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ABSTRACT
Topological edge states arise in non-Hermitian parity-time (PT )-symmetric systems, and manifest
themselves as bright or dark edge states, depending on the imaginary components of their eigenenergies. As
the spatial probabilities of dark edge states are suppressed during the non-unitary dynamics, it is a challenge
to observe them experimentally. Here we report the experimental detection of dark edge states in photonic
quantum walks with spontaneously brokenPT symmetry, thus providing a complete description of the
topological phenomena therein. We experimentally confirm that the global Berry phase inPT -symmetric
quantum-walk dynamics unambiguously defines topological invariants of the system in both the
PT -symmetry-unbroken and -broken regimes. Our results establish a unified framework for characterizing
topology inPT -symmetric quantum-walk dynamics, and provide a useful method to observe topological
phenomena inPT -symmetric non-Hermitian systems in general.
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INTRODUCTION
Topological phases exhibit remarkable properties
and challenge our understanding of phases and
phase transitions [1–7]. Instead of local order pa-
rameters, such phases are characterized by non-local
topological invariants, which dictate the existence
and number of topological edge states at an interface
through the bulk-boundary correspondence [8–14].
Photonic quantum walks (QWs) [15–22] offer a
versatile platform on which topological phenom-
ena can be simulated and studied in quantum
dynamics [23–29]. Because of the ease of intro-
ducing loss, photonic QWs allow the exploration
of topological phenomena in the context of non-
unitary dynamics [30–35]. Recent experimental
observations of topological edge states in parity-
time (PT )-symmetric systems have stimulated ef-
fort in clarifying the relation between topology and
PT symmetry [35–40]. Previous experiments have
probed topological invariants and edge states in the
PT -symmetry-unbroken regime [35–43], where
eigenenergies of thePT -symmetric non-Hermitian
Hamiltonian are entirely real [44–59]. In the PT -

symmetry-broken regime where eigenenergies be-
come complex, the definition of topological invari-
ants and the detection of topological edge states
can be elusive [60–62]. In particular, in the PT -
symmetry-broken regime, topological edge states
are PT -symmetry broken, and can be classified as
bright and dark edge states [36,41], depending on
their eigenenergies. Whereas experimental signals
of bright edge states can be probed from enhanced
local probabilities at the boundary, local signals of
dark edge states are easily overwhelmed by those
of the bulk states, and are therefore experimentally
elusive.

In this work we experimentally detect both types
of edge states (dark edge states in particular), and ex-
perimentally confirm that the global Berry phase in
non-unitary QWdynamics gives rise to well-defined
topological invariants in both the PT -symmetry-
unbroken and -broken regimes, and is responsible
for the emergence of both types of topological edge
states. For the detection of dark edge states, we re-
sort to the discrete-time evolution of the integrated
probability distribution, rather than local signals.

C©TheAuthor(s) 2023. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd.This is anOpen Access article distributed under the terms of the Creative
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RESULTS
PT -symmetric QWs
We consider discrete-time QWs, where an opera-
tor Ũ ′ repeatedly acts upon the walker state, leading
to periodically driven Floquet dynamics. The Flo-
quet operator Ũ ′ is hence central to the description
of QWs. For the PT -symmetric non-unitary QWs
studied here, we focus on the operator

Ũ ′ = R
(

θ1

2

)
S R

(
θ2

2

)
M̃ R

(
θ2

2

)

S R
(

θ1

2

)
. (1)

Here the QW is on a one-dimensional integer lat-
tice L on a circle, with site index −N ≤ x ≤ N
and N being the largest positive site index. The
conditional-shift operator S = ∑

x(|x − 1〉 〈x| ⊗
|0〉 〈0| + |x + 1〉 〈x| ⊗ |1〉 〈1|) moves the walker
in the two orthogonal coin states |0〉 and |1〉 to the
left and right by one lattice site, respectively (see
the online supplementary material). The position-
dependent coin operator R(θ) = 1w ⊗ e−i θσy ro-
tates the coin state by position-dependent θ about
the y axis, where 1w = ∑

