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Observation of Dynamic VTH of p-GaN Gate
HEMTs by Fast Sweeping Characterization

Xiangdong Li , Member, IEEE, Benoit Bakeroot, Zhicheng Wu , Nooshin Amirifar, Shuzhen You ,

Niels Posthuma , Ming Zhao, Hu Liang, Guido Groeseneken , Fellow, IEEE, and Stefaan Decoutere

Abstract— In this work, fast sweeping characterization
with an extremely short relaxation time was used to probe
the VTH instability of p-GaN gate HEMTs. As the ID-VG
sweeping time deceases from 5 ms to 5 µs, the VTH dra-
matically degenerates from 3.13 V to 1.76 V, meanwhile the
hysteresis deteriorates from 22.6 mV to 1.37 V. Positive bias
temperature instability (PBTI) measurement by fast sweep-
ing shows the VTH features a very fast shifting process but
a slower recovering process. D-mode HEMTs counterpart
without Mg contamination demonstrates a negligible VTH
shift and hysteresis, proving the VTH instability is probably
due to the ionization of acceptor-like traps in the p-GaN
depletion region. Finally, the VTH instability is verified by a
GaN circuit under switching stress.The VTH instability under
different sweeping speed uncovers the fact that the high
VTH by conventionally slow DC measurements is probably
artificial. The DC VTH should be high enough to avoid HEMT
faulty turn-on.

Index Terms— p-GaN gate HEMT, fast sweeping, VTH shift,
PBTI.

I. INTRODUCTION

E
NHANCEMENT-MODE p-GaN gate HEMTs featuring

a low gate charge Qg, a low on-resistance, and a fast

switching capability have been penetrating the market of

power electronics for years [1]–[3]. GaN power HEMTs are

however vulnerable to faulty turn-on because of the fast

switching characteristics. As shown by the bootstrap half-

bridge circuitry in Fig. 1, after the low side (LS) switches

OFF and the high side (HS) switches ON, the VDS of the

LS switch will quickly soar to ∼ VIN from 0 V within tens

of nanoseconds. This swift voltage transient creates a miller

current through the Miller capacitor CDG and the gate loop,

inducing a gate voltage spike that in turn can falsely switch

ON the LS switch [4].
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Fig. 1. Schematic of a bootstrap half-bridge configuration, and the fast
switching transient of HS device induces miller current that can result in
faulty turn-on of the LS.

Suppressing the faulty turn-on necessitates a high threshold

voltage VTH, therefore some Schottky gate HEMTs have been

adopted to boost the VTH to above 2.5 V. Nevertheless, the

VTH instability of the Schottky gate has been widely reported

[5]–[9]. Generally, the VTH instability is ascribed to several

competing mechanisms occurring in the p-GaN/AlGaN stack,

i.e., electron trapping, hole injection, and hole depletion. Tang

et al. reported a VTH positive shift at < 7 V VGS stress

due to electron trapping at the p-GaN/AlGaN interface, and

VTH decreases at > 7 V VGS stress because of the hole

injection/electroluminescence (EL) [10]. Similar phenomena

have also been observed with fast sweeping technique by

Stockman et al. who claimed the electron trapping happens

at the AlGaN/GaN interface whereas holes accumulate at the

p-GaN/AlGaN interface or are trapped in the barrier layer [11].

He et al. [12] however demonstrated a monotonous positive

VTH shift with fast-dynamic-stress method by a resistive-load

setup [13]. Recently, more attention has been paid to use fast

speed characterization to probe the VTH instability [5], [11].

In this work, the VTH instability will be investigated by

a new fast sweeping characterization. The ID-VG hysteresis,

VTH shifting and recovery process, and the positive bias tem-

perature instability (PBTI) will all be precisely probed, which

provides some novel results undiscovered by conventional DC

sweeping characterization.

