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Observation of elastic topological states in soft
materials
Shuaifeng Li1,3, Degang Zhao2,3, Hao Niu1,3, Xuefeng Zhu2,3 & Jianfeng Zang 1,3

Topological elastic metamaterials offer insight into classic motion law and open up oppor-

tunities in quantum and classic information processing. Theoretical modeling and numerical

simulation of elastic topological states have been reported, whereas the experimental

observation remains relatively unexplored. Here we present an experimental observation and

numerical simulation of tunable topological states in soft elastic metamaterials. The on-

demand reversible switch in topological phase has been achieved by changing filling ratio,

tension, and/or compression of the elastic metamaterials. By combining two elastic meta-

materials with distinct topological invariants, we further demonstrate the formation and

dynamic tunability of topological interface states by mechanical deformation, and the

manipulation of elastic wave propagation. Moreover, we provide a topological phase diagram

of elastic metamaterials under deformation. Our approach to dynamically control interface

states in soft materials paves the way to various phononic systems involving thermal man-

agement and soft robotics requiring better use of energy.
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T
opology describes the properties of space under continuous
deformation in mathematics. The concept has been used to
explain band structures in condensed matter physics,

resulting in the theoretical predication and experimental obser-
vation of topological insulator in electronic system1,2, and
recently also in photonic3–6 and phononic systems7–13. Topolo-
gically protected wave propagation possesses prominent appli-
cations in quantum computation and communication field due to
its remarkable characteristic: the robust defect-immune trans-
port1. Recently, significant research efforts devoted in phononic
topological insulators provide a new way to manipulate sound
propagation, such as vibration isolation and particle manipula-
tion. Topological insulator has been successfully demonstrated in
airborne acoustics by deliberate design of materials parameters,
realizing backscattering-immune one-way airborne sound trans-
port10. Besides, topological transport for phonon has been theo-
retically modeled and numerically simulated through
constructing spring and mass system in discrete solids12, 14–16.
Topologically protected helical edge state is further numerically
realized in continuum solids7. However, it remains a challenge to
experimentally realize elastic topological states in real materials,
which limits its further applications on elastic devices, such as
elastic energy storing17 and elastic wave guiding technology18.

Elastic waves, also known as small oscillations in solids, have
potential applications in information carrying19 as well as seismic
monitoring20. Through creating bandgaps in architected materi-
als with periodic porous structures, elastic waves can be drama-
tically attenuated, which is particularly useful in vibration
isolation21. Distinct from acoustic waves and electromagnetic
waves, elastic waves are complicated and hard to control because
of their richer polarizations22, while topological insulator opens a
new avenue to control elastic waves. The backscattering-free
nature of topological transport opens a possibility for large-scale
phononic circuits7. Thanks to the development of advanced
fabrication technique, such as directional solidification, elastically
anisotropic and isotropic materials can be successfully fabricated
now, generating peculiar elastic properties in selected directions.
Such materials usually keep in a fixed structure and geometry
after fabrication, resulting in fixed properties and functionalities.
Whereas, soft material is capable of reversible mechanical
deformation over its global and partial structure, providing a new
degree of freedom to tune the properties or functionalities of the
system. A variety of soft tunable acoustic devices have been
reported. For example, the width and position of the phononic
bandgap can be tuned through deforming elastomeric helix
array23 and/or buckling of elastomeric beam connected with local
resonantor24. Besides, the programmable mechanical behaviors
have been achieved in a mechanical metamaterial, which may
inspire new tunable devices25. Moreover, the intrinsic property of
nonlinear mechanics in soft materials has enabled novel functions
that do not exhibit in traditional elastic systems26,27. The tunable
topological zero-energy motions based on Maxwell framework
consisting of rods and hinges have been put forward. While they
have the impact on novel machines and robots, the transport of
elastic waves has not yet been directly revealed and the frame-
work can hardly be considered as the continuous medium28,29.
The combination of soft materials with high-frequency topolo-
gical states offers unprecedented opportunities, which requires
insight exploration.

