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1 Introduction

Due to the high energy and luminosity of the LHC, charm production studies can be carried

out in a new kinematic domain with unprecedented precision. As the cross-sections of open

charm [1] and charmonium [2] production are large, the question of multiple production of

these states in a single proton-proton collision naturally arises. Recently, studies of double

charmonium and charmonium with associated open charm production have been proposed

as probes of the quarkonium production mechanism [3]. In pp collisions, additional con-

tributions from other mechanisms, such as Double Parton Scattering (DPS) [4–7] or the

intrinsic charm content of the proton [8] to the total cross-section, are possible, though

these constributions may not be mutually exclusive.

In this paper, both the production of J/ψ mesons together with an associated open

charm hadron (either a D0, D+, D+
s or Λ+

c )
1 and double open charm hadron production are

studied in pp collisions at a centre-of-mass energy of 7TeV. We denote the former process

as J/ψC and the latter as CC. In addition, as a control channel, cc̄ events where two open

charm hadrons are reconstructed in the LHCb fiducial volume (denoted CC) are studied.

1The inclusion of charge-conjugate modes is implied throughout this paper.

– 1 –



J
H
E
P
0
6
(
2
0
1
2
)
1
4
1

While the production of J/ψC events have not been observed before in hadron interactions,

evidence for the production of four charmed particles in pion-nuclear interactions has been

reported by the WA75 collaboration [9].

Leading order (LO) calculations for the gg → J/ψJ/ψ process in perturbative QCD

exist and give consistent results [10–12]. In the LHCb fiducial region (2 < yJ/ψ < 4.5,

pTJ/ψ < 10 GeV/c), where yJ/ψ and pTJ/ψ stand for rapidity and transverse momentum

respectively, the calculated J/ψJ/ψ production cross-section is 4.1±1.2 nb [12] in agreement

with the measured value of 5.1± 1.0± 1.1 nb [13]. Similar calculations for the gg → J/ψcc̄

and gg → cc̄cc̄ matrix elements exist [14, 15]. The calculated cross-sections for these

processes in the acceptance region considered here (2 < yJ/ψ , yC < 4, pTJ/ψ < 12 GeV/c,

3 < pTC < 12 GeV/c) are σ
(

J/ψC+ J/ψC
)

∼ 18 nb and σ
(

CC+ CC
)

∼ 100 nb, where

C stands for the open charm hadron. The predictions are summarized in table 1. These

LO α4
s perturbative QCD results are affected by uncertainties originating from the selection

of the scale for the αs calculation that can amount to a factor of two.

The DPS contribution can be estimated, neglecting partonic correlations in the proton,

as the product of the cross-sections of the sub-processes involved divided by an effective

cross-section [4–7]

σDPS (C1C2) =















1

2

σ (C1)× σ (C1)

σDPS
eff

, for C1 = C2

σ (C1)× σ (C2)

σDPS
eff

, for C1 6= C2.
(1.1)

Using this equation and the measured single charm cross-sections given in [1, 2] together

with the effective cross-section measured in multi-jet events at the Tevatron σDPS
eff = 14.5±

1.7+1.7
−2.3 mb [16], the size of this contribution is estimated (see table 1). However, this

approach has been criticized as being too naive [17].

Extra charm particles in the event can originate from the sea charm quarks of the

interacting protons themselves. Estimates for the possible contribution in the fiducial

volume used here are given in the appendix and summarized in table 1. It should be stressed

that the charm parton density functions are not well known, nor are the pT distributions of

the resulting charm particles, so these calculations should be considered as upper estimates.

2 The LHCb detector and dataset

The LHCb detector [19] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, and is designed for the study of particles containing b or c quarks.

The detector includes a high precision tracking system consisting of a silicon-strip vertex

detector surrounding the proton-proton interaction region, a large-area silicon-strip detec-

tor located upstream of a dipole magnet with a bending power of about 4Tm, and three

stations of silicon-strip detectors and straw drift tubes placed downstream. The combined

tracking system has a momentum resolution ∆p/p that varies from 0.4% at 5GeV/c to 0.6%

at 100GeV/c, and an impact parameter resolution of 20µm for tracks with high transverse

momentum. Charged hadrons are identified using two ring-imaging Cherenkov (RICH)
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Mode
σgg

σDPS σsea
[14, 15] [18]

[nb]

J/ψD0 10± 6 7.4± 3.7 146± 39 220

J/ψD+ 5± 3 2.6± 1.3 60± 17 100

J/ψD+
s 1.0± 0.8 1.5± 0.7 24± 7 30

J/ψΛ+
c 0.8± 0.5 0.9± 0.5 56± 22

[µb]

D0D0 2.0 ± 0.5 1.5

D0D+ 1.7 ± 0.4 1.4

D0D+
s 0.65± 0.15 0.4

D0Λ+
c 1.5 ± 0.5

D+D+ 0.34± 0.09 0.3

D+D+
s 0.27± 0.07 0.2

D+Λ+
c 0.64± 0.23

Table 1. Estimates for the production cross-sections of the J/ψC and CC modes in the LHCb

fiducial range given by the leading order gg → J/ψcc̄ matrix element, σgg [14, 15, 18], the double

parton scattering approach, σDPS and the sea charm quarks from the interacting protons, σsea.

detectors. Photon, electron and hadron candidates are identified by a calorimeter system

consisting of scintillating-pad and pre-shower detectors, and electromagnetic and hadronic

calorimeters. Muons are identified by a muon system composed of alternating layers of

iron and multiwire proportional chambers. The trigger consists of a hardware stage based

on information from the calorimeter and muon systems, followed by a software stage which

applies a full event reconstruction.

