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We report on the experimental observation of stable double-charge discrete vortex solitons generated in

hexagonal photonic lattices created optically in self-focusing nonlinear media and show that single-charge

vortex solitons are unstable in analogous conditions. Subsequently, we study, both theoretically and experi-

mentally, the existence and stability of spatial vortex solitons in two-dimensional hexagonal photonic lattices.

We demonstrate that the stability of the double-charge vortices is a consequence of the intersite power ex-

change in the vortex soliton, and we provide a simple stability criterion on the basis of the analysis of the

corresponding discrete nonlinear model. We extend our analysis to the case of defocusing nonlinearity and

show the inversion of the vortex stability properties resulting in the fact that single-charge vortices become

stable while their double-charge counterparts are unstable.

DOI: 10.1103/PhysRevA.79.043821 PACS number�s�: 42.65.Tg

I. INTRODUCTION

Experiments with optical vortices have proven to be some

of the most spectacular in the study of nonlinear light propa-

gation in periodic photonic structures due to often unex-

pected properties of the vortex flows �1�. Previous works

studied the vortices in square photonic lattices, and they re-

vealed that when a self-trapped vortex beam is placed on a

discrete structure of the lattice, it retains a phase singularity

with a particular winding number �or charge� �2–4�. These

early experiments on the generation of single-charge discrete

vortices were quickly followed by the demonstration of the

complex dynamics of single-charge vortex states such as

transmutations between different spatial profiles �5� and even

the inversion of the vortex charge �6,7�. More recently, the

lattices of nonsquare symmetry have been considered, such

as hexagonal and honeycomb lattices �8–11�, with striking

new vortex forms found, including the multivortex localized

states �12,13�. However, perhaps the most counterintuitive

result to emerge from the consideration of hexagonal lattices

is that in the simplest six-site configuration double-charge

vortices may become stable, while single-charge vortices are

always unstable �14�, in agreement with the stability proper-

ties of vortex solitons in modulated Bessel lattices �15�. This

is particularly surprising as higher-charge discrete vortices

are typically unstable in homogeneous nonlinear systems �1�.
The main objective of this work is to demonstrate experi-

mentally, numerically, and theoretically the stability of a

double-charge vortex in contrast to the corresponding single-

charge vortex state which is unstable under the same condi-

tions. We extend the earlier theoretical work for isotropic

systems and study the full anisotropic model of nonlinear

media with the numerical results supporting our experimen-

tal observations. To provide an additional theoretical insight

on this stabilization effect, we employ a simpler discrete

model to examine the effect of the lattice stretching on the

vortex stability, and also showcase the inversion of the vor-

tex stability picture �between single- and double-charge vor-

tices� in the case of the defocusing nonlinear response.

The outline of the paper is the following. In Sec. II we

introduce our experimental setup and present the results of

the experimental observation of stable double-charge vorti-

ces in a hexagonal photonic lattice created in a crystal with

photorefractive nonlinearity in the self-focusing regime. We

also show that in this regime single-charge vortices are un-

stable. In Sec. III we extend the theoretical results of Ref.

�14� and analyze numerically the full anisotropic model of

photorefractive nonlinearity demonstrating a good agreement

between the numerical and experimental results. In Sec. IV

we use a discrete model to examine theoretically the effect of

the lattice stretching on the stability of the double-charge

vortex and determine a critical stretching parameter for the

vortex stabilization. Section V describes the experimental

observation of stable single-charge vortices and unstable

double-charge vortices in the defocusing nonlinear regime,

confirming the inversion of the vortex stability established

theoretically on the basis of a discrete model. Finally, Sec.

VI concludes the paper.

II. EXPERIMENTAL RESULTS

First, we demonstrate experimentally the stable genera-

tion of a double-charge vortex in a photorefractive crystal in

the presence of a hexagonal photonic lattice in the self-

focusing regime, as predicted theoretically for an isotropic

model �14�. The experimental setup is shown schematically

in Fig. 1, and it is similar to that used earlier in Ref. �16�. A

beam from a frequency-doubled Nd:YAG laser at a wave-

length of 532 nm is split into two beams with a beam splitter,
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and the separate beams are used to illuminate two program-

mable spatial light modulators.