Here we present an experimental observation and numerical
simulation of tunable topological state in soft elastic metama-
terials. The on-demand reversible switch of topological phase has
been achieved by changing filling ratio, stretching, and/or com-
pressing soft elastic metamaterials. We further demonstrate the
dynamical tunability of topological state by mechanical defor-
mation, including switch modulation and frequency modulation,

as well as manipulation of elastic wave propagation. Moreover, we
provide a topological phase diagram as a general scheme to design
tunable topological states in soft elastic metamaterials. Our
research provides a way to manipulate elastic waves artificially
and opens an avenue to the development of soft topological
insulator.

Results
Design of soft metamaterials. Figure 1a presents the soft meta-
material with periodic honeycomb holes of air in a rectangle
silicon rubber (Ecoflex) slab of 180 mm × 52mm × 10mm. The
sample can be stretched or compressed resulting in the rearran-
gement of lattice and the reshaping of the air cylinder scatterers as
illustrated in the inset of Fig. 1a. We select a hexagonal unit cell,
which is shown in Fig. 1b. Through adjusting the nearest cou-
pling, namely, manipulating d/R to adjust the filling ratio, a
twofold Dirac cone at M point can be formed by accidental
degeneracy, as presented in Fig. 1c. The open and reopen of the
Dirac cone can be controlled by continuously changing the filling
ratio of the honeycomb lattice. When d/R= 0.7156, a Dirac cone
appears at the edge of the Brillouin zone (M point). As d/R is
reduced to be 0.6 or increased to be 0.78, the Dirac cones are
opened to be a bandgap along ΓM direction and all directions,
respectively. Thus, as the increasing of the filling ratio, bandgap
along ΓM direction exhibits the open, close, and reopen evolu-
tionary process, as presented in Fig. 1c.

The controlled bandgap evolutionary process can also be
achieved by stretching or compressing the soft material. When
the soft elastic metamaterial (6 × 6 unit cells) is subjected to
tension or compression strain, each hexagonal cluster (enclosed
by six air pillars) and each individual air pillar undergo shape
change. A two-dimensional (2D) model with plane strain
condition is used to analyze the shape changes of the unit cell
and the strain responses of the elastomer. Here the elastomer is
delineated by a nearly incompressible Yeoh hyperelastic model.
The strain-dependent shape changes are presented in Supple-
mentary Fig. 1. When the elastic metamaterial is uniaxially
stretched, the length of unit cell increases and the width of it
decreases due to Poisson effect. Conversely, under the compres-
sive strain, the length of unit cell decreases and the width of it
increases. In both circumstances, circular air holes become to be
elliptic. We set d/R= 0.68 and calculate band structures as a
function of applied strain, as presented in Fig. 1d. When the
system is under compression strain ε=−4.44%, an absolute
bandgap is observed between the first and the second bands. As
the applied strain increases to ε=−1.53%, a Dirac dispersion
relation can be observed at M point. As the elastic system is
stretched to ε= 3.16%, the Dirac cone previously formed at M
point disappears, shifting to MK direction, resulting in a bandgap
along ΓM direction. It should be noted that the longitudinal wave
bands are also exhibited in band structure (dashed lines in Fig. 1c,
d). But in this work we only focus on the transverse modes. Here
the applied strain on the elastic metamaterial is small enough so
that the effect of stress on elastic wave propagation is negligible30,
as well as the effect of pesudomagnetic field due to the gradient of
strain31–33. Therefore, we only consider the effect of the different
geometry configurations of soft lattice on wave propagation.

To investigate the topological properties of this system and
verify the fact of topological phase transition, we calculate the
topological invariant, namely Zak phase of each band in ΓM
direction, using symmetry analysis method34,35. Given the mirror
symmetry of our physical system, the Zak phase is quantized and
ensured to characterize the topology of the bulk. For each bulk
band, the Zak phase should be π if the eigenmode at center of
Brillouin zone possesses different symmetries with that at edge.
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Otherwise, the Zak phase is 0. As an example, Supplementary
Fig. 2 presents eigen displacement field distributions of transverse
modes at the band edges when d/R= 0.6 and 0.78 without applied
strain. Similar analysis can also be carried out to determine the
Zak phase in deformation process. Through analyzing the
symmetry properties, we obtain the Zak phase of each band
along ΓM direction, marked in Fig. 1c, d, exhibiting a distinct
topological phase transition, which is also known as band
inversion. We can similarly obtain the sgn (ς) of bandgap
associated with Zak phase by a simple expression36:

sgn ς nð Þ
� �

¼ �1ð Þn �1ð Þle
i
P

n�1

m¼0

θZakm ð1Þ

where n is the sequence of bandgap and l is the number of
crossing points beneath this bandgap. The resultant bandgap
signs are marked in Fig. 1c, d. The analysis details are seen in
Supplementary note 1.