L |x〉 〈x|. Non-unitarity is
enforced by the gain-loss operator

M̃ = γ 1w⊗(|+〉 〈+| + √
1 − p |−〉 〈−|),

0 < p � 1, (2)

where |±〉 = (|0〉 ± |1〉)/√2 and the gain-loss pa-
rameter γ = (1 − p)−1/4 with loss parameter p ∈
[0, 1]. Under M̃ , states in | ± 〉 are amplified or sup-
pressed by γ ±1 in each step. Note that the decom-

position of Ũ ′ into the various operators is natural
in the context of photonic QWs, as they correspond
to gate operations on photons, as we discuss below.
In particular, the loss parameter p and the position-
dependent angles θ 1 and θ 2 are tunable through dif-
ferent optical components.

The non-unitary operator Ũ ′ is PT -symmetric
as long as the coin parameters satisfy θ 1, 2(x)= θ 1, 2
(N− x) under the periodic boundary condition.The
symmetry operator is PT = ∑

x∈L |x〉〈N − x| ⊗
σzKwithPT Ũ ′(PT )−1 = Ũ ′−1, whereK is com-
plex conjugation. We note that Ũ ′ is different from
the previous PT -symmetric case [35] for a much
simpler gain-loss mechanism. Furthermore, Ũ ′ is
also different from the Floquet operator in [31],
which has no explicitPT symmetry.

The non-unitary QW dynamics can be equiva-
lently regarded as generated by the effective non-
Hermitian Hamiltonian Heff (see the Methods sec-
tion for its explicit form), where Ũ ′ = exp(−i Heff ).
The quasienergy ε ofHeff is defined through

Ũ ′|ψλ〉 = λ|ψλ〉, λ = e−i ε . (3)

In the PT -symmetry-unbroken regime, all {|ψλ〉}
are eigenstates of the PT -symmetry operator, with
{ε} being real and |λ|= 1.Otherwise, when the sys-
tem has spontaneously brokenPT symmetry, some
ε become complex as |λ| �= 1. With varying coin
parameters, the system can change from the PT -
symmetry-unbroken regime to the broken regime,
where the transition is signaled by the first emer-
gence of ε =0or ε =π in the quasienergy spectrum.
We can further divide the PT -symmetry-broken
regime into partially broken and completely broken
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Figure 1. Phase diagram and experimental setup. (a) Phase diagram for PT -symmetric non-unitary QWs governed by Ũ ′, with coin parameters (θ 1,
θ 2) and corresponding topological numbers (ν0, νπ ). Dashed black lines represent topological phase boundaries. Solid red lines represent boundaries
between PT -symmetry-unbroken and -broken regimes, with PT -symmetry-broken regimes lying in between the red lines near topological phase
boundaries. Solid blue squares represent regimes with completely broken PT symmetry, where the eigenspectra are purely imaginary. (b) Left (x< 0)
and right (x≥ 0) regions for thePT -symmetric QW. (c) Experimental setup forPT -symmetric QWs with alternating losses. The photon pair is created
via spontaneous parametric down-conversion (SPDC). One photon serves as a trigger. The other photon is projected into the polarization state |±〉 (or
(|+〉 + i |−〉)/√2) and then proceeds through the quantum-walk interferometric network. Finally, the photon is detected by an avalanche photodiode
(APD), in coincidence with the trigger one. Photon counts give measured probabilities after correcting for relative efficiencies of the different APDs.
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Figure 2. Experimental results. (a and b) Experimental observation of topological edge states in the PT -symmetry-unbroken regime. We consider
QWs with fixed p = 9/25 and (θ R

1 , θ
R
2 ) = (−9π/16, −5π/16) in the right region, but with different coin parameters in the left region: (θ L

1 , θ
L
2 ) =

(−3π/8, −π/8) (a) and (π/16, 5π/16) (b). Initial state of the walker-coin system is |0〉 ⊗ |+〉. Left column: eigenvalues λ in the complex plane,
where red and black dots represent eigenvalues of bright and dark edge states, respectively. Blue crosses represent eigenvalues of bulk states. Right
column: measured corrected probability distributions up to seven steps. Inset: comparison between the measured (red) and numerically calculated (gray)
normalized probability distribution at the seventh step, as well as that calculated from the analytical edge-state wave functions (cyan). Experimental
errors are due to photon-counting statistics and represent the corresponding standard deviations.

regimes, with {ε} being purely imaginary in the lat-
ter (see the online supplementary material).