The first spatial light modulator �SLM1, see Fig. 1� con-

verts the incoming beam into three interfering plane waves

which are imaged onto the front face of a 20 mm long pho-

torefractive Sr0.60Ba0.40Nb2O6 �SBN:Ce� crystal which is ex-

ternally biased with a dc electric field directed along its op-

tical c axis. The resulting interference pattern is that of a

two-dimensional hexagonal photonic lattice �Fig. 2� with a

lattice power of Ilatt�75 �W. A half-wave plate ensures the

polarization of the lattice beam to be ordinary, so during the

beam propagation through the crystal the nonlinear effects

are negligible �17�. The lattice is oriented such that the light

intensity maxima of the hexagonal pattern are aligned along

the lines parallel to the optical axis of the crystal in the

so-called “horizontal configuration.” The periodic light in-

tensity distribution induces a corresponding refractive index

pattern via the photorefractive effect �17� forming the optical

lattice. Due to the anisotropic nature of the nonlinear re-

sponse of the crystal this optically induced refractive index
does not preserve the symmetry of the lattice beam. In par-
ticular, the modulation of the refractive index is stronger
along the optical axis than along the diagonals, making the
resulting optical coupling between refractive index maxima
very asymmetric �see Fig. 2, top row�. To counteract the
effect of the anisotropy, the lattice forming beams are tilted
to induce a stretching of the lattice along the vertical direc-
tion such that the optical coupling between lattice maxima is
closer to that of the original hexagonal symmetry of the lat-
tice �13�, yielding lattice constants of dy =62 �m and dx

=27 �m for the vertical and horizontal directions, respec-
tively. This gives a ratio of dy /dx�2.2 as opposed to the
ratio dy /dx=�3 of a symmetric lattice. The importance of the
lattice stretching for the vortex stability is examined theoreti-
cally below in Sec. IV.

The second spatial light modulator �SLM2, see Fig. 1�
combined with proper Fourier filtering �18,19� is employed

to achieve the desired amplitude and phase structure of an

incident Gaussian probe beam. The polarization of the probe

beam is extraordinary so it propagates through the crystal in

the nonlinear regime. The strength of nonlinearity is con-

trolled by varying an applied external dc electric field. In all

our experiments the value of the bias potential was set to be

approximately 2.2 kV/cm. In order to visualize the phase

structure of the probe beam, a third beam is derived from the

laser. It is passed through a half-wave plate to ensure its

extraordinary polarization and subsequently sent directly to

the charge-coupled device �CCD� camera to record a phase

interferogram with the probe beam.

We use the phase modulator to impose either a 2� or 4�

phase winding on an input modulated �six-site� beam for the

generation of single- and double-charge vortices, respec-

tively. The characteristics of the beams are otherwise identi-

cal, and thus any differences in the dynamics are due solely

to the different input phases. We selectively vary the input

beam intensity to effectively move from the linear regime

�low power, Iprobe�50 nW� to the nonlinear regime �high

power, Iprobe�550 nW�.
The single-charge vortex input is shown in Fig. 3�a�. Its

intensity distribution has a form of a necklace with six inten-

sity peaks whose positions correspond to the lattice sites �in-

dex maxima�. At low input power the beam undergoes dis-

crete diffraction and a complete loss of the initial six-site

input state �Fig. 3�b��. At high power the initial six-site in-

tensity profile changes significantly after propagation �Fig.

3�c��, showing strong intensity modulations and even filling

in the central lattice site. Furthermore, in the phase profile

multiple vortices are seen to appear, further indicating a

breakdown of the single-charge state �circles in bottom panel

of Fig. 3�c��. We were unable to find an example of stable

propagation of the single-charge vortex in the high-power

�nonlinear� regime, a result consistent with the isotropic case

predictions of Ref �14�. �see also the analysis below for the

anisotropic case�.
In the case of the double-charge vortex input �see Fig.