Topological phase diagram. The topological phase transition at
M point has been achieved either by filling ratio or by mechanical
deformation of elastic metamaterials. Further, we demonstrate the
variation of topological properties as a function of d/R or strain.
As shown in Fig. 2a, the frequency range of the bandgap in ΓM
direction decreases monotonically as the d/R increases from 0.5 to
0.9, with a Dirac point formed at d/R= 0.7156. If we set the filling
ratio of d/R to be fixed values, e.g., d/R= 0.6, 0.68, or 0.78, we can
get a diagram with three plots of bandgap variation, experiencing
a similar topological phase transition in the strain range of −8.89
~ 8.89%, as presented in Fig. 2b. Three topological transition
points are observed at strain of −5.71%, −1.375%, and 2.66% for
d/R= 0.6, 0.68, and 0.78, respectively. If we draw a dash-dotted
line to connect all of the transition points together, we can divide
the diagram into two regions, with the bandgap sign ς > 0 and <0,
respectively. We call the dash-dotted line in Fig. 2b as a topolo-
gical phase transition line. Since the bandgap sign is related to the
reflection phase and further associated to the surface impedance
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Fig. 1 Design of topological elastic metamaterials and two band inversion processes. a Soft elastic metamaterial with periodic honeycomb holes of air in a

rectangle silicon rubber (Ecoflex). The inset shows the stretchability of the soft metamaterial. b The schematic of our soft elastic metamaterials. Red

dashed hexagon is the primitive cell with the hexagon edge length R and hole’s diameter d. a1
! and a2

! are the basic vectors. c Band inversion process as a

function of filling ratio of d/R without applied strain. The filling ratios of d/R chosen are 0.6, 0.7156, and 0.78. Dashed lines indicate longitudinal wave

bands. Solid lines and dotted lines indicate transverse wave bands in ΓM direction and other directions, respectively. Inset is the irreducible Brillouin zone. d

Band inversion process as a function of strain with fixed filling ratio of d/R= 0.68. Three strains chosen from compression to tension are −4.44, −1.53, and

3.16%. The calculated Zak phase could be 0 or π, which is marked on the corresponding bulk band in ΓM direction (solid lines) in c and d. The calculated

bandgap signs ς are marked in the corresponding bandgap. All band structures are from numerical simulation
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Z(ω, k||), the topological phase diagram can be considered as the
surface impedance diagram as a function of strain. One region
(yellow region) with ς < 0 has Z(ω, k||) < 0 and the other region
(cyan region) with ς > 0 has Z(ω, k||) > 0. The real parts of eigen
vertical displacement fields of the two distinct regions are shown
in Fig. 2c, indicating topological phase transition with even and
odd Bloch modes alternation.

The topological phase diagram shown in Fig. 2b provides a
general scheme to design topological interface states in soft elastic
metamaterials. In order to form topological interface states, the
bandgaps of two metamaterials must share an overlapped
frequency range with a band inversion. According to the phase
diagram, we can construct a topological system by combining two
metamaterials with different topological phases sharing the
overlapped frequency range, denoted with (d1/R, ε1|d2/R, ε2).

The possible constructions could be but not limited to (0.6,
5.56%|0.68, −8.89%) in the frequency range of 263 ~ 283 Hz, (0.6,
0%|0.68, −8.89%) in the frequency range of 272 ~ 293 Hz, and
(0.6, −1.11%|0.68, −8.89%) in the frequency range of 277 ~ 295
Hz. The uniaxial strains we mentioned above are along horizontal
direction. Actually, the topological phase can also be inverted by
changing the strain along vertical direction. The phase diagram
using the uniaxial strains along vertical direction is illustrated in
Supplementary Fig. 3.