Thenon-unitary operator Ũ ′ gives rise to Floquet
topological phases (FTPs) in the dynamics, which
are ensured by pseudo-anti-unitarity [63], with
ηŨ ′†η = Ũ ′ and η = ∑

x∈L |x〉〈x| ⊗ σx . Here the
σ j (j = x, y, z) are Pauli matrices. We define topo-
logical invariants for these FTPs through the global
Berry phase [60–62], which characterizes topolog-
ical properties for both PT -symmetry-unbroken
and -broken regimes. As illustrated in Fig. 1(a),
different topological phases are labeled by distinct
topological numbers (ν0, νπ), whereasPT symme-
try is spontaneously broken in the vicinity of topo-
logical phase boundaries.

As we detail in the online supplementary
material, topological invariants defined through
the global Berry phase are equivalent to wind-
ing numbers [36,37,41,42] or generalized Zak
phases [35,43] in the PT -symmetry-unbroken
regime. Conversely, in the PT -symmetry-broken
regime, whereas generalized winding numbers and
Zak phases become ill defined due to the emergence
of ε = 0 or ε = π in the spectrum, the global Berry
phases remain well defined and yield topological
numbers that dictate the number of topological
edge states.

To investigate topological edge states, we con-
sider an inhomogeneous configuration, where inter-
faces exist near x= 0 and x=±N as coin parameters
on the left (θL

1 , θL
2 ) that are different from those on

the right (θR
1 , θR

2 ). Depending on the coin parame-
ters, topological edge states can emerge at interfaces
near x = 0 and x = ±N, with the number of edge
states having Re(ε) = 0 [Re(ε) = π] equal to the
difference in the topological number ν0 (νπ) on ei-
ther side of the boundary.

We analytically solve wave functions for topolog-
ical edge states localized near x = 0. Interestingly,
spatial wave functions of topological edge states are
determined by coin parameters and are independent
of γ . However, these edge states break PT sym-
metry, such that their quasienergies ε are complex
with λ = ±γ or λ = ±1/γ . We identify those with
λ=±γ as bright edge states, with quasienergies ε =
iln γ and ε = π + i ln γ , respectively. As norms of
the bright edge states scale asγ 2t in the tth stepof the
time evolution, local probabilities near the bound-
ary would be amplified so long as the initial state
has a finite overlap with the bright edge state. Con-
versely, edge states with λ = ±1/γ are identified
as dark edge states, with quasienergies ε = −i ln γ

and ε = π − i ln γ , respectively. Whereas dark edge
states should give rise to a decay of local probabili-
ties, such a decay is difficult to probe directly, as it is
overwhelmedduring the time evolution by the prob-
ability distribution of bulk states.

We note that, due toPT symmetry of Ũ ′, bright
and dark edge states necessarily emerge in pairs, al-
beit at different interfaces: a bright edge state near
x = 0 is accompanied by a dark one near x = ±N,
and a bright edge state near x = 0 becomes its dark
counterpart after exchanging coin parameters of the
left and right regions.

