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We report a measurement of the fraction of » quarks produced diffractively in pp collisions at
s = 1.8 TeV. Diffraction is identified by the absence of particles in a forward pseudorapidity re-
gion. From events with an electron of transverse momentum 9.5 < p7 < 20 GeV /¢ within the pseudo-
rapidity region [n| < 1.1, the ratio of diffractive to total »-quark production rates is found to be R;, =
[0.62 = 0.19(stat) *= 0.16(syst)]%. This result is comparable in magnitude to corresponding ratios for
W and dijet production but significantly lower than expectations based on factorization.

PACS numbers: 12.40.Nn, 13.85.Qk
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We report the first observation of diffractive b-quark
production. In two previous Letters we reported results
on diffractive W-boson [1] and dijet [2] production in pp
collisions at /s = 1800 GeV at the Fermilab Tevatron.
From the ratio of the W to dijet production rates, the
gluon fraction of the Pomeron, which is presumed to be
exchanged in diffractive processes, was measured [2] to
be f, = (0.7 = 0.2). Thisresult agrees with the values of
f, obtained at the DESY ep collider HERA by the ZEUS
[3] and H1 [4] Collaborations. However, the production
rates at the Tevatron are 5-10 times lower than predic-
tions [5,6] based on the “diffractive structure function” of
the proton measured at HERA. This breakdown of factor-
ization brings into question the proposed [7] picture of the
Pomeron as a color singlet state with a hadronlike structure
function.

To further probe the gluon component of the Pomeron,
we extended our studies to diffractive bb production. The
UA1 Collaboration set an upper limit of 1.2 uwb (0.6 ub)
at 95% C.L. on the total diffractive b-quark production
cross section in pp collisions at /s = 630 GeV, assum-
ing a soft (hard) gluonic Pomeron structure in evaluating
the detector acceptance [8]. The corresponding upper limit
on the ratio of the diffractive to total [9] cross sections
isRp, = 6.2(3.1)%. In this Letter, we report a measure-
ment of Rp;, in pp collisionsat /s = 1800 GeV using the
Collider Detector at Fermilab (CDF). Our measurement
is based on identifying a high transverse momentum elec-
tron from b-quark decay, within the pseudorapidity [10]
region || < 1.1, produced in single diffraction dissocia-
tion, p + p — p/p + b(— e + X') + X. Diffractive
production is tagged by the requirement of a “rapidity
gap,” defined as the absence of particles in a forward
pseudorapidity region.

The detector is described in detail elsewhere [11,12].
In the rapidity gap analysis we use the beam-beam coun-
ters (BBC) and the forward calorimeters. The BBC con-
sist of two arrays of eight vertical and eight horizontal
scintillation counters perpendicular to the beam line at
z = *£5.8 m and cover approximately the region 3.2 <
[n] < 5.9. Thefiducial region of the forward calorimeters
covers the range 2.4 < |n| < 4.2 with projective towers
of szeAn X A¢ = 0.1 X 5°. The detector components
relevant to electron detection and b-quark identification in
the region of |n| < 1.1 are the microstrip silicon vertex
detector (SVX), the central tracking chamber (CTC), and
the central electromagnetic (CEM) and hadronic calorime-
ters surrounding the CTC. Proportional strip chambers
at the CEM shower maximum position provide shower
profile measurements, and a preshower detector, consist-
ing of multiwire proportional chambers placed in front of
the CEM, is used to help separate electrons from hadrons
by sampling the showers initiated in the 1.075 radiation-
length solenoid magnet coil. The transverse profile of the
interacting beams at z = 0 is circular with rms radius of
25 um. The SVX provides an accurate measurement of
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the impact parameter of tracks in the r-¢ plane [12], and
the CTC provides momentum analysisfor charged particles
with aresolution of o, /pr = [0.002 (GeV/c) !pr.