Observation of topological interface state. When two elastic
systems with different topological invariants are edge-to-edge
joint, the topological interface states can be predicted to emerge
according to the surface impedance match condition ZL(ω, k||)+
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ZR(ω, k||)= 0. As a typical example, we demonstrate the
numerical observation of topological interface state by con-
structing a ribbon with two elastic metamaterials, (0.6, 5.56%|
0.68, −8.89%), which is presented in Fig. 3a. By combining two
elastic metamaterials together, a 30 × 1 supercell is formed to
calculate the projected band structure. As shown in Fig. 3b, a flat
band of transverse mode at the frequency of 274 Hz within the
bulk bandgap is observed in the projected band structure along kx
direction. The real-space distribution of displacement field is
displayed in Fig. 3a with a transverse input excitation of 274 Hz
applied on one side of the ribbon. We find that vibrations locate
mainly at the interface between two elastic metamaterials and
attenuate dramatically into the bulk, which coincides with the
field distribution of the eigenmode in the flat topological band
(Supplementary Fig. 4). Thus, the flat band is the topological
interface mode independent from bulk modes. Figure 3c presents
the transmission spectra as a function of different input excitation
angles, with coexistence of transverse excitation and longitudinal
excitation. As the excitation angle θ increases, the fraction of
input transverse wave increases. No transmission peak of trans-
verse wave is observed when θ is 0°. As the θ changes to 30°, 60°,
and 90°, a transverse wave transmission peak emerges at the
frequency 274 Hz and gradually grows to maximum. No evident
peak is found in the longitudinal wave transmission spectra in
this process, and the small peak at θ= 90° may be attributed to
the conversion of longitudinal wave to transverse wave.

The topological interface states have been numerically achieved
by combining two metamaterials with different filling ratios
according to the phase diagram in Fig. 2b. Actually, we can even
obtain the topological interface states by using two metamaterials
with the same filling ratio if we consider both the phase diagram
with horizontal strain in Fig. 2b and the phase diagram with
vertical strain in Supplementary Fig. 3. For example, the projected
band structure and eigenmode of the elastic system of filling ratio
of d/R= 0.68 with strains in both horizontal direction and
vertical direction are presented in Supplementary Fig. 5.

In order to experimentally observe the topological interface
states, we apply the excitation force along the interface between
two metamaterials, as presented in Fig. 4a. We calculate the
projected band structure along ky direction using the same
supercell as calculation in Fig. 3b. As shown in Supplementary
Fig. 6, a topological flat band (red dots) is observed near Γ point
and a series of discrete modes are found above and below the flat
band. It is interesting to note that when elastic waves with
different frequencies enter the elastic metamaterial, the waves
with frequencies above and below the flat band will be separated.
The elastic wave with the frequency as same as that of flat band
will be localized on the interface, exhibiting the topological
interface state. While the elastic waves with lower frequency or
higher frequency, they will propagate in right or left direction,
respectively. This splitting propagation is clearly revealed by the
vertical displacement field distribution at three typical frequen-
cies, 261, 274, and 286 Hz, as shown in Fig. 4b.

We fabricate an elastic metamaterial sample comprised of air
hole array (seen in Methods) with the setup of (0.6, 5.56%|0.68,
−8.89%) as presented in Fig. 4a and Supplementary Fig. 9. A
shaker to excite the elastic wave is placed on the interface of the
sample and an accelerometer is placed in 24 holes one by one
along the cyan line marked in Fig. 4b to detect the displacement.
When the frequency of excitation signal is 274 Hz, the detected
displacements at 24 holes are summarized in Fig. 4c. We find that
the magnitude of displacement reaches maximum near the
interface, and declines sharply away from interface. It is noted
that the vibration at the left of the interface drops slower than that
at the right, which is consistent with the simulation result in
Fig. 4c and the field distribution in Fig. 4b. Note that inserting an
accelerometer into the hole to measure the displacement will
bring added mass to the sample. The accelerometer method has
been employed as an effective way to detect vibration of elastic
metamaterials21,24. Considering the stable characteristic of
topological interface state, Majorana edge states have already
been observed by using accelerometers37. In our case, the further
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simulations and experiments in Supplementary Fig. 7 and
Supplementary note 2 confirm the added mass effect can be
neglected so that the estimated displacement field is valid.