Events with a J/ψ → µ+µ− final state are triggered using two hardware trigger deci-

sions: the single-muon decision, which requires one muon candidate with a transverse mo-

mentum pT larger than 1.5 GeV/c, and the di-muon decision, which requires two muon can-

didates with transverse momenta pT1 and pT2 satisfying the relation
√

pT1 · pT2 > 1.3 GeV/c.

The di-muon trigger decision in the software trigger requires muon pairs of opposite

charge with pT > 500 MeV/c, forming a common vertex and with an invariant mass

2.97 < mµ+µ− < 3.21 GeV/c2. Events with purely hadronic final states are accepted by

the hardware trigger if there is a calorimeter cluster with transverse energy ET > 3.6 GeV.

The software trigger decisions select generic displaced vertices from tracks with large χ2 of

impact parameter with respect to all primary pp interaction vertices in the event, providing

high efficiency for purely hadronic decays [20].

To prevent a few events with high occupancy from dominating the CPU time in the

software trigger, a set of global event cuts is applied on the hit multiplicities of each sub-

detector used by the pattern recognition algorithms. These cuts were chosen to reject

events with a large number of pile-up interactions with minimal loss of data.
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The data used for this analysis comprises 355± 13 pb−1 of pp collisions at a centre-of-

mass energy of
√
s = 7 TeV collected by the LHCb experiment in the first half of the 2011

data-taking period. Simulation samples used are based on the Pythia 6.4 generator [21]

configured with the parameters detailed in ref. [22]. The EvtGen [23] and Geant4 [24]

packages are used to describe hadron decays and for the detector simulation, respectively.

The prompt charmonium production is simulated in Pythia according to the leading-order

colour-singlet and colour-octet mechanisms.

3 Event selection

To select events containing multiple charm hadrons, first J/ψ , D0, D+, D+
s and Λ+

c can-

didates are formed from charged tracks reconstructed in the spectrometer. Subsequently,

these candidates are combined to form J/ψC, CC and CC candidates.

Well reconstructed tracks are selected for these studies by requiring that the χ2
tr pro-

vided by the track fit satisfy χ2
tr/ndf < 5, where ndf represents the number of degrees of

freedom in the fit, and that the transverse momentum is greater than 650 (250) MeV/c

for each muon (hadron) candidate. For each track, the global likelihoods of the muon and

hadron hypotheses provided by reconstruction of the muon system are evaluated, and well

identified muons are selected by a requirement on the difference in likelihoods ∆ lnLµ/h > 0.

Good quality particle identification by the ring-imaging Cherenkov detectors is ensured

by requiring the momentum of the hadron candidate to be between 3.2 GeV/c (10 GeV/c

for protons) and 100 GeV/c, and the pseudorapidity to be in the range 2 < η < 5. To

select kaons (pions) the corresponding difference in logarithms of the global likelihood

of the kaon (pion) hypothesis provided by the RICH system with respect to the pion

(kaon) hypothesis, ∆ lnLK/π (∆ lnLπ/K), is required to be greater than 2. For protons,

the differences in logarithms of the global likelihood of the proton hypothesis provided

by the RICH system with respect to the pion and kaon hypotheses, are required to be

∆ lnLp/π > 10 and ∆ lnLp/K > 10, respectively.

Pions, kaons and protons, used for the reconstruction of long-lived charm particles, are

required to be inconsistent with being produced in a pp interaction vertex. Only particles

with a minimal value of impact parameter χ2 with respect to any reconstructed proton-

proton collision vertex χ2
IP > 9, are considered for subsequent analysis. These selection

criteria are summarized in table 2.

The selected charged particles are combined to form J/ψ → µ+µ−, D0 → K−π+,

D+ → K−π+π+, D+
s → K−K+π+ and Λ+

c → pK−π+ candidates. A vertex fit is made to

all combinations and a selection criterion on the corresponding χ2
VX applied. The transverse

momentum, pT, for open charm hadron candidates is required to be larger than 3 GeV/c.

To ensure that the long-lived charm particle originates from a primary vertex, the minimal

value of the charm particle’s χ2
IP with respect to any of the reconstructed proton-proton

collision vertices is required to be < 9. In addition, the decay time cτ of long-lived charm

mesons is required to be in excess of 100 µm, and in the range 100 < cτ < 500 µm for

Λ+
c candidates. To suppress the higher combinatorial background for Λ+

c candidates, only

pions, kaons and protons with a transverse momentum in excess of 0.5 GeV/c are used in

this case.

– 4 –
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Track selection

µ±, h± χ2
tr/ndf < 5

µ± pT > 650 MeV/c

h± pT > 250 MeV/c & 2 < η < 5 & χ2
IP > 9

π±,K± 3.2 < p < 100 GeV/c

p± 10 < p < 100 GeV/c

Particle identification

µ± ∆ lnLµ/h > 0

π± ∆ lnLπ/K > 2

K± ∆ lnLK/π > 2

p, p̄ ∆ lnLp/K > 10 & ∆ lnLp/π > 10

Table 2. Selection criteria for charged particles used for the reconstruction of charm hadrons.