Experimental detection of bright and dark
edge states
As illustrated in Fig. 1, we use a photonic setup
to implement a passive PT -symmetric QW of sin-
gle photons. The coin states |0〉 and |1〉 are respec-
tively encoded in the horizontal |H〉 and vertical
|V 〉 polarizations of photons, whose spatial modes
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Figure 3. Experimental observation of topological edge states in the PT -symmetry-
broken regime. We consider QWs with fixed p = 9/25 and initial state |0〉 ⊗ |+〉.
(a),(b) We fix the coin parameters (θ R

1 , θ
R
2 ) = (−7π/16 − ξ, 7π/16 − ξ ) in the right

region, and vary those in the left region: (θ L
1 , θ

L
2 ) = (−7π/16 − ξ/4, 7π/16 − ξ/4)

(a) and ( − 15π/32 + 3ξ/8, 15π/32 + 3ξ/8) (b). (c) We set (θ R
1 , θ

R
2 ) = (−7π/16 −

ξ/4, 7π/16 − ξ/4) and (θ L
1 , θ

L
2 ) = (−15π/32 + 3ξ/8, 15π/32 + 3ξ/8).We fix ξ =

0.1113 here. Left column: eigenvalues λ in the complex plane. Right column: measured
corrected probability distributions up to seven steps. Inset: comparison between the
measured, numerically calculated and analytically calculated normalized probability
distributions at the seventh step.

represent the lattice degrees of freedom. In our ex-
periment, the initial coin state is prepared in either
|±〉 or (|+〉 + i |−〉)/√2, while the walker always
starts from x = 0. We implement the coin-rotation
operatorR(θ), the shift operator S and the loss oper-
atorM using appropriate combinations of half-wave
plates (HWPs), beam displacers and partially polar-
izing beamsplitters (PPBSs).The loss parameter p is

fixed at 9/25 or 2/3, which is achieved using a PPBS
with a certain polarization-dependent transmissiv-
ity. The experimentally realized time-evolution op-
erator U′ differs from Ũ ′ by a factor γ , since M̃ =
γ M . We therefore multiply the measured raw prob-
ability distribution PR(x, t) by a time-dependent
scaling factor γ 2t, so that the resulting corrected
probability distribution PC(x, t) corresponds to
PT -symmetricQWsgovernedby Ũ ′. For future ref-
erence, we define the normalized probability at the
t-th step PN(x, t)= PR(x, t)/

∑
xPR(x, t).

We confirm the validity of topological invariants
defined through the global Berry phase by detect-
ing the bright topological edge states. As bright edge
states feature amplified local probabilities, they are
easily detected by monitoring the corrected proba-
bility near the boundary.

We first examine the case where all coin pa-
rameters are chosen in thePT -symmetry-unbroken
regime.Without loss of generality, we fix the coin pa-
rameters in the right region with topological num-
bers (ν0,νπ)= (−1,−1), andvary coinparameters
of the left region.When topological numbers are the
same on either side of the boundary [Fig. 2(a)], the
measured corrected probability distribution PC(x,
t) up to seven steps shows no appreciable enhance-
ment near the boundary x = 0, suggesting the ab-
sence of edge states. In contrast, when topological
numbers of the left region are changed to (ν0, νπ)=
(1, −1) [Fig. 2(b)], topological edge states should
emerge at Re(ε) = 0. This is confirmed by the en-
hancement of the measured corrected probability
PC(x= 0) near the boundary. Compared to the uni-
tary QW, the corrected probability PC(x = 0) in-
creaseswith thenumber of steps,which is a signature
of bright edge states.Themeasured normalized spa-
tial probability distribution PN(x, t= 7) agrees well
with that calculated from analytical edge-state wave
functions.

We then study topological edge states when at
least one of the bulks is PT -symmetry broken. For
the first case in Fig. 3(a), both regions belong to the
same topological phase with (ν0, νπ)= (− 1,−1),
whereas the left region isPT -symmetry broken.The
measured corrected probability near the boundary
x= 0 is not enhanced, and after several steps of evo-
lution the probability is no longer localized at the
boundary.