The data used in this analysis are from the 1994—1995
run (80 pb~!), collected with a trigger requiring an elec-
tron candidate of E7 > 7.5 GeV within |»| < 1.1. To
avoid trigger threshold effects, only events with E7 >
9.5 GeV are retained. To help identify electrons and re-
ject hadronic background [13], we consider the longi-
tudinal and lateral shower profiles, require matching in
energy and lateral position between the shower and the
electron candidate track, and demand that the preshower
signal be consistent with that expected for an electron.
Events with electrons from W and Z bosons are rejected
by requiring E7 < 20 GeV and missing transverse energy
Er < 20 GeV. The background of electrons from photon
conversionsin detector material between the beam line and
the CTC, aswell asfrom Dalitz pairs, isremoved by reject-
ing events with an oppositely charged track within a small
opening angle from the electron candidate. The rejection
efficiency of conversion electrons is ~80%. In addition
to the electron candidate, each event is required to have
a jet consisting of at least two CTC tracks. Jets are se-
lected by a clustering algorithm using pr > 1 GeV/c for
the seed track and py > 0.4 GeV/c for additional tracks
within a cone of radius (An? + A¢2)'/2 < 0.4. If more
than one jet is found, the one closest to the electron can-
didate is used. From the jet tracks we construct a jet axis
which is used in the separation between beauty and charm
quark decays. The above requirements are satisfied by
161775 events. Our analysis strategy consists of first ex-
tracting adiffractive signal from this event sample and then
evaluating the b-quark fraction separately in the diffractive
and total event samples.

Asin our previous studies [1,2], the diffractive signal is
evaluated by counting BBC hits, Nggc, and adjacent for-
ward calorimeter towers, Ncar, With E > 1.5 GeV. Fig-
ure 1la shows the correlation between Nggc and Ncar.
There are two entries per event in this figure, one for
the positive and the other for the negative n side of the
detector. The (0,0) bin, Nggc = Ncar = 0, contains
100 events. The excess of events in this bin above a
smooth extrapolation from nearby bins is attributed to
diffractive production. The nondiffractive content of the
(0,0) bin is evaluated from the distribution of events along
the diagona of Fig. 1a with Nggc = NcarL, shown in
Fig. 1b. An extrapolation to bin (0, 0) of afit to the data of
bins (2,2) to (9,9) yields 24.4 + 5.5 nondiffractive back-
ground events. In the following, the subsample of events
in the (0, 0) bin will be referred to as “ diffractive.”

Figures 1c and 1d show the electron Er and 7 dis
tribution, respectively, for the diffractive and total event
samples. In Fig. 1d, the sign of the electron pseudorapid-
ity for events with a gap at positive n was changed. We
observe that while the Er spectra show no significant dif-
ference, the diffractive » distribution is shifted away from
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FIG. 1. (@) Forward calorimeter tower multiplicity, Ncar, ver-
sus beam-beam counter multiplicity, Nggc; (b) multiplicity dis-
tribution along the diagonal with Nggc = Ncar in the plot in
(@); (c) electron Ey and (d) pseudorapidity for the diffractive
(points) and total (histogram) event samples (diffractive events
with a rapidity gap at positive n are entered with the sign of the
electron 7 changed).

the gap relative to the symmetric distribution of the total
event sample. The dips seen in the latter are due to losses
occurring at the interfaces between different calorimeter
sections and are adequately reproduced by Monte Carlo
(MC) simulations.

In addition to events from b-quark decays, the data con-
tain events from charm decays and background. The back-
ground is mainly due to hadrons faking electrons and to
electrons from residual photon conversions. Using the dis-
tribution of the charge deposited in the preshower detec-
tor, the hadron background in the total [diffractive] event
sampleisestimated to be (25.8 + 0.7)% [(30.5 = 5.1)%].
Our estimate of the residual photon conversion background
is(3.0 £ 0.1)% [(2.1 = 0.7)%].