J/ψ D0 D+ D+
s Λ+

c

µ+µ− K−π+ K−π+π+ (K+K−)φ π
+ pK−π+

y 2 < y < 4 2 < y < 4 2 < y < 4 2 < y < 4 2 < y < 4

pT [GeV/c] < 12 3 < pT < 12 3 < pT < 12 3 < pT < 12 3 < pT < 12

χ2
VX < 20 < 9 < 25 < 25 < 25

χ2
IP — < 9 < 9 < 9 < 9

χ2
fit/ndf < 5 < 5 < 5 < 5 < 5

cτ [µm] — cτ > 100 cτ > 100 cτ > 100
cτ > 100

cτ < 500

|cos θ∗| — < 0.9 — — —

mK+K−

[

GeV/c2
]

— — — < 1.04 —

min pTh± [GeV/c] — — — — > 0.5

Table 3. Criteria used for the selection of charm hadrons.

A global decay chain fit of the selected candidates is performed [25]. For channels

containing a J/ψ meson it is required that the muons be consistent with originating from

a common vertex and that this be compatible with one of the reconstructed pp collision

vertices. In the case of long-lived charm hadrons, the momentum direction is required to

be consistent with the flight direction calculated from the locations of the primary and

secondary vertices. To remove background from b-hadron decays the reduced χ2 of this

fit, χ2
fit/ndf, is required to be < 5. To further reduce the combinatorial background as well

as cross-feed due to particle misidentification, for the decay mode D0 → K−π+ a selection

criterion on the cosine of the angle between the kaon momentum in the D0 centre-of-mass

frame and the D0 flight direction in the laboratory frame, θ∗ is applied. For D+
s → K+K−π+

candidates, the invariant mass of the K+K− system is required to be consistent with the

φ meson mass. These selection criteria are summarized in table 3.
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Figure 1. Invariant mass distribution for selected J/ψ candidates. The results of a fit to the model

described in the text is superimposed on a logarithmic scale. The solid line corresponds to the total

fitted PDF whilst the dotted line corresponds to the background component.

J/ψ D0 D+ D+
s Λ+

c

µ+µ− K−π+ K−π+π+ (K+K−)φ π
+ pK−π+

S
[

106
]

49.57 65.77 33.25 3.59 0.637

fMC
b [%] 1.6 1.7 1.3 2.6 4.5

Table 4. Yields, S, and contamination from b-hadron decays, fMC
b , for the prompt charm signal.

The invariant mass distributions for selected J/ψ , D0, D+, D+
s and Λ+

c candidates are

presented in figures 1 and 2 for J/ψ and open charm mesons, respectively. The distribu-

tions are modelled by a double-sided Crystal Ball function [13, 26] for the J/ψ → µ+µ−,

and a modified Novosibirsk function [27] for the D0 → K−π+, D+ → K−π+π+ and

D+
s → K+K−π+ and Λ+

c → pK−π+ signals. In each case the combinatorial background

component is modelled with an exponential function. The signal yields are summarized in

table 4 together with an estimate of the contamination from the decays of b hadrons, fMC
b .

The latter has been estimated using simulated events, normalized to the corresponding

measured cross-sections.

The selected charm candidates are paired to form di-charm candidates: J/ψC, CC and

CC. A global fit of the di-charm candidates is performed [25], similar to that described

above for single charm hadrons, which requires both hadrons to be consistent with origi-

nating from a common vertex. The reduced χ2 of this fit, χ2
global/ndf, is required to be less

than 5. This reduces the background from the pile-up of two interactions each producing

a charm hadron to a negligible level. The remaining contamination from the pile-up and

decays from beauty hadrons is extracted directly from the data as follows. The distribu-
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Figure 2. Invariant mass distributions for selected a) D0, b) D+, c) D+
s and d) Λ+

c candidates.

The solid line corresponds to the total fitted PDF whilst the dotted line shows the background

component.

tions of χ2
global/ndf for J/ψD0, D0D0 and D0D

0
events are shown in figure 3. For the region

χ2
global/ndf > 5 the distributions are well described by functions of the form2

f (x) ∝ (αx)
n
2
−1e−

αx
2 , (3.1)

where α and n are free parameters. Fits with this functional form are used to extrapolate

the yield in the region χ2
global/ndf > 5 to the region χ2

global/ndf < 5. Based on these studies

we conclude that background from pile-up is negligible.

The mass distributions for all pairs after these criteria are applied are shown in figures 4

to 8 for channels with sufficiently large data samples.

4 Signal determination

The event yields are determined using unbinned extended maximum likelihood fits to the

mass distributions of the di-charm sample. The fit model is based on the probability

2The functional form is inspired by the χ
2 distribution.
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global/ndf for J/ψD0 events. The solid

line corresponds to the fit result in the region χ2
global/ndf > 5 by the function described in the text,

the dashed line corresponds to the extrapolation of the fit results to the χ2
global/ndf < 5 region.

b) Likewise for D0D0 (blue squares and red line) and D0D
0
(black circles and green line).

density functions (PDFs) for single open or hidden charm production described in section 3.

These basic PDFs are used to build the components of the two dimensional mass fit. Let

i and j denote the two resonance species. The reconstructed signal samples consist of the

following components:

• Di-charm signal. This is modelled by a product PDF of the individual signal compo-

nents for the first and the second particle.

• Combinatorial background. This is modelled by a product PDF of the individual

background components i and j denoted by Bi(mi) and Bj(mj).

• Single production of component i together with combinatorial background for com-

ponent j. This is modelled by a product PDF of the signal component i denoted

Si(mi) and the background component j denoted Bj(mj).

• Single production of component j together with combinatorial background for com-

ponent i. This is modelled by a product PDF of the signal component j denoted

Sj(mj) and the background component i denoted Bi(mi).