In the second case shown in Fig. 3(b), the right
region is still in thePT -symmetry-unbroken regime
with (ν0, νπ) = ( − 1, −1), whereas the left region
is PT -symmetry broken and has (ν0, νπ) = (1,
−1). In the central column, our experimental results
clearly show the enhancement of the corrected
probability near x = 0, which gets amplified in
time. In the right column, the measured normalized
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Figure 4. Bright and dark edge states in PT -symmetric QWs. (a)–(c) For the bright edge states, we choose the initial state |0〉 ⊗ |−〉 and fix p =
2/3 as well as (θR

1 , θ
R
2 ) = (π/2, 3π/4), and vary coin parameters for the left region along the line θ L

2 = θ L
1 + π/4. In the upper panel of (b), we take

θ L
1 = {π/4 + h , π/4 + 2h}, corresponding to PT -symmetry-unbroken regimes with different topological numbers compared to the right region. In
the lower panel, θ L

1 = {π/2 − 2h , π/2 − h}, corresponding to PT -symmetry-unbroken regimes with the same topological numbers compared to
the right region. In the central panel, θ L

1 = {3π/8 − ξ/8, 3π/8 + ξ/8}, corresponding to PT -symmetry-broken regimes with either the same or
different topological numbers compared to the right region. Here ξ ′ = 0.2715 and h= 0.1. (d)–(f) For the dark edge states, we keep the same p and the
line in the coin-parameter space for the left region, and we fix (θ R

1 , θ
R
2 ) = (0, π/4). In the upper panel of (e), θ L

1 = {−2h , −h}, corresponding to the
PT -symmetry-unbroken regimes with the same topological numbers compared to the right region. In the lower panel, θ L

1 = {−π/4 + h , −π/4 +
2h}, corresponding to PT -symmetry-unbroken regimes with different topological numbers compared to the right region. In the central panel, θ L

1 =
{−π/8 − ξ/8, −π/8 + ξ/8}, corresponding to PT -symmetry-broken regimes with either the same or different topological numbers compared to
the right region. Left column: the integrated probability versus the number of steps. Centre column: the integrated probability at the seventh step versus
the coin parameter θ L

1 . Right column: phase diagram, with symbols indicating the coin parameters and the corresponding topological numbers for each
experimental case. Error bars in (a)–(d) are smaller than symbols and therefore not shown.

spatial probability distribution after the seventh
step agrees reasonably well with the probability
given by analytical edge-state wave functions. These
observations confirm the existence of topological
edge states in the presence ofPT -symmetry broken
bulks, which indicates the robustness of topological
phenomena against spontaneous PT -symmetry
breaking.

In the last case shown in Fig. 3(c), the left and
right regions belong to FTPs with different topolog-
ical numbers (ν0, νπ)= (− 1,−1) and (1,−1), re-
spectively, and both regions arePT -symmetry bro-
ken. In the central column, our experimental results
clearly show the enhancement of the correctedprob-
ability near x = 0, which increases with time. The
measured normalized probability distribution after
the seventh step, however, is not fully converged
to the probability given by the analytical edge-state
wave function. This suggests that it takes more time

steps for the QW dynamics to converge into topo-
logical edge states in the presence ofPT -symmetry-
broken bulks. Nevertheless, similar to the second
case above, our results confirm the existence of topo-
logical edge states in the presence ofPT -symmetry
broken bulks.

Whereas experimental signals of bright edge
states are probed from enhanced local probabilities
at the boundary, local signals of dark edge states are
easily overwhelmed by those of the bulk states, espe-
cially when the bulk is in thePT -symmetry-broken
regime.We overcome the challenge and experimen-
tally probe the elusive dark edge states by measur-
ing the integrated probabilityPI(t) at each time step,
where

PI(t) =
∑
x

PC(x, t). (4)
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Figure 5. Robustness of edge states against static disorder. Probability distributions
of five-step QWs with initial state |0〉 ⊗ |+〉 and parameter p = 9/25. (a) The coin
parameters are the same as those in Fig. 2(b): (〈θ R

1 〉, 〈θR
2 〉) = (−9π/16, −5π/16) and

(〈θ L
1 〉, 〈θ L

2 〉) = (π/16, 5π/16) (ξ = 0.1113). (b) The coin parameters are the same
as those in Fig. 3(b): (〈θR