To demonstrate the elastic wave splitter, the accelerometer is
placed in the hole on the left or right side of the propagation
pathway of the elastic wave according to the simulation results in
Fig. 4b. The experimental setup is presented in Supplementary
Fig. 9. Figure 4d presents the collected displacement of the left
part (magenta dashed curve) and the right part (blue dashed
curve) in the frequency range of 250 ~ 320 Hz. The calculated
displacement ratio of the left part over the right part is illustrated
in the black curve as shown in Fig. 4d. We define the area of the
displacement ratio between 0.9 and 1.1 as intermediate mode
(gray region in Fig. 4d), which corresponds to the most abrupt
area in ratio curve in the frequency range of 293 ~ 295 Hz. The
displacement with a ratio above 1.1 is regarded as left propagation
mode, which is above 295 Hz. While the displacement with a ratio
below 0.9 is regarded as right propagation mode, which is below
293 Hz. This feature may find application in phonon frequency
splitter due to different group velocities as presented in the
projected band structure (Supplementary Fig. 6), which differs
from the chiral propagation in time-reversal breaking system38.

The slight disagreement between the frequency of the inter-
mediated mode (293 ~ 295 Hz) and that of the flat band (274 Hz)
may be attributed to two reasons. First, the detection position
where we put the accelerometer may affect the magnitude of the
displacement. The vibration is mainly concentrated on the matrix
rather than around the holes, so the measured displacement is
slightly smaller than the simulation results. Second, the fixtures
we put on the two edges of the interface line between two
metamaterials may constrict the vibration at the vicinity of the
clippers. In addition, a tiny intermediate region between two
metamaterials arisen from the different strains setup may also
affect the measurement of the displacement.

Dynamical manipulation of topological interface states. Tun-
able elastic topological state is important and may find applica-
tion in large-scale phononic circuits. The zero-frequency adaptive
behavior controlled by external mechanical loads has been dis-
played, with floppy modes and the states of self-stress39. Here we
present a soft topological metamaterial with dynamically tunable
topological properties. Figure 5a presents a combination of two
elastic metamaterials, (0.6, ε1|0.68, −8.89%), in which strain ε1 is
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a variable in the range of −5.56 ~ 8.89%. According to the
topological phase diagram (Fig. 2b), the metamaterial (0.68,
−8.89%) at right side has a relatively large bandgap in the fre-
quency range of 263 ~ 298 Hz. While the metamaterial (0.6, ε1) at
left side has a common gap with that at right side when ε1
changes in the range of −1.11 ~ 8.89%. Figure 5b presents the
numerically calculated topological interface states only emerged
within the solid line in the frequency range of 271 ~ 285 Hz when
strain ε1 changes in the range of −1.11 ~ 8.89%. We selectively
choose four topological interface states in the solid line (Fig. 5b)
where strains ε1= 1.11%, 3.33%, 5.56%, and 7.78%, correspond-
ing to frequency of 279, 278, 274, and 272 Hz, respectively.

Figure 5c presents the simulated transmission spectra of
transverse wave for the four selected strain levels, and all of them

have sharp transmission peaks. The transmission peak shifts to
lower frequency or higher frequency when the metamaterial is
stretched or compressed. Corresponding experimental displace-
ment field distributions are displayed in Fig. 5d to confirm the
existence of topological interface states using the experimental
setup detailed in Supplementary Fig. 9. Besides, when we change
the frequency of input excitation along the dotted line in Fig. 5b
while keeping ε1 fixed at 5.56%, the topological interface state can
only be observed at the frequency of 274 Hz, as presented in the
experimental displacement field distribution in Fig. 5e. The
explicit comparison of experiment results and simulation results
is displayed in Supplementary Fig. 8, where the good agreement
of displacement field can be observed. The nature of elastomeric
elastic system makes the deformation process continuously
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Fig. 5 Tunability of soft topological system. a The schematic of tunable topological system with two metamaterials, (0.6, ε1|0.68, −8.89%), where strain ε1