4�a�� we again observe a discrete diffraction with low input

power �see Fig. 4�b��; however the result changes dramati-

cally when the power is increased �see Fig. 4�c��. We observe

that now the six-site input structure is preserved in the non-
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FIG. 1. �Color online� Schematic of the experimental setup. BS:

beam splitter; CCD: camera; FF: Fourier filter; L: lens; M: mirror;

MO: microscope objective; PH: pinhole; SLM: spatial light

modulator.
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FIG. 2. �Color online� Sketch of the Fourier image and numeri-

cally calculated lattice intensity and refractive index profiles for the

symmetric hexagonal lattice �top panels� and the stretched lattice

�bottom panels�. The lattice beams in Fourier space are indicated by

dots forming an equilateral triangle for the unstretched lattice and

an isosceles triangle for the stretched lattice. The refractive index

profiles are shown for focusing �left� and defocusing �right�
nonlinearities.
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linear propagation. Interestingly, while the overall phase

winding is still 4�, it is seen that the initial double-charge

singularity has split into two single-charge vortices �circles

in the lower panel of Fig. 4�c��. This splitting of the higher-

order singularity can be attributed to an inherent topological

instability in the higher phase winding �20�. This topological

breakdown in the linear �low power� part of the field further

indicates that the stability of the 4� phase winding across the

six sites is due to the interplay of the nonlinearity and local

phase of the high-power sites suppressing the development

of a dynamical instability �14�. However, we find that this

stability is critically dependent on the symmetry of the lat-

tice, with a decrease in the lattice stretching �and thus a

corresponding decrease in the symmetry of the underlying

modulated refractive index�, leading to a dynamical instabil-

ity in the double-charge state as well. The phase interfero-

gram in Fig. 4�c� also indicates an additional pair of single-

charge vortices of the opposite charge inside the vortex

structure �not marked by circles�. However, this additional

pair does not affect the stability of the 4� phase winding,

and it can be fully attributed to inevitable experimental noise

in this region of low intensity of light.

III. NUMERICAL SIMULATIONS

In the earlier work examining double-charge vortex sta-

bility the isotropic nonlinear model was used �14�, which

does not take into account anisotropy of the photorefractive

nonlinearity and the stretching of the lattice. Therefore, to

corroborate our experimental results, here we use the full

anisotropic model. The propagation of a scalar probe field A

through a photorefractive crystal is given by

2i
�A

�z
+ �

�

2 A − �nlEsc�Itot�A = 0, �1�

where �
�

2 =�
2
/�x2+�

2
/�y2; Itot= �Alatt�2+ �A�2, Alatt is the peri-

odic lattice wave, and �nl=k0
2w0

2n0
4reff is the photorefractive

nonlinearity coefficient proportional to the effective element

reff of the linear electro-optic tensor. Spatially localized and

stationary solutions of Eq. �1� can be found in the form

A�x ,y ,z�=a�x ,y�exp�i�z�, where � is the soliton propaga-

(b)

(c)

(a)

FIG. 3. �Color online� �a� An input single-charge vortex beam;

�b� the beam profile and phase at the output crystal face for low

input intensity; �c� output for high input intensity. In both cases we

see the breakup of the single-charge vortex. Here and below in

experimental figures: left panels show intensity; right panels reveal

phase structure; circles indicate positions of vortices with charge

m= +1 �red� and m=−1 �blue�.

(b)

(c)

(a)

FIG. 4. �Color online� The same as in Fig. 3, but for the case

when the input beam �a� has a double-charge vortex phase. �b�
Output at the crystal face demonstrates discrete diffraction for low

power and �c� discrete double-charge vortex generation at high

power.
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tion constant. The electric screening field Esc is generated by

