agreement
was obtained.

Received 25 February 2008; accepted 25 June 2008; published 1 August 2008.
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