The beauty and charm fractions in the data are evalu-
ated separately for the diffractive and total event samples.
We use two methods to discriminate between beauty and
charm decays. In the first method, we fit the electron mo-
mentum component perpendicular to the jet axis, p;/ et
which depends on the mass of the parent quark, with
the sum of four templates: fake electrons from hadrons,
photon conversions, charm, and beauty. The amounts
of fake electrons and photon conversions, for which the
templates were obtained from data, are constrained by
the estimates given above. The charm and beauty tem-
plates were obtained from simulations using the PYTHIA
Monte Carlo generator [14], followed by a detector simu-
lation. This four-component fit yields a beauty fraction
of (429 = 0.4)% [(38 = 14)%)] for the total [diffractive]
event sample. The second method uses the impact parame-

ter of the electron track, which depends on both the mass
and the lifetime of the parent quark. The impact parame-
ter is defined as the minimum distance between the pri-
mary vertex and the electron track in the r-¢ plane. A fit
to the impact parameter distribution using four templates,
as above, yields (47.7 = 0.4)% [(38 * 14)%] for our two
data samples.

Figures 2a and 2b show the fits to the p2/i and im-
pact parameter distributions of the total event sample. Av-
eraging the results of the two methods yields 73371 =
485(stat) = 7774(syst) beauty events, where as system-
atic uncertainty we assigned the difference between the
results of the two methods. Figures 2c and 2d show a si-
multaneous fit to the p;/ iet and impact parameter distri-
butions of the diffractive sample. This fit yields 44.4 =
10.2(stat) + 4.7(syst) beauty events, where we assigned
the same relative systematic uncertainty as that in the to-
tal event sample. After subtracting the 24% nondiffractive
background estimated from the fit in Fig. 1b, there remain
33 + 10(stat) = 5(syst) diffractive beauty events.

The diffractive event yield must be corrected for losses
caused by additional pp interactions occurring in the same
pp bunch crossing as a diffractive event, as well as for
BBC and forward calorimeter occupancy due to noise or
beam associated backgrounds. Such occurrences would
spail the rapidity gap. From the instantaneous luminos-
ity during data collection and the known cross section for
inelastic pp collisions, the fraction of events for which
a rapidity gap is not spoiled by another interaction is
found to be 0.26 = 0.01. Using a sample of events with
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FIG. 2. (@) Electron transverse momentum relative to the jet,

pe/it, and (b) impact parameter of the electron track for the to-
tal event sample, shown with afit to contributions from hadrons
(fake electrons), photon conversions, charm, and beauty; (c)
and (d) show the same distributions for the diffractive sample
(0-0 bin in Fig. 1a) with a simultaneous fit to the four compo-
nents of both distributions.
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TABLE I. Rapidity gap acceptance.
[P-structure flat-g flat-g hard-g hard-q
Acceptance 0.41 = 0.02 0.27 = 0.02 0.36 = 0.03 0.22 = 0.02

no reconstructed primary vertex collected by triggering
the detector on randomly selected beam crossings, the
combined BBC and calorimeter occupancy was measured
to be 0.23 = 0.07. Correcting for these losses yields
165 * 50(stat) = 29(syst) diffractive beauty events.

Thediffractiveto total b-quark production ratio obtained
from the above numbers is RS,” = [0.23 + 0.07(stat) *+
0.05(syst)]%. Thisratio is based on diffractive events sat-
isfying our rapidity gap definition. To evaluate Rj;, for
the total diffractive beauty production requires knowledge
of the rapidity gap acceptance, defined as the ratio of the
number of diffractive events with a rapidity gap to the
number of all diffractive events. The acceptance is calcu-
lated using the POMPYT [15] Monte Carlo generator fol-
lowed by a detector simulation. In POMPYT, Pomerons
emitted by the p(p) interact with a p(p) in collisions
simulated by PYTHIA [14]. As in our previous papers
[1,2], we use the standard Pomeron flux factor of Regge
theory, fp/,(&,1) = KE'72¢OF2(r), where ¢ is the frac-
tion of the beam momentum carried by the Pomeron, ¢
is the four-momentum transfer squared, «(¢) = 1.115 +
0.261 is the Pomeron Regge trajectory, F(r) is the proton
form factor, and K = 0.73 GeV 2 [16]. The acceptance
was calculated for ¢ < 0.1 and the same requirements
for b-quark selection as for the data, using either a flat,
Bf(B) =1, or ahad, Bf(B) = 6B(1 — B), structure
function for the Pomeron, where g is the fraction of the
momentum of the Pomeron carried by a parton. The re-
sults are shown in Table I.