II. EPITAXY, FABRICATION, AND CIRCUIT

The pGaN/AlGaN/GaN structure was epitaxially grown

using a metalorganic chemical vapor deposition (MOCVD)

on 200 mm GaN-on-Si substrates. The epi stack consists of a

200 nm AlN nucleation layer, a 1.65 µm (Al)GaN superlattice

0741-3106 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 2. (a) Cross-sectional schematic of the measured p-GaN gate
HEMTs, (b) test waveforms, (c) ID-VG curves and (d) VTH of the devices
swept to various maximum VGS, and (e) ID-VG curves and (f) VTH of the
devices under various sweeping times of 5 µs, 20 µs, 100 µs, 400 µs,
1000 µs, and 5000 µs.

layer, a 1 µm carbon-doped GaN back barrier, a 400 nm

undoped GaN channel layer, a 12.5 nm Al0.235GaN barrier

layer, and a 80 nm Mg-doped p-GaN layer with a dopant

concentration of ∼ 3×1019 cm−3. The processing details

have been elaborated in [14]–[16]. The measured p-GaN

gate HEMTs as shown in Fig. 2(a) have a gate width WG

of 100 µm, a gate length LG of 1.3 µm, a gate-source distance

LGS of 0.5 µm, and a gate-drain distance LGD of 5.75 µm. The

fast sweeping characterization is performed using a Keysight

B1530A WGFMU (Waveform Generator/ Fast Measurement

Unit). Fig. 2(b) documents an example of the test waveform:

the ultra-fast transient (down to ∼2 µs) is enabled by a

50 � output impedance in WGFMU which prevents reflection-

induced waveform degradation. The function generator is an

Agilent 81110A and the oscilloscope is a LeCroy HDO6054.

III. RESULTS AND DISCUSSION

The HEMTs were first subjected to double fast sweeping

characterization. Fig. 2 (b) shows the VDS was fixed at 50 mV

and the VGS swept from 0 V to a higher voltage and then

back to 0 V. Between each double sweeping, 10 s relaxation

time was inserted to ensure a full recovery of the VTH shift.

Sweeping speeds are defined by the single sweeping time

ranging from 5 µs to 5000 µs. Fig. 2 (c) and (d) show that

a significant VTH hysteresis of up to 1.37 V is observed for

Fig. 3. (a) Sketches of PBTI measurement sequences by fast sweeping
of 5 µs in this work, ID-VG curves during the (b) stress phase and
(c) recovery phase by stress VGS of 5 V, and VTHevolution under different
stress VGS from 3 to 7 V during the (d) stress phase and (e) recovery
phase at 25 ◦C. The sensing VGS sweeps from 0 to 4 V in 5 µs.

the maximum VGS of 7 V, for the sweeping time of 5 µs.

By increasing the sweeping time, a transition point emerges

on the forward sweep curve as shown in Fig. 2 (e), inducing

a current bump observed previously [17]. The high current

before this point gradually vanishes when sweeping time

reaches 1000 µs, thus inducing an arbitrarily high VTH as the

conventional DC sweeping.

PBTI measurements were then conducted to investigate

the VTH behavior during the gate stress and recovery phases

by the fast sweeping characterization. During the measure-

ment, as demonstrated in Fig. 3(a), the stress was periodically

interrupted to measure the ID-VG characteristics by sweeping

the VGS from 0 to 4 V in 5 µs (Fig. 3 (b)). The recovery

behavior was monitored similarly except the VGS was 0 V. The

VTH relaxation is ubiquitous in BTI stressing [18]. Improper

sampling precision might induce a fake conclusion [12]. In this

work, the relaxation time between the stress and sense was

limited to as short as 50 ns. Fig. 3 (d) shows that the VTH

under lower stress VGS of 3 V takes ∼200 µs to saturate.

In contrast, only ∼2 µs has been enough for the stress VGS

of 6 V. Compared with the shifting process, the recovery

process is much slower. Importantly, the VTH shift is fully

recoverable as shown in Fig. 3(e). It is worth to mention that
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Fig. 4. Temperature-dependent VTH evolution under stress VGS of 5 V
during the (a) stress and (b) recovery phases at the temperatures from
25 to 125 ◦C. The sensing VGS sweeps from 0 to 4 V in 5 µs.

Fig. 5. (a) Cross-sectional schematic and (b) double-sweep ID-VG
curves on the D-mode HEMTs on a D-mode epitaxy wafer without Mg
contamination.

the VTH will be very stable after the initial stress in application

before shutdown, considering the operation VGS in power ICs

is around 5 V.