the separation of optically excited charges which drift in the

external electric field. This directional drift is responsible for

an anisotropy of the total electric field in the crystal and

consequently an anisotropic refractive index change. A quan-

titative model describing the stationary dynamics has been

proposed in terms of the scalar potential � from which the

screening field may be found through Esc=−�x�. The equa-

tion describing the evolution of this potential is given by �21�

�
�

2 � + �� ln�1 + Itot���� = Eext�x ln�1 + Itot� , �2�

where Eext is the dc bias voltage applied along the optical

axis of the crystal which is taken to be the x axis. The trans-

verse coordinates �x ,y� and propagation coordinate z are

measured in units of the characteristic lengths w0 and z0,

respectively, where z0=kzw0
2 and kz=n0k0 with k0=2� /�. In

particular, we use a transverse scale of w0=10 �m and �

and n0 as for the experiment. The total intensity Itot is nor-

malized in units of the background illumination and we take

Eext=2.5 kV /cm. For the lattice wave we use the expression

Alatt = exp�2ikxx/3� + exp�− ikxx/3 + ikyy�

+ exp�− ikxx/3 − ikyy� , �3�

leading to a diffraction-free hexagonal pattern with the hori-

zontal orientational symmetry shown in Fig. 2. We consider a

stretched lattice with kx /ky =2.5 and spatial separations of

lattice maxima of dx=2� /kx=2 in x and dy =2� /ky =5 in y

directions �lattice spacings of 20 and 50 mm, respectively�.
First we consider the case of a six-site initial state with a

single-charge vortex phase of the form shown in Fig. 5�a�
with either low or high power propagating a distance of z

=20 mm in the lattice. For the low input power case �Fig.

5�b�� we see that, as in the experiment, the vortex beam

undergoes strong diffraction and break-up. If instead a high

input power is considered �Fig. 5�c�� the vortex maintains

much of its form. Some intensity fluctuations are evident,

and more importantly, the vortex phase has deteriorated

showing breakdown of the initial single-charge vortex circu-

lation. It must be noted that the breakup is clearly less than

that observed in the experiment and this discrepancy is at-

tributed to the higher anisotropy of the experimental lattice

leading to a larger instability growth rate. In our numerical

simulations, the strong instability becomes evident for longer

propagation distances as shown in Fig. 5�d� for z=280 mm.

In Fig. 6 we consider the same input beam intensities but

change the phase to that of a double-charge vortex, as shown

in Fig. 6�a�. The low power output in Fig. 6�b� appears simi-

lar to the single-charge case, exhibiting diffraction and

breakup of the vortex. In contrast, the high-power output in

Figs. 6�c� and 6�d� appears unchanged in the intensity profile

with a well-pronounced double-charge vortex phase. Similar

to the experimental results, the separation of the double-

charge phase singularity into two single-charge singularities

is observed, including in the initial condition in Fig. 6�a�.
However the phase circulation around a contour tracing the

six high intensity sites is well defined and equals 4�.

IV. EFFECT OF LATTICE STRETCHING

A key feature of the full model considered here, as com-

pared to the isotropic case studied earlier �14�, is the pres-

ence of anisotropy. In the experiment and in numerical simu-

lations, we have sought to reduce the effects of the

anisotropy by stretching the lattice. In this section we use a

discrete model to obtain some further insight, based on semi-

analytical considerations, on how the lattice stretching �or

more generally the symmetries of the intersite coupling� af-

fects the discrete vortex stability.

Within the framework of the discrete approximation the

hexagonal lattice corresponds to a coupled waveguide array

with complex amplitudes um,n of the electric field governed

by the following system:

i
dum,n

dz
= − � �

m�,n�

Cm�,n�
um�,n�

+ �4 + 2C��um,n − b�um,n�2um,n,

�4�

where the constant � denotes the strength of linear coupling

between waveguides, b=1 is for self-focusing, and b=−1 is

for self-defocusing media. The set 	m� ,n�
 indexes the six

nearest neighboring sites to the site �m ,n�, a pair in each of

the three principal directions. The parameters Cm�,n�
account

(a) (b) (c) (d)

FIG. 5. Numerical simulation of a single-charge vortex �Eext

=2.5 kV /cm, Ilatt= �Alatt�2=1, �=3�. �a� Initial vortex beam pro-

file; �b� beam profile at z=20 mm for low input power; �c� beam

profile at z=20 mm for high input power; �d� high-power output at

z=280 mm. Top panels: intensity; bottom panels: phase.

(a) (b) (c) (d)

FIG. 6. Numerical simulation of a double-charge vortex �Eext

=2.5 kV /cm, Ilatt= �Alatt�2=1, �=3�. �a� Initial vortex beam pro-

file; �b� beam profile at z=20 mm for low input power; �c� beam

profile at z=20 mm for high input power; �d� high-power output at

z=280 mm. Top panels: intensity; bottom panels: phase.
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for the coupling anisotropy and are equal to C for the neigh-

bors lying along the �1,0� direction and 1 otherwise.

