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In this work, we experimentally report the acoustic realization of the two-dimensional Su-Schrieffer-

Heeger model in a simple network of air channels. We analytically study the steady-state dynamics of

the system using a set of discrete equations for the acoustic pressure, leading to the two-dimensional

Su-Schrieffer-Heeger Hamiltonian matrix without use of the tight-binding approximation. By building

an acoustic network operating in the audible regime, we experimentally demonstrate the existence of a

topological band gap. Moreover, within this band gap we observe the associated edge waves even though

the system is open to free space. Our results not only experimentally demonstrate topological edge waves

in a zero-Berry-curvature system but also provide a flexible platform for the study of topological properties

of sound waves.

DOI: 10.1103/PhysRevApplied.12.034014

I. INTRODUCTION

The study of topological insulators has been attracting

a lot of attention in recent years due to their appeal-

ing property for the control of wave propagation [1,2].

Among other properties, topological insulators exhibit

nontrivial topological phases, leading to the existence of

robust edge states at the boundaries or interfaces [3,4].

Various systems exhibiting nontrivial topological phases

have been investigated [5–9]. Previous studies showed

that Chern insulators [10–13] and Z2 topological insulators

[14–20] possess a nontrivial topological phase stemming

from nonvanishing Berry curvatures. On the other hand,

it was recently reported that a topological phase can also

appear in systems even in the absence of Berry curvature

[21,22]. This new, interesting scheme has been found in the

two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model,

which is a 2D extension of the one-dimensional SSH chain,

with alternating strengths of bonds connecting identical

atoms in both the x direction and the y direction [23–26].

The topological phase in the 2D SSH model can be

characterized by a 2D Zak phase, and topological edge

states are consequently predicted at the boundaries of these

structures. Because of the difficulty in tuning the lattice

couplings at will in the quantum world, most attention has

been devoted to the study of 2D SSH analogs in classical

systems, including photonics [24,25], and electrical cir-

cuits [26]. For phononic systems, although several analogs

of 2D SSH edge modes have been reported [27,28], the

exact mapping of the 2D SSH model in a square lattice

to an acoustic system has not been reported so far. The

*liyang.zheng.etu@univ-lemans.fr

experimental realization of the 2D SSH model in acous-

tics can not only provide a simple and versatile platform

for the study of topological edge waves but also open per-

spectives for activities involving other novel topological

phases, such as high-order topological insulators [29–33].

The analysis of topological insulators is usually per-

formed starting from a discrete model with special lattice

symmetry. However, most systems in different domains

of physics are described by continuum models associated

with partial differential equations. One of the most-popular

techniques to bridge the gap between the continuous and

the discrete models is the tight-binding approximation

(TBA) [34,35]. The original idea of the TBA is to singu-

larize discrete points in space at places where the contin-

uous field is localized, and thus it is naturally associated

with resonating scatterers. This approximation technique

can be rigorously applied by use of a Wannier function

basis, leading to the evaluation of delicate overlap inte-

grals [35–37]. In practice, for the application to topological

insulators where the medium is periodic, it appears that

the TBA provides generic discrete equations or dispersion

relations with coupling coefficients that can be fitted with

results from numerical simulation of the continuous prob-

lem [38]. An alternative approach, which we use here, in

the spirit of quantum graph theory [39], is to directly obtain

a discrete model from a continuous system with cov-

eted hopping coefficients by combining wave-propagation

properties and geometrical characteristics of the system.

One advantage of the proposed approach is that it is con-

structive in the sense that the hopping coefficients can

be prescribed at will, as opposed to the common practice

in continuous systems where the hopping coefficients are

calculated a posteriori (e.g., by fitting or using asymptotic
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methods) [38,40,41]. In addition, by avoidance of the use

of resonating scatterers, the discrete model obtained can be

tuned to be valid over a broad range of frequencies.

In this work, we theoretically and experimentally study

an acoustic 2D SSH network composed of simply con-

nected air channels. Using the conservation of flux at

the network junctions, we derive a set of discrete equa-

tions and subsequently map the acoustic system to the 2D

SSH Hamiltonian. The validity of our theoretical model

is checked by comparison of the dispersion relation with

numerical simulations. In addition, both our theoretical

model and the numerical simulations predict the appear-

ance of topological edge states. Then an experimental

implementation of the 2D SSH is achieved in the audi-

ble regime and it contains two different boundaries, one

supporting edge waves and the other not supporting them.