The total PDF is then

F (mi,mj) ∝ NSi×Sj × Si(mi)Sj(mj) +NSi×Bj × Si(mi)Bj(mj)

+NBi×Sj ×Bi(mi)Sj(mj) +NBi×Bj ×Bi(mi)Bj(mj), (4.1)

whereNSi×Sj , NSi×Bj , NBi×Sj andNBi×Bj are the yields of the four components described

above. The correctness of the fitting procedure is evaluated in simulation studies. As

discussed in section 3 both the contribution of pile-up background and b-hadron decays

is small and can be neglected. The goodness of fit is found to be acceptable using the

distance to the nearest neighbour method described in refs. [28, 29].
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Figure 4. Invariant mass distributions for a) J/ψD0, b) J/ψD+, c) J/ψD+
s and d) J/ψΛ+

c candidates.

As a cross-check of the results, the signal yields have been determined from the single

charm hadron mass spectra using the technique described in ref. [13]. In this approach, for

each pair of charm species the invariant mass distributions of the first charm candidate are

fitted to obtain the yield in bins of the invariant mass of the second candidate and vice versa.

This technique gives signal yields consistent within 10% of the statistical uncertainty and

also allows the statistical significance of the result to be easily evaluated. This exceeds five

standard deviations for most of the modes considered. The signal yields for J/ψC, CC and

CC events are presented in tables 5 and 6 together with the estimate of the goodness of fit.

5 Efficiency correction

The yields are corrected for the detection efficiency to obtain the measured cross-sections.

The efficiency for J/ψC, CC and CC events εtot is computed for each signal event and is

decomposed into three factors

εtot = εreco × εID × εtrg, (5.1)
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Figure 5. Invariant mass distributions for D0C candidates: a) D0D0, b) D0D+, c) D0D+
s and

d) D0Λ+
c .

Mode S Sσ P [%]

J/ψD0 4875± 86 59

J/ψD+ 3323± 71 26

J/ψD+
s 328± 22 65

J/ψΛ+
c 116± 14 7.3σ 98

Table 5. Yields of J/ψC events, S, statistical significance of the signals, Sσ, determined from fits

based on the technique described in ref. [13], and goodness-of-fit characteristic (χ2 probability), P .

When no significance is quoted, it is in excess of 8σ.

where εreco is the efficiency for acceptance, reconstruction and selection, εID is the efficiency

for particle identification and εtrg is the trigger efficiency. The first term in eq. (5.1), εreco

is factorized into the product of efficiencies for the first and second charm particle and a

correction factor

εreco = εreco1 × εreco2 × ξtrk, (5.2)
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Figure 6. Invariant mass distributions for D+C candidates: a) D+D+, b) D+D+
s , and c) D+Λ+

c .

where the efficiencies εreco(1,2) are evaluated using the simulation, and the correction factor3

ξtrk is determined from the J/ψ data using a tag-and-probe method and accounts for relative

differences in the track reconstruction efficiency between data and simulation.

The efficiency εrecoi is determined using the simulation in bins of rapidity y and trans-

verse momentum pT of the charm hadron. In the case of the J/ψ meson, the effect of the

unknown polarization on the efficiency is accounted for by binning in | cos θ∗J/ψ |, where θ∗J/ψ
is the angle between the µ+ momentum in the J/ψ centre-of-mass frame and the J/ψ flight

direction in the laboratory frame.

The efficiency for hadron identification as a function of momentum and pseudorapidity

is determined from the data using samples of D∗+ →
(

D0 → K−π+
)

π+, and Λ → pπ− [30,

31]. The efficiency for dimuon identification, εIDJ/ψ is obtained from the analysis of the

J/ψ → µ+µ− sample as a function of transverse momentum and rapidity of the J/ψ .

For the J/ψC sample the J/ψ particle is required to trigger the event whilst for the

CC and CC case either of the two charm mesons could trigger the event. The trigger

efficiency for the di-charm system in the two cases is thus

εtrgJ/ψC = εtrgJ/ψ (5.3a)

εtrg
CC,CC

= 1− (1− εtrgC1
)× (1− εtrgC2

). (5.3b)

3This is the product of the individual corrections for each track.

– 11 –



J
H
E
P
0
6
(
2
0
1
2
)
1
4
1

1.82
1.84

1.86
1.88

1.9
1.92

1.82

1.84

1.86

1.88

1.9

1.92
0

100

200

300

400

1.82
1.84

1.86
1.88

1.9
1.92

1.82

1.84

1.86

1.88

1.9

0

200

400

1.82
1.84

1.86
1.88

1.9
1.92

1.9

1.95

2

0

20

40

60

80

1.82
1.84

1.86
1.88

1.9
1.92

2.24

2.26

2.28

2.3

2.32

0

10

20

m
K
π [

GeV/c 2 ]

m
K
ππ [

GeV/c 2 ]

m
KK
π [

GeV/c 2 ]

m
pK
π [

GeV/c 2 ]

mKπ

[

GeV/c
2
]

mKπ

[

GeV/c
2
]

mKπ

[

GeV/c
2
]

mKπ

[

GeV/c
2
]

C
an

d
id
at
es

C
an

d
id
at
es

C
a
n
d
id
at
es

C
a
n
d
id
at
es

a) b)

c) d)

LHCb

LHCb

LHCb

LHCb

Figure 7. Invariant mass distributions for D0C̄ candidates: a) D0D
0
, b) D0D−, c) D0D−

s and

d) D0Λ̄−
c .

In both cases the trigger efficiency for a single charm hadron εtrgJ/ψ or εtrgC is determined

directly from the data using the inclusive prompt charm sample as a function of y and

pT. This is done using a method that exploits the fact that events with prompt charm

hadrons can be triggered either by the decay products of the charm hadron, or by the rest

of the event [13, 32]. The overlap between the two cases allows the trigger efficiency to

be estimated.