In the anticontinuum limit �→0, i.e., for very weak inter-

action between neighboring waveguides, the solutions of

Eq. �4� can easily be found in the general form um,n

=�� exp	−i�z+ i�m,n
 for arbitrary �m,n� �0,2�� �22�. Let-

ting �=1 without loss of generality and using j to index the

sites along the six-site one-dimensional contour shown in

Fig. 7�a�, the condition for existence of solutions with �

	0 reduces to the vanishing of the total power flow at each

site,

c j,j−1 sin�� j − � j−1� + c j,j+1 sin�� j − � j+1� = 0, �5�

subject to periodic boundary conditions � j+6=� j for j

=1, . . . ,6 �22�. Similar to Cm�,n�
above the constants c j,k ac-

count for the coupling anisotropy,

c j,k = �C , �j,k� � 	�2,3�,�3,2�,�5,6�,�6,5�


1, otherwise.
� �6�

We consider first the focusing medium with b=1. In the

case C=1, the single- and double-charge vortex solitons exist

close to the anticontinuum limit as defined by the phase vec-

tors � j =Sj� /3, where S=1,2, respectively. An analytical ap-

proximation for the stability of the discrete solitons can be

made for small � based on an appropriate modification of the

theory originally developed in Ref. �22� for the isotropic

square lattice. The stability can be determined from the ei-

genvalues � j of the 6
6 Jacobian of Eq. �5�,

�M� j,k

= 
b�c j,j+1 cos�� j+1 − � j� + c j,j−1 cos�� j−1 − � j�� , j = k

− b�c j,k cos�� j − �k�� , j = k � 1

0, �k − j� � 2.
�

�7�

For each eigenvalue � j, the full linearization around a sta-

tionary solution will have eigenvalue pairs � j given, to lead-

ing order, by � j = ��2� j�. Therefore, the sign of the eigen-

values of M determines whether the eigenvalues of the

bifurcating solution will be real or imaginary. In particular,

positive eigenvalues of M will indicate real eigenvalues of

the full linearization problem, and, hence, instability for this

Hamiltonian system.

The results for the existence and stability of single- and

double-charge vortex configurations are presented in Figs.

7�c�–7�f� for C� �0.1,1�. The results for 1C10 are not

shown since no new instabilities arise in that regime. These

results can be summarized as follows:

�i� The S=2 vortex is stable for C	Ccr=0.708, as it is in

the isotropic case �14�.
�ii� As two of the relative phase pairs decrease below � /2

due to the stretching, the S=2 vortex becomes destabilized

for CCcr=0.708 due to an effective modulational instabil-

ity �14� �see also Ref. �23� for a general analysis of the

instability� along the one-dimensional six-site contour.

�iii� Below a stretching of C=0.5, the S=2 configuration

becomes real with �1=�4=0 and the others equal to �, �or

vice versa�.
�iv� On the other hand, the vortex with S=1 is unstable

throughout the considered interval of stretching parameter,

but also degenerates into a real solution with �3,4,5=0 and the

others equal to �.

A continuation of solutions for the double-charge family

was performed in the coupling parameter �, and the critical

value Ccr, represented by the front of real eigenvalues, was

found to deviate very weakly from the first order prediction,

when � was varied in the interval �0,0.1�. The stability results

are detailed in Figs. 7�b� and 7�d�.
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FIG. 7. �Color online� The hexagonal cell is approximated by a

contour shown in �a�. The images below this show the relative

phases for the �c� double- and �e� single-charge vortices distinguish-

ing stable �with � j 0 for all j� and unstable �with � j 	0� solutions.

For C=1 the phases of adjacent excited nodes are equidistant and

all are a distance of 2� /3 or � /3 from one another. These are the

isotropic double- and single-charge vortices. For smaller C, the

relative phase of �2 and �3 �shown in black� becomes smaller for

the double-charge �c� solution �and larger for the single charge �e��
and when ��2−�3� �	�� /2, for CCcr=0.708, one corresponding

eigendirection becomes unstable �stable�. This can be observed in

�d� and �f�, in which the six eigenvalues of the linearization matrix

M are presented as a function of C. When they are all negative the

solution is stable close to the anticontinuum limit. Notice for the

S=2 solution �d� the smallest magnitude one becomes positive for

CCcr, leading to instability. �b� The bifurcation of the relevant

eigenvalue of the S=2 vortex through the origin is represented by

the maximum real part of the linearization spectrum, max�Re ����
as a function of both the anisotropy parameter, C, as well as the

coupling �. Notice the critical point �in C� shifts only very slightly

from the first-order prediction for 0�0.1.