The propagation of topological edge waves is experimen-

tally observed, recovering the characteristic profile of the

SSH edge modes and exhibiting localization only at the

prescribed boundaries of the network.

II. TWO-DIMENSIONAL SSH ACOUSTIC

NETWORK

The 2D SSH model is depicted in Fig. 1(a), where iden-

tical nodes are arranged in a square lattice with lattice

constant 2L. The unit cell containing four nodes (marked

as α, β, γ , and δ) is indicated by a gray-dashed box in

Fig. 1(a). The intracellular (intercellular) hoppings, that is,

couplings of nodes within (between) unit cells, are denoted

by s (t) as the red (blue) bonds in Fig. 1(a). The acous-

tic realization of the 2D SSH model consists of a network

structure that is shown in Fig. 1(b). As can be seen, the

network is composed of two types of rigid square blocks

with widths L1 and L2 and height H as shown in the

inset in Fig. 1(b). By placing the two blocks centered at

a square-lattice substrate with lattice constant 2L, we fab-

ricate two types of air channels of width w1 and w2. Then,

when the top of the structure is covered with an additional

plate, these channels form rigidly closed waveguides for

the acoustic waves and the 2D SSH acoustic network is

constructed. A single unit cell of the network is marked

by a gray-dashed box in Fig. 1(b), and the four junctions

between the air channels correspond to the nodes of the

unit cell in Fig. 1(a). The sound pressure at each junction

is coupled with that at its neighboring junctions through the

channels of alternating widths w1 and w2. Thus, this cou-

pling between neighboring junctions can be easily tuned

solely by the widths w1 and w2, which, as we show later,

play the same role as the intercellular and intracellular

hoppings in the 2D SSH model, which we call s and t,

respectively.

Our theoretical treatment is based on the following

fact: as long as the widths of the air channels are much

(a)

(b)

FIG. 1. (a) The 2D SSH model, which is a square lattice with

lattice constant 2L. The unit cell containing four nodes α, β, γ ,

and δ is highlighted by a gray-dashed box. The red and blue

bonds represent the intracellular and intercellular couplings. (b)

A view of the 2D acoustic network, which is a realization of

the 2D SSH model for sound waves. The inset shows the two

building blocks of the acoustic network. In the network, the intra-

cellular and intercellular couplings can be achieved by changing

the widths w2 and w1 of the air channels.

smaller than the channel length (i.e., w1, w2 ≪ L) sound-

wave propagation between junctions can be well described

if we assume monomode propagation [42,43]. To derive

our discrete model we label the center of each unit cell

using the normalized coordinates m and n as shown in

Fig. 1(a). Considering the unit cell at position (m, n) and

using the continuity of flux at each of the four junctions

[44], we derive the following system of discrete equations

describing the sound pressure at each junction:

εpm,n
α = tp

m−1,n
β + sp

m,n
β + tpm,n+1

γ + spm,n
γ , (1a)

εp
m,n
β = spm,n

α + tpm+1,n
α + tp

m,n+1
δ + sp

m,n
δ , (1b)

εpm,n
γ = tp

m−1,n
δ + sp

m,n
δ + spm,n

α + tpm,n−1
α , (1c)

εp
m,n
δ = sp

m,n
β + tp

m+1,n
β + spm,n

γ + tpm,n−1
γ . (1d)

In Eqs. (1a)–(1d), pi, with i = α, β, γ , δ, is the pressure at

each junction, t = w1/(w1 + w2) is the intercellular hop-

ping coefficient, s = 1 − t is the intracellular coefficient,

and the “energy” term ε = 2 cos 2π fL/c (where c is the

speed of sound in air) depends on both the length of each

channel L and the frequency f . To obtain the correspond-

ing dispersion relation, we seek solutions in form of Bloch

034014-2
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waves as p
m,n
i = pie

ikxm+iky n, where kx and ky are the wave

vectors along the x and y directions in the first Brillouin

zone, as shown in the inset in Fig. 2(a). By substituting the

wave solution into Eqs. (1a)–(1d), we derive the following

eigenvalue equation:









0 s + teikx s + te−iky 0

s + te−ikx 0 0 s + te−iky

s + teiky 0 0 s + teikx

0 s + teiky s + te−ikx 0









� = ε�,

(2)

where � = [pα; pβ ; pγ ; pδ] is the basis consisting of the

pressures at the junctions marked in Fig. 1(d). It can be

seen that Eq. (2) has exactly the same form as the 2D SSH

Hamiltonian introduced in Refs. [23,24], which confirms

that the proposed network is an acoustic realization of the

2D SSH model. Thus, here we directly bridge the inter-

esting topological properties of the model to the acoustic

realm.