is variable in the range of −5.56 ~ 8.89%. b The numerically simulated frequencies of topological interface state as a function of strain. The topological

state emerges at a certain frequency and the frequency decreases as the strain increases. c The simulated transverse wave transmission peaks for four

selected strains ε1= 1.11, 3.33, 5.56, and 7.78%, corresponding to the four colored symbols marked in b. d The experimentally measured vertical

displacement field distributions at four selected strains. The markers and colors have their correspondences in b. e The experimentally measured

displacement field distributions at five selected frequencies at strain of 5.56% along the purple dashed line in b, 272, 273, 274, 275, and 276 Hz. f A

snapshot of experimental demonstration of dynamical manipulation of topological interface state. The black dashed lines in a, d, and e indicate the position

of interface between two metamaterials
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reversible and repeatable, suggesting that elastic device can
perform well after thousands of utilities.

The mechanical deformation induced appearance and disap-
pearance of the strong field localization feature of interface states
can be dynamically manipulated, as shown in Supplementary
Movie. Figure 5f shows a snapshot of the movie, indicating the
experimental setup and dynamical process. When the input
vibration is fixed at frequency of 274 Hz, the topological interface
states emerge at the strain of 5.56%; the interface states disappear
when the strain is larger or smaller than 5.56%. The movie shows
a time-dependent acceleration signal when we stretch or
compress the metamaterial. The appearance of the topological
interface states is observed when the acceleration value reaches
the maximum, which is marked in the Supplementary Movie. The
experiment details are shown in Supplementary note 2.

Discussion
The transport of elastic wave in the elastic topological metama-
terials is quite different from topologically protected transport in
acoustic system. Although both elastic and acoustic waves can
propagate along interface without backscattering, the working
frequency of acoustic topological insulator is easily affected by its
surroundings such as water and air10. Since the polarization of
our elastic topological interface states is transverse, the working
frequency is relatively stable. We further calculate the phase
diagrams of soft metamaterial in water and vacuum background
(Supplementary Fig. 10). We find that the band structure of the
soft metamaterial in vacuum or water is similar to that in air,
indicating a robust band structure regardless of chaotic fluid
surroundings. We can find that the frequency ranges of bandgap
of the soft metamaterials in air or vacuum are slightly different
from that in water (~25 Hz), which mainly results from
the impedance mismatch and different loss intensities at the
boundary of soft metamaterial and its surroundings. Since the
soft metamaterials in different surroundings share a similar phase
diagram, we can easily find the topological interface states in a
soft metamaterial even randomly patterned with different fillers
(air, water, and vacuum) into holes, where the immune nature of
topological states is reflected greatly. Our finding provides an
example on topological insulator working in a complicated
environment, which has special advantage in information pro-
cessing and communication field.

Knowledge of strain-induced elastic topological phase transi-
tion opens avenues for topological state manipulation. This
strategy gives us the possibility to realize and then control
topological interface state statically and dynamically. Although in
our study we only focus on unit cell of millimeter scale, the
proposed design can be more complex and has various scales
depending on the operating frequency. Our research may be
generalized in other microscopic and macroscopic phononic
systems such as thermal management and soft robotics that make
better use of energy. Our study can also inspire electronic topo-
logical insulator used on elastomer substrate to develop flexible
electronic devices40.

Methods
Materials. A commercial silicone rubber Ecoflex 0030 (Smooth on®) is used to cast
the experimental samples with material density ρ= 1030 kg m−3. In order to
investigate the mechanical properties of Ecoflex 0030 (part A:part B= 1:1), a
uniaxial tension experiment is carried out. A mold based on ASTM D412 standard
is fabricated by 3 mm acrylic plate using a laser cutter, with a vector-optimized
cutting path to avoid defect on the critical neck region. Subsequently, the Ecoflex
mixture is cast into a two-part mold consisting of dog-bone-shaped top and acrylic
plate bottom after thoroughly degassed in a vacuum chamber. Then, it is placed at
room temperature for 4 h to be cured. Tensile test is performed on a universal
testing machine and the relation between engineering stress and elongation is
obtained (Supplementary Fig. 11). A nearly incompressible Yeoh hyperelastic

model is used to fit this relation, whose strain energy density is given by41:

W ¼
X

3

i¼1ð Þ
Ci Ii � 3ð Þi þ J � 1ð Þ2i

Di
ð2Þ

Thus, we obtain the mechanical properties of the soft material as follows: C1=

13.44 kPa; C2= 595 Pa; C3=−0.8153 Pa; and D1=D2=D3= 14.88 GPa−1.