OBSERVATION OF DOUBLE-CHARGE DISCRETE VORTEX… PHYSICAL REVIEW A 79, 043821 �2009�

043821-5



We can use full anisotropic models �1� and �2� to estimate

the relative coupling values typically used in experiments. In

the unstretched case we calculate the anisotropy parameter to

be C�0.22, while with the lattice stretching this becomes

C�0.82. These values have been calculated for the particu-

lar case of the high input beam intensity although they de-

pend strongly on both the lattice depth and the beam inten-

sity. It is evident however that the unstretched value places

the lattice in a regime where no stable vortex formation is

expected from the discrete model analysis, in agreement with

experiment. Furthermore, in the stretched case we can see

that again in accordance with the analysis of the discrete

model a stretching parameter of C=0.82 is within the stable

region of double-charge vortex formation, as was also con-

firmed experimentally. We thus illustrate a very good agree-

ment between the predictions of the discrete model, the pa-

rameters calculated from the full anisotropic model, and the

actual experimental results.

One of the advantages of the discrete model is that the

relevant theoretical analysis can be straightforwardly ex-

tended to the case of the defocusing nonlinearity. In particu-

lar, it is well known that a so-called staggering transforma-

tion along the contour of such a solution for a given b, i.e.,

Ũ j = �−1� jU j, yields a solution to the problem with b̃=−b; this

illustrates that a mere staggering transformation suffices to

extend the focusing results above to the defocusing case.

More specifically, the staggering transformation of the S=1

focusing solution leads to the S=−2 �or equivalently S=2�
solution for the defocusing case, while that of the S=2 fo-

cusing vortex leads to the S=−1 �or equivalently S=1� defo-

cusing vortex. Importantly also, the stability results for

single- and double-charge solutions for the focusing case im-

mediately translate to their defocusing counterparts, namely,

the double- and single-charge solutions �respectively�. Since

the stability predictions are exactly reversed in the defocus-

ing case �between the single- and double-charged vortex�,
numerical and experimental studies have also been per-

formed in this setting to test the theoretical prediction.

V. DEFOCUSING NONLINEARITY

As discussed above, the stability properties of single- and

double-charge vortices with focusing nonlinearity are ex-

pected to be inverted when the nonlinearity is changed from

focusing to defocusing. For completeness of our analysis, we

examine this situation numerically as well as experimentally

and confirm this general theoretical prediction.

Similar to the focusing case, we perform numerical simu-

lations using full anisotropic models �1� and �2� but reverse

the sign of the nonlinearity by using Eext=−2.5 kV /cm.

Figure 8 summarizes the results for the single-charge vor-

tex and it clearly demonstrates the inverted stability proper-

ties caused by the defocusing nonlinearity. In contrast to the

focusing case �Fig. 5�, intensity and phase profiles of the

input structure are preserved and a stable single-charge dis-

crete vortex soliton is formed. It should be noted, however,

that in the low intensity regime �Fig. 8� the diffraction is

much less pronounced than in the presence of a focusing

nonlinearity and hardly visible for propagation distances of

20 mm �Fig. 8�. The same result is obtained for the low-

intensity double-charge vortex shown in Fig. 9�b�. Moreover,

compared to the focusing case, the instability is weaker and

more evident in the phase than in the intensity �Figs. 9�c� and

9�d��. Overall, however, the numerical simulations well con-

firm the theoretical prediction of inverted stability properties

in the defocusing case, resulting in a stable single-charge

vortex soliton and an unstable double-charge vortex.