At this point we emphasize the fact that the hopping

coefficients in Eqs. (1a)–(1d) are directly given by the

width of the channels, in great contrast to the TBA, where

these coefficients are derived as overlapping integrals of

wave functions. Moreover, another remarkable advantage

of our proposed method is that a large variety of discrete

systems with desired coupling coefficients can be exactly

mapped to an acoustic network.

We obtain the dispersion relation by solving the eigen-

value problem in Eq. (2). According to our modeling there

is only one free hopping coefficient t since s = 1 − t.

Using t = 0.714 and L = 0.125 m, which correspond to

the experimental setup, in Fig. 2(a) we show the dispersion

curves obtained by solving the eigenvalue problem in

Eq. (2). The band structure is characterized by four propa-

gating branches (gray curves) and two full gaps around 550

and 900 Hz. To verify the theoretical results, we perform

numerical calculations using a finite-element method for

a network with t = 0.714, L = 0.125 m, and w1/L = 0.02

(not the same as in the experiments); the results are shown

in Fig. 2(b). In this case, by comparing Figs. 2(a) and 2(b),

we observe that the dispersion relations are almost iden-

tical, confirming that the wave propagation is very well

described by the discrete network model. Furthermore, we

also simulate a network that has the same channel width

as our experimental setup (i.e., w1/L = 0.2); the corre-

sponding dispersion curve is shown in Fig. 2(c). In this

case, since our main assumption that w1, w2 ≪ L is not

well satisfied, the theoretical model and numerical calcu-

lation exhibit a shift between the two dispersion curves.

However, in the low-frequency regime and around the first

band gap, which is the focus of our study, the discrete net-

work model in Eq. (2) describes the physical system quite

accurately.

One essential property of the 2D SSH model is the

appearance of topological edge states when the system

acquires a nontrivial topological phase, which is achieved

by tuning the hopping t. In the acoustic network, this tran-

sition occurs in the critical case when w1 = w2 (t = 0.5).

When w1 > w2 (t > 0.5), the network is in the topolog-

ical nontrivial phase, and can exhibit topological edge

waves. Thus, our experimental setup with t = 0.714 is

designed to fall in the nontrivial phase. To predict the

presence of edge modes theoretically, we calculate the dis-

persion relation of a supercell containing eight unit cells

with open ends (assuming a zero-pressure field) [44]. The

(a) (b) (c)

(d) (e) (f)

FIG. 2. The dispersion relations

of the SSH network when the

intercellular coupling t = 0.714.

(a)–(c) The results for bulk modes

and (d)–(f) the results for edge

modes by considering a super-

cell consisting of eight unit cells.

Lines in gray represent the bulk

modes and lines in black corre-

spond to the edge modes. (a),(d)

Theoretical results obtained from

the network model. The inset in

(a) shows the first Brillouin zone.

(b),(e) Numerical results for the

case of the size of air chan-

nels w1/L = 0.02. (c),(f) Numer-

ical results for the case of the size

of air channels w1/L = 0.2.

034014-3
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resulting dispersion curves are depicted in Fig. 2(d). It

can be seen that inside each band gap there is a degen-

erate edge-wave branch marked with a black line [44]. The

dispersion curves for the supercell obtained by numerical

simulations with zero pressure at the boundaries are shown

in Figs. 2(e) and 2(f), corresponding to the same chan-

nel widths as in Figs. 2(b) and 2(c), respectively. From

now on we use zero-pressure boundary conditions in all

simulations. Both simulations confirm the appearance of

an edge-wave branch inside the band gaps, verifying our

theoretical prediction.