Temperature-dependent PBTI measurement results are

demonstrated in Fig. 4. The impact of temperature on the

VTH shift is not clearly discernable because of the very fast

trapping process as shown in Fig. 4(a). Fig. 4 (b) shows that

the recovery can be facilitated by high temperatures.

Locating the cause for the dynamic VTH is very challenging.

Counterpart depletion-mode (D-mode) HEMTs on a D-mode

epitaxy wafer were characterized, as shown in Fig. 5(a). The

D-mode wafer has a similar superlattice buffer layer, but the

epitaxy terminates after the AlGaN barrier and a thin GaN

cap layer, without the p-GaN layer nor Mg out-diffusion in

the AlGaN barrier and GaN channel [19]. Fig 5(b) shows

a negligible hysteresis and VTH shift, proving that the VTH

instability is a signature of the p-GaN, probably via the

trapping by Mg or related impurities/complexes.

There have been plenty of reports about the enormous

acceptor-like traps in the p-GaN layer above the top of

the valence band [20]–[24], which are however ignored by

the previous research on p-GaN gate HEMTs. Activated but

unionized Mg, Mg-H complex, Mg-N-H complex, and other

Mg-related traps are all possibly responsible for the VTH shift.

As shown in Fig. 6, when the gate is positively biased and

the depletion region extended, those acceptor-like traps in the

p-GaN depletion region will be quickly ionized and release

holes to the valence band. After the positive bias is removed,

these ionized traps cannot be quickly deionized, inducing a

positively shifted VTH. The VTH decrease for stress VGS of 6

and 7 V is possibly due to donor traps ionization or hole

accumulation.

Fig. 6. Schematic band diagram of the metal/p-GaN/AlGaN/GaN gate-
stack under a positive gate bias. The acceptor-like traps in the depletion
region (shaded region) will be ionized and induce net negative charges
in the p-GaN layer, after removing the gate bias these traps cannot be
quickly deionized.

Fig. 7. (a) Schematic of the GaN IC to test the VTH evolution under
1 MHz switching stress, (b) waveforms of the Vsig and VGS_H3, and
(c) switching waveform of VCAP during the 1 MHz, 300 µs stress shows
the VCAP decrease from 6.2 to 5.2 V.

A GaN IC as sketched in Fig. 7(a) was submitted to a

1 MHz and 50% duty cycle switching stress test to verify the

appearance of a dynamic VTH in a realistic application. This

GaN IC is an integrated push-pull gate driver [25]. The IC was

powered by VDD of 8.5 V and the small signal Vsig was sent to

the IC, such that the H3 was periodically stressed as shown in

Fig. 7(b). The capacitor voltage VCAP was monitored so that

the VTH evolution can be estimated by VDD-VCAP. Fig. 7 (c)

shows that the VCAP gradually decreased from 6.2 to 5.2 V

after 300 µs stress, indicating that the VTH evolved from an

initial value of 2.3 V to a stable value of 3.3 V. The saturation

time of 300 µs is longer than that of the stress VGS of 3 V

in Fig. 3(d), because the initial stress VGS in Fig. 7 is even

lower than 3 V. This test directly demonstrates the evolution

of the dynamic VTH of p-GaN gate HEMTs.

IV. CONCLUSION

A new methodology of fast sweeping characterization with

a short relaxation time of 50 ns has been implemented to

characterize the VTH instability of p-GaN gate HEMTs. The

VTH decrease and ID-VG hysteresis deterioration are more

significant than ever reported, showing that the conventional

DC sweeping gives an artificially high VTH and small hys-

teresis. PBTI measurements indicate the p-GaN gate has a

fast VTH shifting process and a slower recovery process. The

VTH shift has been proved to be fully recoverable. The fast

shifting behaviors however guarantee the stability of p-GaN

gate HEMTs in applications after a short initial stress by VGS

of 5 V before circuit shutdown. Nevertheless, the low fresh

VTH at the starting phase can trigger faulty turn-on, which

poses a challenge to the gate driver design.
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