Experimentally, the nonlinearity can also be made defo-

cusing by simply inverting the external bias voltage. We con-

sider a bias field of �1.6 kV /cm antiparallel to the optical

axis. Our photonic lattice beam is 50 �W; we produce a

stretched lattice with the same lattice constants as in the self-

focusing case. Notice that now the lattice acquires a honey-

comb structure, i.e., light intensity maxima of the lattice

forming beams lead to minima of the corresponding refrac-

tive index pattern �see bottom panels in Fig. 2�. It is impor-

tant to note here that as the theoretical stability results of the

discrete model are obtained from the consideration of the

one-dimensional six-site contour with periodic boundary

conditions, these results are unaffected by the honeycomb

structure of the defocusing photorefractive crystal lattice. For

each vortex input we consider two different input beam pow-

(a) (b) (c) (d)

FIG. 8. Numerical simulation of a single-charge vortex for de-

focusing nonlinearity �Eext=−2.5 kV /cm, Ilatt= �Alatt�2=4, �=2�.
�a� Initial vortex beam profile; �b� beam profile at z=20 mm for

low input power; �c� beam profile at z=20 mm for high input

power; �d� high-power output at z=280 mm. Top panels: intensity;

bottom panels: phase.

(a) (b) (c) (d)

FIG. 9. Numerical simulation of a double-charge vortex for de-

focusing nonlinearity �Eext=−2.5 kV /cm, Ilatt= �Alatt�2=4, �=2�.
�a� Initial vortex beam profile; �b� beam profile at z=20 mm for

low input power; �c� beam profile at z=20 mm for high input

power; �d� high-power output at z=280 mm. Top panels: intensity;

bottom panels: phase.
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ers, low power �Iprobe�30 nW� and high power �Iprobe

�160 nW�. Output intensity and phase are then recorded on

the beam exit of the crystal.

First, we consider the single-charge vortex input shown in

Fig. 10�a�. In a good agreement with our numerical simula-

tions, we see only very weak diffraction in the low-power

�linear� regime �see Fig. 10�b��. More importantly, the

single-charge vortex phase breaks up, and we observe the

emergence of other vortices, indicating that the input beam

profile is not stable at low powers. In contrast, at high pow-

ers we find that both the intensity and phase profile are well

preserved �see Fig. 10�c��, in strong contrast to the observa-

tions in the self-focusing nonlinearity case.

In the case of a double-charge vortex input �see Fig.

11�a��, we observe a diffraction pattern similar to that in the

single-charge case at low input powers �Fig. 11�b��. At high

input powers, the output shows some diffraction but, more

importantly, the vortex phase is again no longer preserved as

we are able to identify only a single vortex singularity. This

is again in strong contrast to the self-focusing case.

We would like to stress again here that while the stability

of the single- and double-charge vortices has been swapped

in the defocusing case, with the former now stable, the ap-

pearance of the instability is somewhat different between the

self-focusing and self-defocusing cases. In the former case,

we observed strong intensity modulations which made it

clear that the single-charge vortex is unstable. In the defo-

cusing case, the instability development appears to be

weaker and to be more evident in the phase than in the in-

tensity. However, we can conclude that the stability proper-

ties of the vortices in the defocusing case are inverse to those

in the focusing case, as illustrated theoretically above �see

also Ref �14�.�.

VI. CONCLUSIONS

We have demonstrated experimentally the generation of

stable double-charge vortex solitons in a hexagonal photonic

lattice created optically in a self-focusing photorefractive

crystal. We have observed that single-charge vortices are un-

stable in the same regime and that this main stability prop-

erty is reversed in the case of defocusing nonlinearity �lead-

ing to honeycomb lattices�, with the single-charge vortex

(b)

(c)

(a)

FIG. 10. �Color online� �a� An input single-charge vortex beam

in the defocusing regime; �b� the beam profile and phase at the

output crystal face for low input intensity; �c� output for high input

intensity showing generation of a stable single-charge vortex.

(b)

(c)

(a)

FIG. 11. �Color online� �a� An input double-charge vortex beam

in the defocusing regime; �b� the beam profile and phase at the

output crystal face for low input intensity; �c� output for high input

intensity showing instability of the double-charge vortex.
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appearing to be stable while the double-charge vortex exhib-

iting a weak instability. It has been shown that these results

may be captured numerically in the framework of the full

anisotropic model of nonlinear light propagation in photore-

fractive optical lattices. Furthermore, we have examined the

importance of balancing the nonlinearity anisotropy by

stretching the lattice and demonstrated analytically, through a

discrete model, that beyond a critical imbalance no stable

double-charge vortices exist.
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