III. EXPERIMENTAL IMPLEMENTATION

We now turn to the experimental realization of the SSH

network: its total size is 4 × 2 m2 and it is constructed with

building blocks of size L1 = 0.1 m and L2 = 0.13 m, which

leads to air channels of width w1 = 0.025 m and w2 =

0.01 m as shown in Fig. 3(a). To emphasize the impor-

tance of the edge configuration, two types of edges are

simultaneously investigated: one supporting edge waves

[in green in Fig. 3(a)] and the other with alternative blocks

that does not support edge waves [in red in Fig. 3(a)]. We

focus on the first band gap around approximately 550 Hz

as marked by the orange area in Figs. 2(d)–2(f). We exper-

imentally identify this band gap; the results are shown in

Fig. 3(b), where the measured pressure amplitude at each

junction of line x = 24 [Fig. 3(a)] as a function of fre-

quency is plotted. For this experiment, the source is placed

at position A in Fig. 3(a). To account for dissipation in the

network, the viscothermal losses can be estimated by con-

sidering the length of the viscous boundary layer at around

500 Hz. This leads to a damping term on the wave number,

which is incorporated into our finite-element simulations.

Experimental results are compared with numerical results

in Fig. 3(c), and both confirm the existence of a band gap in

the frequency range from approximately 540 Hz to approx-

imately 620 Hz. A footprint of the edge waves also appears

as bright spots inside the band gap in Figs. 3(b) and 3(c)

located at y = 0 (green edge).

To better characterize the edge waves of the acoustic 2D

SSH network, we perform additional experiments using a

source close to the green edge [position B in Fig. 3(a)]. The

normalized edge-wave profiles measured at three different

lines [x = 8 (pink), x = 18 (orange), and x = 24 (blue)

as indicated in Fig. 3(a)] of the network are presented in

Fig. 4(a). The edge wave, which is excited with a source at

570 Hz, is revealed as the acoustic field is localized on the

green edge (y = 0) and is decaying into the bulk. All the

experimental profiles are found to exhibit a similar pattern

along the y axis, where the pressure field is finite in one

of the sublattices and vanishes in the other one. This is the

typical edge profile provided by SSH models with sublat-

tice symmetry [45]. In our airborne experiment it is impos-

sible to achieve an exact zero-pressure boundary condition

due to a slight leakage into free space. However, as shown

in Fig. 4(b), exact zero-pressure boundary conditions used

in numerical simulations lead to the same profiles, confirm-

ing the robustness of the system with respect to boundary

conditions. A characteristic field distribution measured at

all the junctions located at x ≥ 24 [Fig. 3(a)] is shown

in Fig. 4(c) for a frequency of 582 Hz. The correspond-

ing numerical results are shown in Fig. 4(d), visualizing

the field distribution within the whole network, in good

agreement with the experiment. We clearly observe that the

acoustic field is localized only at the green edges [bottom

(a)

(b) (c)

FIG. 3. Frequency-sweep experiments

for the existence of a topological band

gap. (a) Experimental setup. The source

generated by a loudspeaker can be set

at position A or B on the right side of

the sample. The free edges in green (red)

support (do not support) the propaga-

tion of edge waves. When the source

is placed at position A, the band gap

can be measured by recording the pres-

sures of line x = 24 [blue line in (a)]. (b)

Measured results. (c) Numerical results

obtained by simulation of the experi-

mental process.
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Max

Max

Min

Min

Experiment

Experiment Simulation

Simulation(a)

(c) (d)

(b)
FIG. 4. Observation of

edge waves. (a) The edge-

wave profiles of line 8

(pink), line 14 (orange),

and line 24 (blue) when

the frequency is 570 Hz.

(b) The edge-wave pro-

files obtained by numerical

simulation. (c) Pressure-

field distribution obtained

by scanning the pressures

from line 24 to line 32 in

the SSH network when the

frequency of 582 Hz is sent

to the source. (d) Pressure-

field distribution obtained

by numerical simulation.

The white-dashed box cor-

responds to the same area

as in (c).

and left in Figs. 4(c) and 4(d)], while it vanishes at the

other two edges. This is a direct consequence of the par-

ticular design of the device, which combines two different

types of edges: the red edges see the bulk as trivial and the

green edges see it as topological.

IV. CONCLUSION

In conclusion, by applying a one-dimensional approx-

imation in each connection of an acoustic network, we

exactly map a continuous system to the recently proposed

2D SSH model. The latter although with zero curvature

is known to support topological edge waves, which we

observe in this work using an airborne experimental setup.

These results show that although the system is open to

free space, the edges are able to support localized waves.

This work provides an acoustic demonstration of topo-

logical edge waves in a very simple system (i.e., the 2D

SSH model) and it might be applied for experimental study

of other topological phases in acoustic systems, such as

higher-order topological modes.
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