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Observation of coherent destruction of tunneling
and unusual beam dynamics due to
negative coupling in three-dimensional photonic lattices
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We demonstrate coherent destruction of tunneling (CDT) in optically induced three-dimensional photonic lattices.
By fine-tuning the lattice modulation, we show unusual behavior of beam propagation, including light tunneling
inhibition, anomalous diffraction, and negative refraction mediated by zero or negative coupling in the waveguide
arrays. Image transmission based on CDT is also proposed and demonstrated. Our experimental results are in good

agreement with our theoretical analyses.
OCIS codes: 160.5293, 190.4420, 130.2790.

Wave propagation in periodic structures occurs in many
branches of physics. In optics, photonic lattices have
served as a test bench for studying both linear and non-
linear wave phenomena in discrete systems [1,2]. It has
been shown that longitudinal modulation in one- or
two-dimensional (2D) lattices provides additional possibi-
lities for control of beam propagation, even in the linear
regime. For example, diffraction management [3], inhibi-
tion of light tunneling [4,5], multicolor dynamic localiza-
tion [6], Rabi oscillation [7], and negative coupling [8] have
been proposed and demonstrated in longitudinally
modulated or curved waveguide arrays. Much richer phe-
nomena are expected in three-dimensional (3D) photonic
lattices [9-11], but their experimental demonstration re-
mains a challenge owing to the difficulties in fabricating
the desired 3D lattice structures. Recently, 3D photonic
lattices have been created with the optical induction tech-
nique [12,13]. In this Letter, we demonstrate optical
control of beam propagation dynamics in 3D photonic lat-
tices. By using lattice superposition, we propose a way of
optical induction of 3D photonic structures in bulk non-
linear materials. Inhibition of light tunneling, or better
known as coherent destruction of tunneling (CDT), in
two transverse dimensions is first demonstrated. In addi-
tion to CDT-based image transmission, anomalous diffrac-
tion and negative refraction resulting from negative
coupling in the waveguide arrays are also proposed and
demonstrated. Our experimental results are corroborated
with theoretical and numerical analyses.

Propagation of an optical beam in a 3D photonic lattice
optically induced in a biased photorefractive crystal can
be described by the following Schrédinger equation:

(%_§v2> ) = i/ + ). (1)

where V* = 0%/02® +0%/dy” is the term determining
transverse diffraction, u(7") is the amplitude of the probe
beam, and I, is the intensity of the lattice-inducing beam.
To induce a 3D photonic lattice with out-of-phase index
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modulation along the z direction among the adjacent
waveguides [5,9,11], we choose I, = (2 + A cos Kz)
cos?(mx/N)cos?(ny/N) + (2 - A cos Kz)sin?(zx/A)sin?
(zy/N\), where A is the transverse lattice spacing and A
and K determine the normalized amplitude and the mod-
ulation frequency along the z direction, respectively, as
shown in Fig. 1. To analyze the beam dynamics in our
optically induced 3D lattice, let us start with a model
from the coupled-mode theory:

.du
¢ dz’n + C(um+1.n T U100+ Ummt1 + um””’l)
A
+ E (_1)m+n COS(KZ)um,n =0, (2)

where C is the coupling coefficient between adjacent
waveguides. Using the asymptotic analysis [5,9,14], we
obtain the effective (or average) coupling coefficient
as C = KJ((A/K). In addition, by numerically employing
Floquet theory [14], the coefficient C is computed from
the quasi-energy band edges. Figure 1(c) depicts typi-
cal numerical (shaded areas) and analytical (dashed
curve) results, which show that the coupling coefficient
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Fig. 1. (Color online) (a) Intensity patterns of the lattice-
inducing beam at different transverse (x—y) planes marked
by dashed lines in (b) side view (y—=) of the lattice beam pro-
pagating along the longitudinal z direction when the amplitude
of modulation A = 0.4. (¢) Numerical (shaded areas) and anal-
ytical (dashed curve) results of Floquet quasi-energies ¢; versus
lattice modulation.
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oscillates between positive and negative values as the
modulation parameter A/K along the z direction varies.
In particular, the coefficient C approaches zero at certain
points, which corresponds to the CDT condition under
which inhibition of light tunneling occurs. Near these
zero-coupling points, discrete diffraction of light due to
waveguide coupling is dramatically suppressed [5,9], pro-
viding a new way for distortion-free image transmission.
Furthermore, C' can become negative at some increased
modulations, which could lead to reversal of bandgap
structures [15,16]. It is in these negative-coupling regimes
that we expect to see anomalous diffraction and negative
refraction associated with band reversal within the first
Brillouin zone [15-18].

Our experimental approach for generation of 3D photo-
nic lattices in a biased SBN crystal is illustrated in Fig. 2,
where the 3D lattice-inducing beam is composed by super-
position of two mutually incoherent lattice beams—one
has decreasing intensity from input to output facets of
the crystal, while the other has increasing intensity. Be-
cause of the need to match the waveguide coupling length
[5,9], our induced lattice (30 ym transverse lattice spa-
cing) has only a half modulation period along the 2 direc-
tion, as limited by the 2-cm-long crystal, yet it is enough for
observing the predicated phenomena as a proof of princi-
ple. By adjusting the imaging plane of the amplitude mask
and spatial coherence of the lattice-inducing beam, the in-
tensity gradient along the z direction for each lattice beam
is changed individually. Therefore, the induced structure
can be “fine-tuned” by varying the intensity gradients of
the two lattice-inducing beams while keeping the total
beam intensity in the middle of the crystal essentially un-
changed. Figure 2(b) shows a few typical snapshots of the
lattice pattern taken at different transverse planes of the
crystal.