As discussed in section 2, global event cuts are applied in the trigger on the sub-detector

hit multiplicites to reject complex events. The efficiency of these cuts εGEC is studied using

the distributions of hit multiplicity after background subtraction. These distributions have

been extrapolated from the regions unaffected by the cuts into the potentially affected

regions and compared with the observed distributions in order to determine εGEC.

The efficiency-corrected signal yield N corr is determined using the sPlot [33] technique.
Each candidate is given a weight for it to be signal, ωi, based on the result of the fit to

the mass distributions described before. The weight is then divided by the total event

efficiency and summed to give the efficiency-corrected yield

N corr =
∑

i

ωi

εtoti

. (5.4)
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Figure 8. Invariant mass distributions for CC candidates: a) D+D−, b) D+D−
s and c) D+Λ̄−

c .

In the case of the D0C and D0C final states the corresponding yields have been cor-

rected to take into account the double Cabibbo-suppressed decay (DCS) mode D0 → K+π−,

which mixes the D0C and D0C reconstructed final states
(

N ′

D0C

N ′

D0C̄

)

=
1√

1− r2

(

1 −r
−r 1

)

×
(

N corr
D0C

N corr
D0C̄

)

, (5.5)

where r is rDCS =
Γ
(

D0 → K+π−
)

Γ (D0 → K−π+)
= (3.80± 0.18)×10−3 [34]. This value of rDCS accounts

also for the effect of D0-D
0
mixing. For the D0D0 and D0D

0
cases the value of r = 2rDCS

is used.

6 Systematic uncertainties

The sources of systematic uncertainty that enter into the cross-section determination in

addition to those related to the knowledge of branching ratios and luminosity are discussed

below. The dominant source of systematic uncertainty arises from possible differences in

the track reconstruction efficiency between data and simulation which are not accounted
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Mode S Sσ P [%]

D0D0 1087± 37 4.5

D0D
0

10080± 105 33

D0D+ 1177± 39 24

D0D− 11224± 112 36

D0D+
s 111± 12 8σ 10

D0D−
s 859± 31 13

D0Λ+
c 41± 8 5σ 9

D0Λ̄−
c 308± 19 35

D+D+ 249± 19 15

D+D− 3236± 61 67

D+D+
s 52± 9 5σ 54

D+D−
s 419± 22 59

D+Λ+
c 21± 5 2.5σ 36

D+Λ̄−
c 137± 14 8σ 7

Table 6. Yields of CC and CC events, S, statistical significance of the signals, Sσ, determined

from fits based on the technique, described in ref. [13], and goodness-of-fit characteristic, P . When

no significance is quoted, it is in excess of 8σ.

for in the per-event efficiency. This includes the knowledge of the hadronic interaction

length of the detector which results in an uncertainty of 2% per final state hadron [32].

An additional uncertainty is due to the statistical uncertainty on the determination of the

per-event efficiency due to the finite size of the simulation and calibration samples. This is

estimated by varying the obtained efficiencies within their corresponding uncertainties. The

unknown polarization of J/ψ mesons affects the acceptance, reconstruction and selection

efficiency εrecoJ/ψ [2]. In this analysis the effect is reduced by explicitly taking into account the

dependence of εrecoJ/ψ on | cos θ∗J/ψ | in the efficiency determination. The remaining dependence

results in a systematic uncertainty of 3% for channels containing a J/ψ .

Additional uncertainties are due to differences between data and simulation, uncer-

tainty on the global event cuts, knowledge of the branching fractions of charm hadrons,

Bi. Uncertainties due to the parameterization of the signal and background components

are found to be negligible.

The absolute luminosity scale was measured at specific periods during the data taking,

using both van der Meer scans [35] where colliding beams are moved transversely across

each other to determine the beam profile, and a beam-gas imaging method [36, 37]. For the

latter, reconstructed beam-gas interaction vertices near the beam crossing point determine

the beam profile. The knowledge of the absolute luminosity scale is used to calibrate the
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Source J/ψD0 J/ψD+ J/ψD+
s J/ψΛ+

c

J/ψ reconstruction εreco1 1.3 1.3 1.3 1.3

C reconstruction εreco2 0.7 0.8 1.7 3.3

Muon ID εIDJ/ψ 1.1 1.1 1.1 1.1

Hadron ID εIDhad 1.1 1.9 1.1 1.5

Tracking ξtrk 4.9 7.0 7.0 7.0

Trigger εtrgJ/ψC 3.0 3.0 3.0 3.0

J/ψ polarization εrecoJ/ψ 3.0 3.0 3.0 3.0

Global event cuts εGEC 0.7 0.7 0.7 0.7

Luminosity L 3.7 3.7 3.7 3.7

B(J/ψ → µ+µ−) B1 1.0 1.0 1.0 1.0

C branching fractions B2 1.3 4.3 6.0 26

Total 8 10 11 28

Table 7. Relative systematic uncertainties (%) for the J/ψC cross-sections.

number of tracks in the silicon-strip vertex detector, which is found to be stable throughout

the data-taking period and can therefore be used to monitor the instantaneous luminosity

of the entire data sample. The dataset for this analysis corresponds to an integrated

luminosity of 355± 13 pb−1.

The sources of systematic uncertainty on the J/ψC production cross-section mea-

surements are summarized in table 7 and those for open charm in tables 8 and 9.

The total systematic uncertainties have been evaluated taking correlations into account

where appropriate.