1 〉, 〈θ R
2 〉) = (−7π/16 − ξ, 7π/16 − ξ ) and (〈θ L

1 〉, 〈θ L
2 〉) =

(−15π/32 + 3ξ/8, 15π/32 + 3ξ/8). The disordered rotation angles are given by
θ 1, 2 + δθ , where δθ is unique for each position and is independent of time and cho-
sen from the intervals [ − ξ/4, ξ/4]. Left column: measured corrected probability up
to five steps. Right column: comparison between the measured and numerically cal-
culated normalized probability distribution at the fifth step, as well as that calculated
from the analytical edge-state wave functions.

Apparently, PI(t) should be close to unity when
quasienergies of a QW are real, which provides the
basis for our detection.

To illustrate our detection scheme, we first exam-
ine the simpler case of bright edge states.Thechoices
of coin parameters are shown in Fig. 4(a). When
the left and right regions are in the PT -symmetry-
unbroken regime with the same topological num-
bers [bottompanel inFig. 4(b)],PI(t) remainsof the
order of unity at all steps. In contrast, when the two
regions are in the PT -symmetry-unbroken regime
with different topological numbers [top panel in
Fig. 4(b)], PI(t) increases monotonically over time,
indicating the emergence of bright edge states.
When the left region is in thePT -symmetry-broken
regime [central panel in Fig. 4(b)], PI(t) grows over
time, even when both regions belong to the same
topological phase.This is due to the existence of bulk
states with complex quasienergies, which feature ex-
ponentially growing probabilities in time. However,
the rate of growth in PI(t) is apparently larger when

the two regions are in different topological phases,
which is a direct result of the edge-state quasienergy
having larger imaginary components. Thus, we can
identify the existence of topological edge states even
in the PT -symmetry-broken regime by comparing
rates of the probability growth. In Fig. 4(c), we plot
PI(t = 7) as θL

1 is varied. The approximate location
of the topological phase transition is identified as
an increase of the integrated probability. Note that,
due to thePT -symmetry-broken regime around the
topological phase boundary, such an increase occurs
smoothly.

We now turn to dark edge states with the param-
eters in Fig. 4(d). In the bottom panel of Fig. 4(e),
we clearly identify the existence of dark edge states
as a decay of PI(t) over time, when the left and
right regions are in the PT -symmetry-unbroken
regime with different winding numbers. This is in
contrast to the central panel of Fig. 4(e), where the
left region becomes PT -symmetry broken. There
PI(t) becomes increasing in the long-time limit,
due to the emergence of bulk states with complex
quasienergies. Nevertheless, PI(t) increases slower
in the presence of dark edge states, which is the
result of edge-state quasienergy having larger imag-
inary components and hence larger decay rate. In
Fig. 4(f), we plotPI(t= 7) as a function of θL

1 , where
the location of the topological phase transition is ap-
proximately identified as a decrease in the integrated
probability.

Robustness of edge states against
disorder
A key feature of topologically non-trivial systems
is the robustness of topological properties against
small perturbations. We experimentally confirm the
robustness of the topological edge states by intro-
ducing static disorder to the coin rotations. The
static disorder breaks PT symmetry, but preserves
the pseudo-anti-unitarity of Ũ ′.

First, we study the robustness of topological edge
states when both regions are in the PT -symmetry-
unbroken regime. We introduce static disorder to
the coin rotationsbymodulating the setting angles of
the correspondingHWPsby a small randomamount
δθ ∈ [- ξ/4, ξ/4] around θ

L,R
1,2 . Here δθ is time in-

dependent and unique for each position. We then
measure the probabilities of the walker up to five
steps. As shown in Fig. 5(a), themeasured corrected
probability at x= 0 increases with time (left), while
the normalized probability after the fifth step con-
verges to that given by the analytical edge-state wave
function (right). These observations confirm the
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Figure 6. Influence of disorder on edge states and bulk states. The coin parameters are (θ R
1 , θ