We first perform a numerical simulation parallel to our
experimental work by solving Eq. (1) with the beam pro-
pagation method (BPM). The BPM simulation results for
a focused Gaussian probe beam propagating through the
3D photonic lattice at different 2 modulations are dis-
played in Figs. 3(al)—(a3), where the normalized param-
eters used in simulation are A =8, K = 0.084, and
2 = 80. Indeed, as expected from the theory, propagation

Fig. 2. (Color online) (a) Schematic of optical induction of 3D
lattices in a biased nonlinear crystal by superposition of two
lattice beams with opposite intensity gradients along z;
(b) experimental results of transverse patterns taken at the
three different z positions marked in the right panel of (a), cor-
responding to input, middle, and output facets of the crystal.
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of the probe beam is strongly affected by the 2z modula-
tion. At A = 0 (corresponding to a 2D lattice, i.e., no 2
modulation), the probe beam exhibits strong discrete
diffraction, but such diffraction is completely suppressed
at A =0.4 (corresponding to the CDT condition). In
Fig. 3(a4), we show typical beam propagation along
the z direction obtained under the CDT condition
A = 0.4. However, coupling-induced diffraction comes
back with further increase of the z modulation to A =
1.0 [Fig. 3(a3)]. Our corresponding experimental results
are shown in Figs. 3(b1)—(b3), obtained by sending a cir-
cular Gaussian beam into the 3D lattice established in
Fig. 2. In agreement with the simulation, the first order
of CDT is observed at A = 0.4, but discrete diffraction
occurs again at further increased z modulation. In fact,
as the modulation is increased even further, we found
that higher-order CDT also takes place due to the oscilla-
tion of the coupling coefficient shown in Fig. 1(c). Spe-
cifically, the second-order CDT occurs at A = 1.6, and
then it is destroyed again by strong coupling at A = 2.0.

Next, we demonstrate the principle of image transmis-
sion at the CDT condition. To do so, we simply launch an
input image of a “+” pattern into the lattice structure and
examine the output at different levels of z modulation.
The simulation and experimental results are shown in
Figs. 3(c) and 3(d), respectively. In the 2D lattice (A = 0),
the input image is strongly distorted after propagating
through the lattice. However, in the 3D photonic lattice
under the CDT condition (A = 0.4), the input image main-
tains its shape after linear propagation without severe
distortion. As expected, further increase of z modulation
leads to image distortion again.

Finally, we demonstrate anomalous diffraction and
negative refraction in the negative-coupling regime.

Fig. 3. (Color online) (a), (¢) Numerical and (b), (d) experi-
mental demonstrations of (a), (b) CDT and (c), (d) image trans-
mission. (al)-(a3) and (bl)-(b3) show output transverse
patterns of a focused Gaussian probe beam at different modu-
lations, and (a4) shows a side view of the probe beam propa-
gating along z under the CDT condition A = 0.4. (c1)-(c3) and
(d1)-(d3) show corresponding output patterns of a “+” shape
[input shown in (c4) and (d4)] after propagating through the 3D
lattice.
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Fig. 4. (Color online) (a), (¢) Numerical and (b), (d) experi-
mental results of (a), (b) beam diffraction and (c), (d) refraction
under different conditions. (al)—(a3) and (c1)-(c3) show side
views of a probe beam propagating when no lattice, a 2D lattice
(A = 0), or a 3D lattice (A = 1.0) is present, respectively. (b1)-
(b3) and (d1)—(d3) show output transverse patterns of a probe
beam [input shown in (b) and (d)] taken from the experiment
under different conditions corresponding to (a), (c). (a), (b) For
diffraction, the beam is launched straight along 2z direction but
is initially focused at the crystal output. (c), (d) For refraction,
the beam is initially tilted upward relative to the z direction.

According to our theoretical analyses and numerical
simulations, when 0.4 < A < 1.6, the index modulation
of the 3D lattice leads to a negative effective coupling
coefficient. We thus take A = 1.0 as an example. Results
for the diffraction/refraction management under this con-
dition from BPM simulation and experiments are dis-
played in Fig. 4. To visualize the anomalous diffraction
under the linear condition [18], a focused Gaussian beam
is launched and monitored while propagating through the
crystal [Figs. 4(a) and 4(b)]. For the experiment of nega-
tive refraction, the Gaussian beam is titled upward at the
half of the first-order Bragg angle of the 2D lattice (A = 0)
[Figs. 4(c) and 4(d)]. Obviously, in the 2D lattice (i.e.,
A =0, no modulation), the beam undergoes normal dif-
fraction and refraction, as it does in a homogenous med-
ium. However, when the effective coupling coefficient is
negative (e.g., A = 1.0), the initially focused Gaussian
beam diverges, and the initially upward-tilted beam
bends downward, exhibiting typical behavior of anoma-
lous diffraction and negative refraction [17-19]. These
experimental observations agree well with our theoreti-
cal results. Note that the negative refraction observed

here does not require the two-beam excitation technique,
reflecting to a rather different mechanism [18,19].

In summary, we have optically induced 3D photonic
structures and demonstrated novel phenomena, includ-
ing two-dimensional light tunneling inhibition and
CDT-based image transmission, as well as anomalous dif-
fraction and negative refraction originating purely from
the flipping of bandgap structures.
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