7 Results

The model-independent cross-section for double charm production in the fiducial range is

computed as

σ =
N corr

L × B1 × B2 × εGEC
, (7.1)

where L is the integrated luminosity obtained as described in section 6, B(1,2) stand for the

corresponding branching ratios, εGEC is the efficiency of the global event cuts, and N corr is

the efficiency-corrected event yield, calculated according to eq. (5.4). The branching ratios

used for these calculations are taken from ref. [34].

The cross-sections for the production of J/ψ and associated open charm, σJ/ψC, are

measured in the fiducial volume 2 < yJ/ψ , yC < 4, pTJ/ψ < 12 GeV/c, 3 < pTC < 12 GeV/c.

The results are summarized in table 10 and figure 9.
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Source D0D0 D0D+ D0D+
s D0Λ+

c

D0C reconstruction εreco1 × εreco2 1.4 1.4 2.3 3.6

Hadron ID εIDhad 1.2 1.8 1.6 2.4

Tracking ξtrk 8.5 10.7 10.6 10.6

Trigger εtrg
CC,CC

1.8 2.5 3.9 5.2

Global event cuts εGEC 1.0 1.0 1.0 1.0

Luminosity L 3.7 3.7 3.7 3.7

B(D0 → K−π+) B1 1.3 1.3 1.3 1.3

C branching fractions B2 1.3 4.3 6.0 26

Total 10 12 14 30

Table 8. Relative systematic uncertainties (%) for the D0C cross-sections. The uncertainties for

CC and CC are equal.

Source D+D+ D+D+
s D+Λ+

c

D+C reconstruction εreco1 × εreco2 1.4 2.2 4.0

Hadron ID εIDhad 2.3 2.4 3.0

Tracking ξtrk 12.8 12.8 12.8

Trigger εtrg
CC,CC

3.7 5.8 5.0

Global event cuts εGEC 1.0 1.0 1.0

Luminosity L 3.7 3.7 3.7

B(D+ → K−π+π+) B1 4.3 4.3 4.3

C branching fractions B2 4.3 6.0 26

Total 17 17 31

Table 9. Relative systematic uncertainties (%) for the D+C cross-sections. The uncertainties for

the CC and CC are equal.

The systematic uncertainties related to the reconstruction and trigger are reduced if

ratios to the cross-sections for prompt J/ψ , σJ/ψ , and prompt open charm production,

σC, with the same fiducial requirements are considered (taking into account correlated

uncertainties) [1, 2]. These ratios are presented in table 11.

The cross-sections for CC and CC events in the fiducial volume 2 < yC < 4, 3 < pTC <

12 GeV/c are measured and listed in table 12 and figure 9. The table also includes the

ratio of CC and CC production cross-sections, σCC/σCC, and the ratios of the product of

the prompt open charm cross-sections to the CC (CC) cross-sections, σC1
σC2

/σC1C2
.
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Mode σ [nb]

J/ψD0 161.0± 3.7± 12.2

J/ψD+ 56.6± 1.7± 5.9

J/ψD+
s 30.5± 2.6± 3.4

J/ψΛ+
c 43.2± 7.0± 12.0

Table 10. Production cross-sections for J/ψC. The first uncertainty is statistical, and the second

is systematic.

Mode σJ/ψC/σJ/ψ
[

10−3
]

σJ/ψC/σC
[

10−4
]

σJ/ψσC/σJ/ψC [mb]

J/ψD0 16.2± 0.4± 1.3+3.4
−2.5 6.7± 0.2± 0.5 14.9± 0.4± 1.1+2.3

−3.1

J/ψD+ 5.7± 0.2± 0.6+1.2
−0.9 5.7± 0.2± 0.4 17.6± 0.6± 1.3+2.8

−3.7

J/ψD+
s 3.1± 0.3± 0.4+0.6

−0.5 7.8± 0.8± 0.6 12.8± 1.3± 1.1+2.0
−2.7

J/ψΛ+
c 4.3± 0.7± 1.2+0.9

−0.7 5.5± 1.0± 0.6 18.0± 3.3± 2.1+2.8
−3.8

Table 11. Ratios of J/ψC production cross-section to prompt J/ψ cross-section and prompt open

charm cross-section, and ratios of the product of prompt J/ψ and open charm cross-sections to the

J/ψC cross-section. The first uncertainty is statistical, the second is systematic, and the third is

due to the unknown polarization of the prompt J/ψ [2].

Several of the estimations given in table 1 are also shown in figure 9 to compare

with our measurements. The expectations from gluon-gluon fusion processes [14, 15, 18]

are significantly below the measured cross-sections while the DPS estimates qualitatively

agree with them. The observed ratio of CC/CC events is relatively large, e.g. compared

with σJ/ψJ/ψ/σJ/ψ = (5.1± 1.0± 1.1)× 10−4 [13].

For the ratios σJ/ψσC/σJ/ψC and σC1
σC2

/σC1C2
listed in tables 11 and 12, the system-

atic uncertainties largely cancel. In addition, theoretical inputs such as the choice of the

strong coupling constant and the charm quark fragmentation fractions should cancel allow-

ing a more reliable comparison between theory and data. For the J/ψC and CC cases these

ratios have a clear interpretation in the DPS approach [4–6] as the effective cross-section of

eq. (1.1) which should be the same for all modes. For the CC case, neglecting the contribu-

tion from cc̄cc̄ production, this ratio is related by a model-dependent kinematical factor to

the total charm production cross-section and should be independent of the final state un-

der consideration. The values for the effective DPS cross-section (the right-hand column in

table 11, and figure 10) calculated from the J/ψC cross-section are in good agreement with

the value measured in multi-jet production at the Tevatron σDPS
eff = 14.5± 1.7+1.7

−2.3 mb [16].