Sample fabrication. In order to accurately fabricate the soft metamaterial
sample, an assembled mold is prepared. The mold comprises a base, four lateral
walls, and hundreds of well-polished stainless steel rods to shape the contour
of holes precisely. The base and lateral wall are cut by a laser cutter from
acrylic plate. Stainless steel rods with diameters of 3.0 and 3.4 mm are made by
polishing and wire cutting to the height slightly higher than the walls on every side.
Subsequently, these rods are inserted into the corresponding holes on the base.
After the fabrication of mold, two parts of silicone rubber are mixed thoroughly by
the ratio of 1:1 using an electric mixer and the casted mixture is placed in the
vacuum chamber for degassing. Next, it is allowed to cure at room temperature
for 4 h after pouring the mixture into the mold. According to this method, we
can precisely fabricate sample with combination of elastic metamaterials with
different filling ratios. After demolding, the sidewalls are cut from sample to satisfy
periodic condition. Here we obtain a metamaterial sample with two 6 × 6 unit cells:
l= 10 mm; c= 5 mm; m ¼

ffiffiffi

3
p

c; and d1= 3.4 mm, d2= 3.0 mm (Supplementary
Fig. 1a).

Testing and analysis. The transverse wave is generated by a shaker (Brüel & Kjær,
Type 5961) and vibration is transmitted by a rigid rod. At each side of sample, clips
are used to fix, stretch, and compress sample. At the interface of two metamaterials,
two clips are used to fix the edges of the interface to make the metamaterials move
independently. We measure the interface state characterized by displacement field
distribution using accelerometer (Brüel & Kjær, Type 4517) at several levels of
applied deformation. At the strain level of interest, we immobilize the specimen by
fixing the slide block on the slide guide and measure the displacement in a set of
number-labeled air holes marked in Fig. 4b. In order to measure different pro-
pagation directions of elastic wave in two parts of metamaterials, we choose two
holes on each side according to simulation results and put the accelerometer into
them. The exciter provides a random signal and the spectra is obtained by Fourier
transforms. The photo of specific experimental setup and related description are
shown in Supplementary Fig. 9 and Supplementary note 2. The ambient noise is
also recorded when the sample is statically placed.

Numerical simulations. Numerical simulations are performed by using COMSOL
Multiphysics, a finite-element analysis and solver software. The simulations are
implemented in the 2D acoustic-structure coupling module, including the actual
geometric size and relevant properties. The system consists of the air resonator
(vacuum and water) and soft material Ecoflex 0030. The parameters used for air are
mass density 1.29 kg m−3 and sound speed 340 m s−1. The mechanical properties
for Ecoflex 0030 are extracted from Yeoh hyperelastic model fit with experiment
data. The geometric parameters of unit cell are calculated as the elastic metama-
terial is under small mechanical deformation (<9%) (Supplementary Fig. 1). The
deformed unit cell with periodic boundary conditions is used to calculate the band
structure and eigenmode, while the supercell with unidirectional periodic condition
is used to calculate the projected band structure, detailed in Supplementary note 3.
For calculating the transmission spectra, an external force with different fre-
quencies is imposed on the boundary of finite size sample to mimic the incident
wave. In addition, the displacement on the outgoing end is collected as the
transmitted signal. The data line is set two to three lattice constants in front of the
edge of perfect match layer (PML) depending on the frequency of input. For the
calculation of wave propagation in finite sample, the PMLs are set around the
sample to prevent the leakage of energy.

Data availability. The data in this study are available from the corresponding
author on request.
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