The rapidity gap acceptance for events generated with
a flat Pomeron structure, which is favored by the HERA
measurements [3,4], and a gluon fraction of 0.7 = 0.2, as
reported in [2], is found to be 0.37 + 0.02. Dividing R,
by this value yields a diffractive to total production ratio of

(€ <0.1).

Figure 3 shows a MC generated Pomeron ¢ distribution,
including detector simulation, for diffractive b — ¢ + X
events with an electron of p;y > 9.5 GeV/c within |y| <
1.1. The shaded area represents events with a BBC and
forward calorimeter rapidity gap as defined in thisanalysis.
The events are concentrated in the region of 0.01 < & <
0.06.

Theoretical calculations based on factorization using
parton densities derived from fits to HERA measurements
predict values for Rz, ranging from 3.9% to 20.8% for the
favored “high-glue” fits, depending on the type of fit used
[17]. From POMPYT, using the standard Pomeron flux and
aflat (hard) Pomeron structure consisting of purely gluons
or quarks, we obtain 10.4% (11.6%) or 0.92% (1.02%),

R = [0.62 * 0.19(stat) + 0.16(syst)]%
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respectively. The ratio D of the measured Rj,;, fraction to
that predicted by POMPYT depends on the gluon fraction f,
of the Pomeron. Thisis shown in Fig. 4, where D is plot-
ted as a function of f, along with published results from
ZEUS [3] and our previous measurements [1,2]. For each
measurement the two curves show the 1o bounds. Since
the curves for the published results were obtained using a
hard Pomeron structure in POMPYT, we used a hard struc-
turein the b case as well. The resulting curves are almost
indistinguishable from those obtained with a flat Pomeron
structure. The black cross and shaded ellipse represent the
best fit and 1o~ contour of aleast-squares two-parameter fit
to the three CDF results. Thisfit had y? = 1.7, and there-
fore the ellipse was calculated after multiplying the errors
inthe measured diffractive to total ratiosby +/1.7 [18]. The
fit yielded Dcpr = 0.19 =+ 0.04 and fSPF = 0541718,
in agreement with the results we obtained from the W and
dijet rates, namely, D = 0.18 = 0.04and f, = 0.7 = 0.2
[2]. The value of DcpE is significantly smaller than the
ZEUS result. The discrepancy between the HERA and
Tevatron D-values represents a breakdown of factorization.
The magnitude of the suppression of D at the Tevatron is
in agreement with predictions [5] based on the renormal-
ized Pomeron flux model [16], in which the Pomeron flux
integral over al available phase space is set to unity.

In conclusion, we have made the first observation of
diffractive beauty production in pp collisions at /s =
1800 GeV and measured the ratio of the diffractive to
total production rates to be R;, = [0.62 * 0.19(stat) =
0.16(syst)]% (£ < 0.1) for events with an electron from

40 -

NUMBER OF EVENTS
n %)
o S
I T

-
o
L

coo b e by

0
0 0.02 0.04 0.06 0.08 0.1
£ OF POMERON

FIG. 3. Monte Carlo distribution of the Pomeron beam mo-
mentum fraction, &, for diffractive beauty production events with
an electron of 9.5 < p7 < 20 GeV/c within |n| < 1.1, gener-
ated using a flat Pomeron structure with a gluon (quark) fraction
of 0.7 (0.3). The shaded area is the distribution for events satis-
fying the rapidity gap requirements.
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FIG. 4. Theratio, D, of measured to predicted diffractive rates
as a function of the gluon content of the Pomeron. The predic-
tions are from POMPYT using the standard Pomeron flux and a
hard Pomeron structure. The CDF-W curves were calculated
assuming a three-flavor quark structure for the Pomeron. The
black cross and shaded ellipse are the best fit and 1o~ contour

of aleast-squares two-parameter fit to the three CDF results.