R
2 ) = (π/2, 3π/4) and (θ L

1 , θ
L
2 ) = (3π/8 − ξ ′/8, 5π/8 −

ξ ′/8) for the case of no disorder [red triangle in Fig. 4(a)]; (θR
1 , θ

R
2 ) = (π/2 + δR1 , 3π/4 + δR2 ), (θ

L
1 , θ

L
2 ) = (δL1 , −θ L1 + π − ξ ′/2 + δL2 ) for the case

of weak disorder and (θ R
1 , θ

R
2 ) = (π/2 + R

1 , 3π/4 + R
2 ), (θ

L
1 , θ

L
2 ) = (L

1 , −θ L1 + π − ξ ′/2 + L
2 ) for the case of strong disorder, respectively.

Parameter ξ ′ = 0.2715 is the same as in Fig. 4. Here (δR1 , δR2 ) ∈ [−π/32 + ξ ′/8, π/32 − ξ ′/8], δL1 ∈ [3π/8 − ξ ′/8, 3π/8], δL2 ∈ [−ξ ′/2, ξ ′/2],
(R

1 , R
2 ) ∈ [−π/8 + ξ ′/2, π/8 − ξ ′/2], L

1 ∈ [0, π/2 − ξ ′] and L
2 ∈ [−ξ ′/2, ξ ′/2] are unique for each position and are independent of time.

Parameter p= 9/25 and ξ = 0.1113. Left column: the eigenvalue spectra λ for (a) no disorder, (b) weak disorder and (c) strong disorder on the complex
plane. Central column: the spatial probability distribution of localized topological edge states. Right column: the spatial probability distribution of bulk
states.

robustness of edge states in the PT -symmetry-
unbroken regime against the static disorder.

Second, we choose a PT -symmetry-broken left
region and a PT -symmetry-unbroken right region,
respectively. As shown in Fig. 5(b), the measured
corrected probability demonstrates signals of local-
ized edge states, thus confirming the robustness of
topological edge states against static disorder even in
thePT -symmetry-broken regime.

In the presence of strong disorder, some of the
disorder-induced localized bulk states can acquire
imaginary quasienergies, which may impact the de-
tection of topological edge states through the in-

tegrated probability PI(t). We perform numerical
simulations in the presence of strong disorder, and
demonstrate that even in this case, the existence
of topological edge states can still be inferred from
PI(t).

In Fig. 6, we compare the eigenspectra, and the
edge-state and bulk-state wave functions with in-
creasing strength of disorder. We find that, as the
strength of disorder increases, both PT -symmetry-
unbroken and -broken bulk states become rather lo-
calized, and there are an increasing number of PT -
symmetry-broken bulk states. However, in all cases,
quasienergies of topological edge states still have the
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Figure 7. Robustness of the integrated probability against static disorder. The inte-
grated probability PI (t) of 20-step QWswith initial state |0〉 ⊗ |−〉. (a) The coin parame-
ters are the same as those in Fig. 6. (b) The coin parameters are (θ R

1 , θ
R
2 ) = (π/2, 3π/4)

and (θ L
1 , θ

L
2 ) = (3π/8 + ξ ′/8, 5π/8 + ξ ′/8) for the case of no disorder [blue tri-

angle in Fig. 4(a)]; (θ R
1 , θ

R
2 ) = (π/2 + δR1 , 3π/4 + δR2 ), (θ

L
1 , θ

L
2 ) = (δL1 , −θ L1 + π +

ξ ′/2 + δL2 ) for the case of weak disorder and (θ R
1 , θ

R
2 ) = (π/2 + R

1 , 3π/4 +
R

2 ), (θ L
1 , θ

L
2 ) = (L

1 ,−θ L1 + π + ξ ′/2 + L
2 ) for the case of strong disor-

der, where (δR1 , δR2 ) ∈ [−π/32 + ξ ′/8, π/32 − ξ ′/8], δL1 ∈ [3π/8, 3π/8 + ξ ′/8],
δL2 ∈ [−ξ ′/2, ξ ′/2], (R

1 , R
2 ) ∈ [−π/8 + ξ ′/2, π/8 − ξ ′/2],L

1 ∈ [ξ ′, π/2] and
L

2 ∈ [−ξ ′/2, ξ ′/2]. Here p= 9/25 and ξ ′ = 0.2715.

largestmagnitude, as indicated by red and black dots
in Fig. 6.These should dictate thatPI(t) still be dom-
inated by contributions from the bright edge states.