The effective cross-section extracted from the CC measurements is higher than this by a

factor of typically two to three.
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Mode σ [nb] σCC/σCC [%] σC1
σC2

/σC1C2
[mb]

D0D0 690± 40 ± 70
10.9± 0.8

2× (42± 3 ± 4)

D0D
0

6230± 120± 630 2× (4.7± 0.1± 0.4)

D0D+ 520± 80 ± 70
12.8± 2.1

47± 7 ± 4

D0D− 3990± 90 ± 500 6.0± 0.2± 0.5

D0D+
s 270± 50 ± 40

15.7± 3.4
36± 8 ± 4

D0D−
s 1680± 110± 240 5.6± 0.5± 0.6

D0Λ̄−
c 2010± 280± 600 — 9± 2 ± 1

D+D+ 80± 10 ± 10
9.6± 1.6

2× (66± 11 ± 7)

D+D− 780± 40 ± 130 2× (6.4± 0.4± 0.7)

D+D+
s 70± 15 ± 10

12.1± 3.3
59± 15 ± 6

D+D−
s 550± 60 ± 90 7± 1 ± 1

D+Λ+
c 60± 30 ± 20

10.7± 5.9
140± 70 ± 20

D+Λ̄−
c 530± 130± 170 15± 4 ± 2

Table 12. Production cross-sections for CC and CC, ratios of the CC and CC cross-sections and

ratios of the product of prompt open charm cross-sections to the CC (CC) cross-sections. The first

uncertainty is statistical and the second is systematic. The symmetry factor 2 is explicitly indicated

for the D0D0, D0D
0
, D+D+ and D+D− ratios.
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Figure 9. Measured cross-sections σJ/ψC, σCC and σCC (points with error bars) compared, in

J/ψC channels, to the calculations in refs. [14, 15] (hatched areas) and ref. [18] (shaded areas). The

inner error bars indicate the statistical uncertainty whilst the outer error bars indicate the sum of

the statistical and systematic uncertainties in quadrature. Charge-conjugate modes are included.
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Figure 10. Measured ratios σC1
σC2

/σC1C2
(points with error bars) in comparison with the ex-

pectations from DPS using the cross-section measured at Tevatron for multi-jet events (light green

shaded area). For the D0D0, D0D
0
, D+D+ and D+D− cases the ratios are rescaled with the sym-

metry factor of one half. The inner error bars indicate the statistical uncertainty whilst the outer

error bars indicate the sum of the statistical and systematic uncertainties in quadrature. For the

J/ψC case the outermost error bars correspond to the total uncertainties including the uncertainties

due to the unknown polarization of the prompt J/ψ mesons. Charge-conjugate modes are included.
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Figure 11. a) Transverse momentum spectra of J/ψ for J/ψC and prompt J/ψ events. b) Transverse

momentum spectra for open charm hadrons for J/ψC and prompt D0, D+ and D+
s events.

8 Properties of J/ψC, CC, and CC events

The data samples available also allow the properties of the multiple charm events to be

studied. The transverse momentum spectra for J/ψ and open charm mesons in J/ψC events

are presented in figure 11.

The transverse momentum spectra of the J/ψ meson in J/ψC events are similar for all

species of open charm hadrons. The shape of the transverse momentum spectra of open

charm hadrons also appears to be the same for all species. The pTJ/ψ spectra are harder than

the corresponding spectrum of prompt J/ψ , while the pT-spectra for open charm hadrons

seem to be well compatible in shape with the spectra for prompt charm production. To

allow a more quantitative comparison, each spectrum is fitted in the region 3 < pT <

12 GeV/c with an exponential function. The results are summarized in table 13 and

figure 14. They agree reasonably well within the uncertainties. The transverse momentum

spectra of charm hadrons from CC and CC events are presented in figures 12 and 13.

The fitted slope parameters of an exponential function are summarized in table 14 and

figure 14. The pT-slopes, though similar for CC and CC events, are significantly different

from those for both single prompt charm particles and those found in J/ψC events.

The correlations in azimuthal angle and rapidity between the two charm hadrons have

also been studied by measuring the distributions of ∆φ and ∆y, where ∆φ and ∆y are the

differences in azimuthal angle and rapidity between the two hadrons. These distributions

for the charm hadrons in J/ψC events are shown in figure 15. No significant azimuthal

correlation is observed. The ∆y distribution is compared to the triangular shape that is

expected if the rapidity distribution for single charm hadrons is flat and if there are no

correlations.

The azimuthal and rapidity correlations for CC and CC events are shown in fig-

ures 16, 17, and 18. In the CC case the ∆φ distribution is reasonably consistent with a flat

distribution. In contrast, for CC events a clear enhancement is seen for ∆φ distributions at

small |∆φ|. This is consistent with cc̄ production via the gluon splitting mechanism [38].
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Mode pT-slope
[

1
GeV/c

]

J/ψ C

J/ψD0 −0.49± 0.01 −0.75± 0.02

J/ψD+ −0.49± 0.02 −0.65± 0.02

J/ψD+
s −0.60± 0.05 −0.68± 0.05

J/ψΛ+
c −0.46± 0.08 −0.82± 0.08

J/ψ −0.633± 0.003

D0 −0.77± 0.03

D+ −0.70± 0.03

D+
s −0.57± 0.13

Λ+
c −0.79± 0.08

Table 13. Slope parameters of the transverse momentum spectra in the J/ψC mode and for

prompt charm particles. These parameters are determined from fits to the spectra in the region

3 < pT < 12 GeV/c.
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Figure 12. Transverse momentum spectra of charm hadrons from CC: a) D0D0, D0D+, D0D+
s and

b) D+D+ and D+D+
s .