0

b — e + X with 9.5 < p7 <20 GeV/c within |n| <
1.1. The vaue of Rj;, is comparable in magnitude to the
values of Ry and R,; obtained previously for W and dijet
production, but significantly lower than expectations based
on factorization.

We thank the Fermilab staff and the technical staffs of
the participating institutions for their vital contributions.
This work was supported by the U.S. Department of En-
ergy and National Science Foundation; the Italian Istituto
Nazionale di Fisica Nucleare; the Ministry of Education,
Science and Culture of Japan; the Natural Sciencesand En-
gineering Research Council of Canada; the Nationa Sci-

ence Council of the Republic of China; the A.P. Sloan
Foundation; and the Max Kade Foundation.

[1] F Abeet al., Phys. Rev. Lett. 78, 2698 (1997).

[2] F Abeet al., Phys. Rev. Lett. 79, 2636 (1997).

[3] M. Derrick et al., Z. Phys. C 68, 569 (1995); Phys. Lett. B
356, 129 (1995); Eur. Phys. J. C 6, 43 (1999).

[4] T. Ahmed et al., Phys. Lett. B 348, 681 (1995); C. Adloff
et al., Z. Phys. C 76, 613 (1997).

[5] K. Goulianos, in Proceedings of the Vth International
Workshop on Deep Inelastic Scattering and QCD, Chicago,
1997, edited by J. Repond and D. Krakauer, AIP Conf.
Proc. No. 407 (AIP, New York, 1997), pp. 527-532.

[6] L. Alvero, J.C. Coallins, J. Terron, and J. J. Whitmore, Phys.
Rev. D 59, 074022 (1999).

[7] G.Ingelman and P. Schlein, Phys. Lett. 152B, 256 (1985).

[8] K. Wacker, in Proceedings of the VIIth Topical Workshop
on Proton-Antiproton Collider Physics, edited by Rajen-
dran Raja, Alvin Tollestrup, and John Yoh (World Scien-
tific, Singapore, 1989), pp. 611—-628.

[9] C. Albgjar et al., Phys. Lett. B 256, 121 (1991).

[10] We use rapidity and pseudorapidity, n, interchangeably;
n=- In(tan), where 6 is the polar angle of a particle
with respect to the proton beam direction. The azimuthal
angle is denoted by ¢, and transverse energy is defined as
Er = Esing.

[11] F. Abe et al., Nucl. Instrum. Methods Phys. Res., Sect. A
271, 387 (1988).

[12] D. Amidel et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 350, 73 (1994); P. Azzi et al., Nucl. Instrum. Meth-
ods Phys. Res., Sect. A 360, 137 (1995).

[13] F. Abe et al., Phys. Rev. D 52, 2624 (1995).

[14] T. §ostrand, Comput. Phys. Commun. 82, 74 (1994).

[15] P Bruni, A. Edin, and G. Ingelman, http://www3.tsl.uu.se/
thep/pompyt/

[16] K. Goulianos, Phys. Lett. B 358, 379 (1995); 363, 268
(1995).

[17] L. Alvero, J.C. Coallins, and J. Whitmore, hep-ph/9806340.

[18] R.M. Barnett et al., Review of Particle Physics, Phys.
Rev. D 54, 1 (1996), Sec. 4.2.2.

237



	Observation of Diffractive b-Quark Production at the Fermilab Tevatron
	

	tmp.1159558081.pdf.5AP5Q