As we show in Fig. 7, this is indeed the case. The
integrated probability PI(t) still increases exponen-
tially in the presence of strong disorder. Whereas
the rate of increase is slower compared to cases
with weaker disorder, due to the presence of PT -
symmetry-broken bulk states, the growth rate in
PI(t) in the presence of topological edge states is still
much greater than in the absence of edge states.

DISCUSSION
By confirming the existence of topological prop-
erties in both the PT -symmetry-unbroken
and-broken regimes, our results clarify the relation
between non-unitary dynamics, PT symmetry and
topology in one-dimensional topological systems
with pseudo-anti-unitarity. In particular, our topo-
logical invariants are also capable of characterizing
topological properties in non-unitary dynamics
without explicit PT symmetry [30,31,64,65],
where topological numbers calculated through the
global Berry phase are equivalent to generalized
winding numbers associated with complex-valued
pseudo-spin vectors of Bloch Hamiltonians. The
topological invariant defined here thus provides a
unified description for non-unitary QW dynamics
either with or without explicit PT symmetry,
thus enabling two previously separate branches of
research to be understood and treated on common
grounds. In light of a recent experiment where
topology in the anti-PT regime is probed using

electrical circuits [39], it would be interesting to
experimentally test our description in the anti-PT
regime, which can be reached in our quantum-walk
setup by further increasing the gain-loss parameter
γ . Furthermore, by probing the PT -symmetry-
broken bright and dark edge states, we reveal the
interesting interplay ofPT symmetry and topology
in the non-unitary dynamics. Whereas bright and
dark edge states can have useful applications in
topological mode selection in various settings [36],
our work is the first experimental characterization
of dark edge states, which represents a significant
step toward a deeper understanding of topological
features inPT -symmetric systems.

METHODS
The effective Hamiltonian
For completeness, we derive the explicit form of the
non-Hermitian effectiveHamiltonianHeff.We focus
on the homogeneous case with θL

1,2 = θR
1,2 = θ1,2,

which allows us to write Ũ ′ in momentum space

Ũ ′ = d01c − i d1σx − i d2σy − i d3σz, (5)

d0 = α(cos 2k cos θ1 cos θ2 − sin θ1 sin θ2), (6)

d1 = iβ, (7)

d2 = α(cos 2k cos θ2 sin θ1 + cos θ1 sin θ2), (8)

d3 = −α sin 2k cos θ2, (9)

d 2
0 + d 2

1 + d 2
2 + d 2

3 = α2 − β2 = 1, (10)

where α = γ (1 + √
1 − p)/2, β = γ (1 −√

1 − p)/2, the di (i = 0, 1, 2, 3) are momentum
dependent, the σ x, y, z are the Pauli matrices and 1c
is a two-by-two identity matrix.

The eigenvalues of Ũ ′ are given by λ± = d0 ∓
i
√
1 − d 2

0 , where ± are band indices. Note that
λ+λ− = 1, which is guaranteed by PT symme-
try of the Floquet operator Ũ ′. As we define the
effective Hamiltonian through Ũ ′ = exp(−i Heff ),
the quasienergy spectrum of Heff is given by ε±
= i ln (λ±). We first define the two bands of the
quasienergy spectrum ofHeff as ε±, which are given
by ε± = i ln (λ±).TheeffectiveHamiltonian is then

Heff = h01c + h1σx + h2σy + h3σz, (11)

where h0 = (ε+ + ε−)/2 and hi =
(ε+ − ε−)di /(2

√
1 − d 2

0 ), i = 1, 2, 3.
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