The CC events suggest some enhancement at small |∆y|, while the CC sample shows no

clear difference from the triangular shape given the present statistics.

Finally, the invariant mass distributions of the pairs of charm hadrons in these events

have been studied. The mass spectra for J/ψC and CC events are shown in figure 19. The

spectra appear to be independent of the type of the open charm hadron.

The invariant mass spectra for CC events are shown in figure 20. Again, the spectra

are similar and independent of the type of the open charm meson. The enhancement at

small invariant mass is most likely due to the gluon splitting process [38]. For the region

of invariant masses above 6 GeV/c2 the spectra are similar for CC and CC events.
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Figure 13. Transverse momentum spectra of charm hadrons from CC: a) D0D
0
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s and

D0Λ̄−
c ; b) D

+D−, D+D−
s and D+Λ̄−

c .

Mode pT-slope
[

1
GeV/c

]

D0D0 −0.51± 0.02

D0D
0 −0.48± 0.01

D0D+ −0.40± 0.02

D0D− −0.46± 0.01

D0D+
s −0.51± 0.05

D0D−
s −0.44± 0.02

D0Λ̄−
c −0.41± 0.03

D+D+ −0.48± 0.04

D+D− −0.46± 0.01

D+D+
s −0.39± 0.07

D+D−
s −0.42± 0.02

D+Λ̄−
c −0.38± 0.05

Table 14. Slope parameters of transverse momentum spectra for the CC and CC modes.
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9 Conclusion

The production of J/ψ mesons accompanied by open charm, and pairs of open charm

hadrons has been observed in pp collisions at
√
s = 7 TeV. This is the first observation of

these phenomena in hadronic collisions. Signals with a statistical significance in excess of

five standard deviations have been observed for four J/ψC modes: J/ψD0, J/ψD+, J/ψD+
s

and J/ψΛ+
c , for six CC modes: D0D0, D0D+, D0D+

s , D
0Λ+

c , D
+D+, and D+D+

s , and for

seven CC channels: D0D
0
, D0D−, D0D−

s , D
0Λ̄−

c , D
+D−, D+D−

s and D+Λ̄−
c .

The cross-sections and the properties of these events have been studied. The pre-

dictions from gluon-gluon fusion [14, 15, 18] are significantly smaller than the observed

cross-sections. Better agreement is found with the DPS model [4–7] if the effective cross-

section inferred from the Tevatron data is used. The absence of significant azimuthal or

rapidity correlations provides support for this hypothesis. This interpretation is only par-

tially supported by the CC data: if DPS is assumed to dominate, the estimated effective

cross-section would be a factor 2-3 larger than in the J/ψC case.

The transverse momentum spectra for these events have also been studied. The trans-

verse momentum spectra for J/ψ from J/ψC events are significantly harder than those ob-

served in prompt J/ψ production. On the other hand the spectra for open charm mesons

in J/ψC events appear to be similar to those observed for prompt charm hadrons. Similar

transverse momentum spectra for CC and CC events are observed. However, the expec-

tation of similar transverse momentum spectra for CC events and prompt charm events

appears to be invalid.

For CC events significant rapidity and azimuthal correlations are observed. These, as

well as the invariant mass spectra for CC events, suggest a sizeable contribution from the

gluon splitting process to charm quark production [38].
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A Contribution from sea charm quarks

Estimates for the expected cross-section in the LHCb fiducial region due to the sea charm

quarks from the interacting protons have been made as follows. The LHCb rapidity window
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2 < y < 4 corresponds to a x range for the additional charm quarks of

2mT
c√
s

sinh 2 < x <
2mT

c√
s

sinh 4 (A.1)

where mT
c is the transverse mass of the charm quark. Assuming the extra charm mesons

are distributed over pT in a similar way to the inclusive charm mesons measured in [1, 2]

one can take

mT
c ≈ mc ⊕ 2 GeV/c2, (A.2)

where 2 GeV/c is the mean transverse momentum of charm quarks produced. This leads

to the x range of 0.0026 < x < 0.02. Integration of Alekhin’s LO parton distribution

functions [39] over this x range gives 0.25 additional charm quarks per event. In this

calculation the parton density functions are taken at the scale µ ≈ mT
J/ψ . The cross-sections

of J/ψ plus open charm mesons can then be estimated using the probabilities for the c-

quark transition to different mesons given in [1, 2]. Similarly cross-sections for double open

charm production can be estimated. Taking µ ≈ mT
D and integrating Alekhin’s LO parton

density functions [39] on gets approximately 0.17 additional charm quarks per event. This

calculation assumes that all extra charm quarks from protons hadronize to open charm

states visible in the detector. The real cross-sections may be smaller, but the ratio of

different open charm states is expected to remain the same. The integrated parton density

functions provide no information about the pT distribution of charm quarks. Under the

assumption that the pT-spectrum coincides with the distribution of prompt charm particles

measured at LHCb [1], the cross-sections in the LHCb fiducial range are calculated (see

last column of table 1).
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m: Università della Basilicata, Potenza, Italy
n: LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
o: Hanoi University of Science, Hanoi, Viet Nam

– 35 –


	Introduction
	The LHCb detector and dataset
	Event selection
	Signal determination
	Efficiency correction
	Systematic uncertainties
	Results
	Properties of J/PsiC, CC, and C bar-C events
	Conclusion
	Contribution from sea charm quarks
	The LHCb collaboration

